ADJUNCTION OF SUBFIELD CLOSURES TO ORDERED DIVISION RINGS

ву ARNO JAEGER

1. **Preface.** Let Σ be an ordered division ring, P its prime field (i.e. the field of rationals), P^* the closure of P in its order topology; P^* is then order-isomorphic to the field of real numbers in their natural order. It has been shown by B. H. Neumann 1 that Σ can be extended to an ordered division ring $\Sigma(P^*)$ continuing the order of Σ and containing P^* in its centre.

With a few changes in Neumann's proof the following generalisation will be proved: Let F be an arbitrary subfield of the centre of Σ . Then Σ can be extended to an ordered division ring $\Sigma(F^*)$ continuing the order of Σ and containing the closure F^* of F with respect to its order-topology in its centre.

The new tool which is used throughout the paper is a mapping of Σ into a system consisting of the symbols $-\overline{\infty}$ and $+\overline{\infty}$ and an ordered residue class division ring \overline{D} obtained by a peculiar type of fundamental sequence modulo the corresponding null-sequences.

2. The mapping $\sigma \rightarrow \overline{\sigma}$. Let Σ be an ordered division ring with centre Z, F a fixed subfield of Z, and Σ^+ , F^+ the multiplicative groups of the positive elements of Σ , F respectively.

We can assume the order of the additive semigroup of F^+ to be nonarchimedean (2). Then the archimedean classes of the additive semigroups of Σ^+ , F^+ form multiplicative groups $\mathfrak{a}(\Sigma)$, $\mathfrak{a}(F)$ when the product is defined by the product of representatives of the corresponding classes(3). The archimedean classes of the additive semigroups of Σ^+ , F^+ will be called additive archimedean classes of Σ^+ , F^+ respectively. The additive archimedean class of an element $\sigma \in \Sigma^+$ in $\mathfrak{a}(\Sigma)$ will be denoted by $[\sigma]$. Thus $[\sigma]$ consists of those $\tau \in \Sigma^+$ for which there exist positive integers s, t such that $|\sigma| < t\tau$, $\tau < s|\sigma|$.

Let F^* be the closure of F with respect to its order-topology; it can be constructed by means of fundamental sequences and null-sequences in the usual way. Thus F^* is an ordered field containing (an ordered subfield isomorphic to) F such that its additive group is the order-topological completion of the additive group of F. With this t-completion in the sense of Cohen-Goffman(4) a unique ordinal $\xi^* = \xi(F)$ is associated, and for the construction

Received by the editors November 6, 1950 and, in revised form, October 1, 1951,

⁽¹⁾ Numbers in brackets refer to the bibliography at the end of the paper.

⁽²⁾ For otherwise the closure F^* of F is order-isomorphic to the field of reals, and F^* can be embedded in Σ according to [1].

⁽³⁾ Obviously this definition is independent of the choice of the representatives.

⁽⁴⁾ Cf. [2].

of F^* it is sufficient to use fundamental well-ordered ξ^* -sequences.

Let \Re be the subring of Σ consisting of all elements $\sigma \in \Sigma$ for which there exists a centre element $\zeta \in F^+$ with $|\sigma| < \zeta$, that is, for which the additive archimedean class $[\sigma]$ of $|\sigma|$ is not greater than all archimedean classes of F^+ . We shall call the elements of \Re finite(5) and the elements of $\Sigma - \Re$ infinite(5).

We shall now deal with certain sequences over \Re , similar to those leading to F^* , and start with the following definitions:

A well-ordered ξ^* -sequence $\{\sigma_{\alpha}\}$ of elements $\sigma_{\alpha} \in \mathbb{R}$ is called an *F-fundamental sequence* (abbreviated *FF-sequence*) if for every $\epsilon \in F^+$ there exists an ordinal $\gamma(\epsilon) < \xi^*$ such that $|\sigma_{\alpha} - \sigma_{\beta}| < \epsilon$ for $\alpha, \beta > \gamma(\epsilon)$.

An FF-sequence $\{\sigma_{\alpha}\}$ such that for every $\epsilon \in F^+$ there exists an ordinal $\gamma(\epsilon)$ such that $|\sigma_{\alpha}| < \epsilon$ for $\alpha > \gamma(\epsilon)$ is called an F-null-sequence (abbreviated FN-sequence).

The FF-sequences form a ring \overline{R} when addition, subtraction, and multiplication are defined in the usual way. The FN-sequences form a two-sided ideal \overline{I} in \overline{R} . The residue class ring $\overline{R}/\overline{I}$ is a division ring $\overline{D}(^6)$.

Special FF-sequences are those where a fixed element $\rho \in \mathbb{R}$ is repeated ξ^* -times: $\{\rho\}$, clearly their residue class mod \overline{I} defines an element of \overline{D} , and we shall denote it by $\overline{\rho}$. Similarly we shall mark subsets of \overline{D} which correspond to subsets of \Re by means of the mapping $\rho \to \overline{\rho}$ by a bar "-".

The map $\overline{\Re}$ of \Re in \overline{D} is a division ring. The mapping $F \rightarrow \overline{F}$ is an isomorphism. \overline{D} can be ordered so that the order of \overline{F} , induced by $F \cong \overline{F}$, is preserved. \overline{D} contains the closure \overline{F}^* (with respect to the the order-topology) of \overline{F} as a subfield (6).

We shall assume from now on that \overline{D} is ordered with preservation of the order in \overline{F} . We shall call the elements of \Re mapped onto $\overline{0}$ infinitely small(5); they form a two-sided maximal prime ideal in \Re which we shall denote by \Re .

The aim of our paper is to embed Σ in an ordered division ring Σ^* containing (a field order-isomorphic to) F^* . If the mapping $\Re \to \overline{\Re}$ is an isomorphism, then Σ^* can be taken to be \overline{D} . For if no elements $\sigma \in \Sigma^+$ exist with the property $\sigma < \zeta$ for all $\zeta \in F^+$, then also no elements $\tau \in \Sigma^+$ exist with $\tau > \zeta$ for all $\zeta \in F^+$. Therefore all elements of Σ are finite, $\overline{\Re}$ is order-isomorphic to Σ , and \overline{D} contains \overline{F}^* and $\overline{\Re}$. We shall exclude this trivial case in the following by the assumption $\Re \neq \Sigma$.

Then there exist infinitely small nonzero elements. The construction of \overline{D} sets up a natural mapping of Σ into the system obtained from \overline{D} by adding the two symbols $-\overline{\infty}$, $+\overline{\infty}$ with the usual conventions. The elements $\tau \in \Sigma - \Re$ are mapped onto $\pm \overline{\infty}$ according as $\tau \gtrless 0$.

Our mapping $\sigma \rightarrow \bar{\sigma}$ is a generalisation of the mapping $\sigma \rightarrow \hat{\sigma}$ in [1] since

⁽⁵⁾ This definition, of course, is dependent on the fixed field F, but for the sake of brevity we shall omit the qualification "with respect to F."

⁽⁶⁾ The proof runs along the usual lines and is omitted. Cf., for instance, [3, chap. IX].

there P* can be constructed by means of fundamental sequences instead of by means of Dedekind sections.

If all elements of \Re are mapped onto elements of \overline{F}^* , we are confronted with a situation similar to that in [1], and, in fact, the whole construction of Σ^* including the proofs can be taken over easily from [1].

But, in general, this need not be the case. For there may exist elements $\bar{\rho} \in \overline{\Re}$ such that $\bar{\sigma} \ll \bar{\rho} \ll \bar{1}$ holds for all $\bar{\sigma} \ll \bar{1}$, $\bar{\sigma} \in \overline{F}^*$. Then we shall denote the subring of all elements of \Re mapped into \overline{F}^* by $\mathfrak S$ and assume $\mathfrak S \neq \mathfrak R$. The map $\overline{\mathfrak S} = \overline{\Re} \cap \overline{F}^*$ is a field and consists of exactly the same additive archimedean classes as F. Finally we shall denote the subring of all elements of \Re mapped onto the centre of $\overline{\Re}$ by $\mathfrak S$. Then $\overline{\mathfrak S} \subseteq \overline{\mathfrak S}$ holds.

Now (8.4) and (8.5) in [1] are no longer valid in our case. However, we can still take over the construction of Σ^* in [1] and most of the proofs there. We shall have to supply amendments only when (8.4) or (8.5) are applied in [1].

As in [1], we shall denote by P an arbitrary subfield of $Z \cap \mathfrak{R}$ and by P_{\max} one of the maximal subfields of $Z \cap \mathfrak{R}$. We may assume $\overline{P}_{\max} \neq \overline{F}^*$, otherwise no extension would be required. It is then possible to adjoin to P_{\max} an element $\overline{\theta} \in \overline{F}^*$. We shall have to show that the corresponding adjunction of an element θ to P_{\max} , and thus to Σ , leads again to a division ring $\Sigma(\theta)$ and that $\Sigma(\theta)$ can be ordered with preservation of the order in Σ . By the successive adjunctions to Σ of all these θ , according to the classical Steinitz procedure T0, the required extension T1 is obtained.

As in [1], in all occurring polynomial domains $\Sigma[x]$, $\Re[x]$, etc., the variable x will be assumed commutative with the coefficients. Finally we shall use the abbreviations:

$$\sigma^{\tau} = \tau^{-1}\sigma\tau, \qquad \sigma, \tau \in \Sigma, \qquad \tau \neq 0,$$

$$\bar{\sigma}^{\tau} = \left\{\tau^{-1}\sigma\tau\right\} \bmod \bar{I}, \qquad \sigma \in \Re, \qquad \tau \in \Sigma, \quad \tau \neq 0,$$

$$f^{\tau}(x) = \tau^{-1}f(x)\tau, \qquad f(x) \in \Sigma[x], \quad \tau \in \Sigma, \quad \tau \neq 0,$$

$$\bar{f}^{\tau}(x) = \left\{\tau^{-1}f(x)\tau\right\} \bmod \bar{I}, \qquad f(x) \in \Re[x], \quad \tau \in \Sigma, \quad \tau \neq 0.$$

 \Re as well as $\Re[x]$ are invariant under all $\tau \in \Sigma$, hence $\bar{\sigma}^{\tau}$ and $\bar{f}^{\tau}(x)$ are defined. Then the following lemmas will help to replace [1, (8.4)] and [1, (8.5)] here:

2.1. Lemma. If $\bar{f}(\bar{x}) \in \overline{\Re}[\bar{x}]$, $\bar{\theta} \in \overline{F}^*$, $\bar{f}(\bar{\theta}) > \bar{0}$, then $\bar{f}^{\tau}(\bar{\theta}) > \bar{0}$ for every nonvanishing $\tau \in \Sigma$.

Proof. Let $f(x) \in \mathfrak{R}[x]$ be a fixed image of $\overline{f}(\bar{x})$ and $\{\theta_{\alpha}\}$, $\theta_{\alpha} \in F$, be a FF-sequence such that $\{\theta_{\alpha}\}$ mod $\overline{I} = \overline{\theta}$. From $\overline{f}(\overline{\theta}) > \overline{0}$ it follows that there exist an $\epsilon \in F^+$ and an ordinal $\gamma(\langle \phi)$ such that $f(\theta_{\alpha}) > \epsilon > 0$ for $\phi > \alpha > \gamma(s)$. But then $f^{\tau}(\theta_{\alpha}) > \epsilon > 0$ holds, too, for $\phi > \alpha > \gamma$, i.e., $\overline{f}^{\tau}(\overline{\theta}) > \overline{0}$.

⁽⁷⁾ Cf. [4].

⁽⁸⁾ This can be shown in the usual way, cf., for instance, [3, chap. IX].

- 2.2. Corollary. If $\bar{f}(\bar{x}) \in \mathbb{R}[\bar{x}]$, $\bar{\theta} \in \mathbb{F}^*$, $\bar{f}(\bar{\theta}) = \bar{0}$, then $\bar{f}^{\tau}(\bar{\theta}) = \bar{0}$ for every nonvanishing $\tau \in \Sigma$.
- 2.3. Lemma. If $\bar{g}(\bar{x}) \in \overline{\Re}[\bar{x}]$ is irreducible and monic, $\bar{\theta} \in \overline{F}^*$, $\bar{g}(\bar{\theta}) = \overline{0}$, then $\bar{g}(\bar{x}) = \bar{g}^{\tau}(\bar{x})$ for every nonvanishing $\tau \in \Sigma$.
- **Proof.** Suppose $\bar{h}(\bar{x}) = \bar{g}(\bar{x}) \bar{g}^{\tau}(\bar{x}) \neq \bar{0}$ for a certain $\tau \in \Sigma$. Then $\bar{h}(\bar{\theta}) = \bar{0}$ holds by (2.2). But this contradicts the irreducibility of $\bar{g}(\bar{x})$ in $\overline{\Re}[\bar{x}]$ since the degree of $\bar{h}(\bar{x})$ is less than the degree of $\bar{g}(\bar{x})$.
- 2.4. COROLLARY. If $\bar{g}(\bar{x}) \in \mathbb{R}[\bar{x}]$ is irreducible and monic, $\bar{\theta} \in \overline{F}^*$, $\bar{g}(\bar{\theta}) = \overline{0}$, then $\bar{g}(\bar{x}) \in \mathbb{R}[\bar{x}]$.
- 3. Alterations in Neumann's proof. Now the sections 9-17 in [1] can be taken over mutatis mutandis. Thus all accents have to be replaced by bars, and $\sigma \rightarrow \bar{\sigma}$ is a mapping into \bar{D} , whilst in [1], $\sigma \rightarrow \bar{\sigma}$ was a mapping into \bar{P}^* . Only the following alterations are necessary:

In section 9 whenever g(x) occurs the additional assumption has to be made that it is monic and irreducible over $\Re[x]$ and that $\bar{g}(\bar{\theta}) = \bar{0}$ holds, which involves no loss of generality. In the proof of $(9.5)(^9)$, the lemma (8.5) was applied in order to show that $\hat{h}'' = \hat{h}$ holds. Here the corresponding fact $\bar{h}'' = \bar{h}\bar{b}^{-1} = \bar{h}$ follows from $\bar{f}(\bar{x}) = \bar{f}\bar{b}^{-1}(\bar{x})$ and (2.3).

In section 10 the absence of commutativity in our $\overline{\mathbb{R}}$ provides no special difficulty since $\bar{g}(\bar{x})$, defined as in (10.41), lies in the centre $\overline{\mathfrak{Z}}[\bar{x}]$ of $\overline{\mathfrak{R}}[\bar{x}]$ because of (2.4). The original proof of (10.73) used (8.5), therefore it has to be altered as follows: p>0 implies $\bar{q}(\bar{\theta})>\bar{0}$ (according to (10.51)), hence $\bar{q}^{\sigma}(\bar{\theta})>\bar{0}$ by (2.1). But $\bar{p}^{\sigma}(\bar{x})=\bar{g}(\bar{x})^{\lambda}\bar{q}^{\sigma}(\bar{x})$ by (2.3), hence $p^{\sigma}>0$.

In section 11, instead of (11.4) only a restricted lemma can be proved.

3.1. LEMMA. If $\sigma \in \mathfrak{S}$, $\rho \in \mathfrak{R}$, then $A_{\sigma}\rho = o(\rho)$.

Proof. We have $\bar{\sigma} = \bar{\sigma}^{\rho}$, hence $\sigma^{\rho} - \sigma = o(1)$, or upon left-hand multiplication by $\rho: \sigma \rho - \rho \sigma = o(\rho)$.

Consequently in (11.51), (11.52), and (11.53), σ and τ must now be restricted to belong to \mathfrak{S} . Similarly in section 12 the restrictions $\xi_1, \xi_2, \xi \in \mathfrak{S}$ are necessary in all lemmas.

In section 13, instead of (13.2) we have only the following lemma:

3.2. Lemma. If $\xi \in \mathfrak{S}$, then $(pq)\xi = p(\xi)q(\xi) + o(q(\xi))$.

This follows from (13.21) and (3.1).

(13.3), (13.4), (13.5), and (13.6) have no value for us since (13.7) cannot be generalised in a way suitable for our purposes. But the following weaker lemma will help us:

^(*) Here and in the following numbers of formulae refer either to our paper or to [1, part II]. No misunderstanding is possible since our paper consists only of the sections 1-3, but [1, part II] starts with section 7.

3.3. COROLLARY. If $\xi \in \mathfrak{S}$, $p(\xi) \neq o(1)$, then $(pq)\xi = p(\xi)q(\xi)(1+o(1))$.

Proof. $p(\xi) \neq o(1)$ implies $(p(\xi))^{-1} = O(1)$. Hence

$$o(q(\xi)) = o((p(\xi))^{-1}p(\xi)q(\xi)) = o(O(p(\xi)q(\xi)) = o(p(\xi)q(\xi))$$

and (3.2) does the rest.

In the sections 14 and 15, θ and ζ belong already to \mathfrak{S} quite naturally. Thus our proofs are not hampered by the previous restrictions that the arguments of all polynomials must belong to \mathfrak{S} . In (15.2) and (15.21), \mathfrak{T} has to be replaced by \mathfrak{S} . Of course the normal extension Φ , as introduced in the proof of (15.2), need not lie in $\overline{F}^*(-1)^{1/2}$. But according to Steinitz [4], for every field K an algebraically closed extension field L can be constructed. Thus if $K = \mathfrak{S}$, Φ lies in L. In the proof of (15.5) our lemma (3.2) must be applied twice.

The ordering of a simple algebraic extension $\Sigma(\theta)$ of Σ can be defined as in the sections 16 and 17. All proofs but one remain valid, only the proof of (16.73) has to be altered (because it applied (13.7) in [1]) as follows:

 $\bar{f}(\bar{x})$, as defined in (9.21), is irreducible over $\overline{\Re}$. For otherwise f(x) would factorise in $\Re[x]$, in contradiction of (9.8). Put $p_3(x) = \pi_2^{-1} p_1 \pi_2(x)$, then $p_3(x) \in \Re[x] - \Re[x]$, according to its definition. Since $p_3(x)$ is of smaller degree than f(x), we have $\bar{p}_3(\bar{\xi}) \neq \bar{0}$, i.e. $p_3(\xi) \neq o(1)$. Now (16.73) follows from (3.3).

Finally in the place of (17.5) we have the following result:

3.4. THEOREM. Every ordered division ring Σ can be extended to an ordered division ring $\Sigma(F^*)$, containing the closure F^* of a chosen subfield of F of Σ (with respect to the order-topology in F) with preservation of the order-relations in Σ .

BIBLIOGRAPHY

- 1. B. H. Neumann, On ordered division rings, Trans. Amer. Math. Soc. vol. 66 (1949) pp 202-252, part II.
- 2. L. W. Cohen and Caspar Goffman, The topology of ordered abelian groups, Trans. Amer. Math. Soc. vol. 67 (1949) pp. 310-319.
 - 3. B. L. van der Waerden, Moderne Algebra, vol. I, 2d ed., Berlin, Springer, 1937.
- 4. E. Steinitz, Algebraische Theorie der Körper, ed. by R. Baer and H. Hasse, Berlin and Leipzig, de Gruyter, 1930.

THE UNIVERSITY,

MANCHESTER, ENGLAND.