REMARKS ON SOME MODULAR IDENTITIES

MORRIS NEWMAN

Introduction. We shall consider a certain class of functions invariant with respect to the substitutions of the congruence subgroup $\Gamma_0(p)$ of the modular group Γ . By specializing these functions, we shall obtain classical identities in the analytical theory of numbers: E.g., the Ramanujan identities for partitions modulo 5, 7 and Mordell's identity for $\tau(n)$. We shall also derive some new identities.

These functions bear some resemblance to those considered by Rademacher in his paper 1 to prove the Ramanujan identities, certain modular equations, etc. The type of function considered, however, seems first to have been studied by Watson in his paper [2].

1. Definitions, notations.

- (1.1) Γ is the full modular group; i.e., the group of 2×2 matrices of determinant 1 with rational integral elements.
 - (1.2) $\Gamma_0(m)$ is the subgroup of Γ characterized as follows: The element

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

of Γ belongs to $\Gamma_0(m)$ if and only if $c \equiv 0$ (m).

(1.3)
$$\eta(\tau) = \exp \pi i \tau / 12 \cdot \prod (1 - x^n) \\ = \exp \pi i \tau / 12 \cdot \{ \sum p(n) x^n \}^{-1}, \qquad x = \exp 2\pi i \tau, im\tau > 0.$$

Here, as in the sequel, all products will be extended from 1 to ∞ and all sums from 0 to ∞ , unless otherwise indicated.

A few words about $\eta(\tau)$ (the Dedekind η -function) are in order. In the interior of the upper half-plane, $\eta(\tau)$ is free from poles and zeros. At $\tau = i \infty$ and at $\tau = 0$, $\eta(\tau)$ is zero. $\eta(\tau)$ is a modular form of dimension -1/2, and satisfies the following transformation formula, which will be used extensively:

(1.4) If

$$V = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma$$
, and $c > 0$,

then

$$\eta(V\tau) = \left\{-i(c\tau+d)\right\}^{1/2} \exp -\pi i N \cdot \eta(\tau),$$

Received by the editors December 6, 1951.

⁽¹⁾ Numbers in brackets refer to bibliography at end of paper.

where N = s(a, c) - (a+d)/12c. Also, $\eta(\tau+1) = \exp \pi i/12 \cdot \eta(\tau)$. s(a, c) is a "Dedekind sum" and is defined as follows: If we set

$$((x)) = \begin{cases} x - [x] - 1/2 & x \text{ nonintegral} \\ 0 & x \text{ integral,} \end{cases}$$

then $s(a, c) = \sum_{r=0}^{\infty} ((r/c))((ar/c))$, where r runs over a complete set of residues modulo c in the summation.

We shall put

$$S = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \quad T = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \quad W = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}.$$

It is well known that S and T are generators of Γ . We observe that

$$S^{n} = \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix},$$

$$W^{n} = \begin{pmatrix} 1 & 0 \\ n & 1 \end{pmatrix}, \qquad T^{2} = -I.$$

Since

$$\binom{a \ b}{c \ d} \tau = (a\tau + b)/(c\tau + d) = \binom{-a \ -b}{-c \ -d} \tau,$$

 $T^2\tau = \tau$.

We shall also put

$$z_p = \exp -2\pi i/p\tau$$
, $\prod (1-x^n)^r = \sum p_r(n)x^n$.

We shall be concerned with series whose coefficients are $p_r(n)$'s.

Notice that $p_{-1}(n) = p(n)$ in this notation.

Some remarkable congruence properties of the $p_r(n)$'s modulo 5, 7 have been found by Ramanathan in his paper [6].

- 2. Functions on $\Gamma_0(p)$. In what follows, p will always be a prime greater than 3. The fundamental region Q_p of $\Gamma_0(p)$ has only the parabolic points $i\infty$, 0. A function on $\Gamma_0(p)$ (invariant with respect to the substitutions of $\Gamma_0(p)$) which is regular in the interior of Q_p and bounded at $i\infty$, 0 accordingly is constant. For this reason functions on $\Gamma_0(p)$ are amenable to numerical calculation. We need the following elementary theorem, the proof of which we omit:
- (2.1) $\Gamma_0(p^2)$ is of index p in $\Gamma_0(p)$, and a set of right representatives for $\Gamma_0(p^2)$ in $\Gamma_0(p)$ is given by:

$$R_k = W^{-pk},$$
 $k = 0, 1, \dots, p-1.$

We also need the following:

(2.2) THEOREM. Let Γ_0 , Γ_1 be subgroups of Γ , $\Gamma_0 \supseteq \Gamma_1$, $(\Gamma_0:\Gamma_1) = \mu < \infty$. Let R_0 , R_1 , \cdots , $R_{\mu-1}$ be a set of right representatives for Γ_1 in Γ_0 . Let $g(\tau)$ be a function on Γ_1 , and let $F(x_0, x_1, \cdots, x_{\mu-1})$ be a symmetric function of its variables. Put $f(\tau) = F(g(R_0\tau), g(R_1\tau), \cdots, g(R_{\mu-1}\tau))$. Then $f(\tau)$ is a function on Γ_0 .

Proof. Let $M \in \Gamma_0$.

 R_iM may be written as M_iR_i' , where $M_i \in \Gamma_1$, and R_i' is a representative. Also, if $R_iM = M_iR_i'$, $R_jM = M_jR_j'$, then if $R_i' = R_j'$, we have $R_iR_j^{-1} = M_iM_j^{-1} \in \Gamma_1$, so that $R_i = R_j$. That is, as R_i runs through a complete set of representatives, so does R_i' .

Hence

$$f(M\tau) = F(g(R_0M\tau), g(R_1M\tau), \cdots, g(R_{\mu-1}M\tau))$$

$$= F(g(M_0R'_0\tau), g(M_1R'_1\tau), \cdots, g(M_{\mu-1}R'_{\mu-1}\tau))$$

$$= F(g(R'_0\tau), g(R'_1\tau), \cdots, g(R'_{\mu-1}\tau))$$

$$= f(\tau).$$

The function $\eta(p^2\tau)/\eta(\tau) = x^{\nu} \prod \{(1-x^{\nu^2n})/(1-x^n)\}$, where $\nu = (p^2-1)/24$ (which is an integer since (p,6)=1), may easily be shown to be a function on $\Gamma_0(p^2)$ by use of the transformation formula (1.4) and some theorems about s(a,c) which may be found in [1] or in [3]. We shall omit the proof. We put

$$(2.3.1) h = h(\tau) = \eta(p^2\tau)/\eta(\tau),$$

(2.3.2)
$$S_r = S_r(\tau) = \sum_{n=0}^{p-1} h^r(R_n \tau), r \text{ integral.}$$

By (2.1) and (2.2), S_r is a function on $\Gamma_0(p)$. The S_r 's are the functions we shall consider. Clearly, S_r is regular and bounded in the interior of the upper half-plane (see the remark to (1.3)). Hence to determine the behaviour of S_r completely, we need only know its behaviour at the parabolic points $i \infty$, 0 of Q_p . It will be our purpose in general to compare S_r with

$$(2.3.3) g = g(\tau) = \{ \eta(p\tau)/\eta(\tau) \}^*,$$

where s = s(p) is the least positive even integer such that $s(p-1) \equiv 0$ (24). g is also a function on $\Gamma_0(p)$ (see [1]). g has a zero of order s(p-1)/24 at $\tau = i \infty$ in x, and a pole of order s(p-1)/24 at $\tau = 0$ in z_p . For

$$p = 5$$
 $p = 7$ $p = 13$
 $s = 6$, $s = 4$, $s = 2$,

g is a "Hauptmodul" for $\Gamma_0(p)$: I.e., any function on $\Gamma_0(p)$ with polar singularities at most in appropriate uniformizing variables is a rational function of g.

We shall rewrite S_r . We have

$$h(R_n\tau) = \eta(p^2R_n\tau)/\eta(R_n\tau) = \eta(p^2W^{-pn}\tau)/\eta(W^{-pn}\tau) = \eta(pW^{-n}p\tau)/\eta(W^{-pn}\tau).$$

For (n, p) = 1 define n' as the least positive solution of the congruence $nx \equiv 1$ (p), and for $p \mid n$ define n' = 0.

If (n, p) = 1, we may rewrite $pW^{-n}p\tau$ as follows:

$$pW^{-n}p\tau = M_1(\tau - n'/p),$$
 where $M_1 = \begin{pmatrix} -p & -n' \\ n & (nn'-1)/p \end{pmatrix}.$

Hence $h(R_n\tau) = \eta(M_1(\tau - n'/p))/\eta(W^{-pn}\tau)$. Making use of (1.4), we obtain $h(R_n\tau) = p^{-1/2} \exp -\pi i N_1 \cdot \eta(\tau - n'/p)/\eta(\tau)$, where

$$N_1 = \left\{ s(-p, n) - (-n + (nn' - 1)/p) / 12n \right\} - \left\{ s(-1, pn) + 1/6pn \right\}.$$

It may further be shown by theorems from [1] and [3] that $\exp -\pi i N_1 = \exp -\pi i (p-1)/4 \cdot \exp \pi i n' p/12 \cdot (n'/p)$, where (n'/p) denotes the Legendre-Jacobi symbol of quadratic reciprocity. Hence

$$h(R_n \tau) = p^{-1/2} \exp{-\pi i (p-1)/4} \cdot \exp{\pi i n' p/12} \cdot (n'/p) \cdot \eta(\tau - n'/p)/\eta(\tau),$$

and so

$$S_{r} = \sum_{n=0}^{p-1} h^{r}(R_{n}\tau) = h^{r}(\tau) + \sum_{n=1}^{p-1} h^{r}(R_{n}\tau)$$

$$(2.4)$$

$$= h^{r}(\tau) + c^{r}\eta^{-r}(\tau) \sum_{n=1}^{p-1} (n'/p)^{r} \cdot \exp \pi i n' p r / 12 \cdot \eta^{r}(\tau - n'/p),$$

where we have put $c = p^{-1/2} \exp -\pi i(p-1)/4$.

Distinguishing cases r even and r odd, and using the well known Gaussian sum formula

$$\sum_{n=1}^{p-1} (n/p) \exp 2\pi i n a/p = \exp \pi i (p-1)^2/8 \cdot p^{1/2} (a/p),$$

we find

(2.5.1) For r even,

$$S_r = -c^r + h^r(\tau) + pc^r \prod (1-x^n)^{-r} \sum_{\lambda \geq 0, \lambda \equiv r_r(p)} p_r(\lambda) x^{\lambda}.$$

(2.5.2) For r odd,

$$S_r = h^r(\tau) + \exp \pi i (p-1)^2 / 8 \cdot p^{1/2} c^r \prod (1-x^n)^{-r} \sum_{\lambda \geq 0} ((r\nu - \lambda)/p) p_r(\lambda) x^{\lambda}.$$

The formulae (2.5.1), (2.5.2) furnish the desired information as to the behaviour of the S_r 's at $i \infty$. To study the behaviour of the S_r 's at 0, we subject them to the transformation T and study the TS_r 's at $i \infty$ (2). Proceeding

⁽²⁾ A device employed by Rademacher in [1].

as before, we have for $h(R_nT\tau)$, (n, p) = 1:

$$h(R_nT\tau) = c(n'/p) \exp \pi i n' p/12 \cdot \eta(T\tau - n'/p)/\eta(T\tau).$$

We may rewrite $T\tau - n'/p$ as follows:

$$T\tau - n'/p = M_2(\tau + np)/p^2$$
, where $M_2 = \begin{pmatrix} -n' & (nn'-1)/p \\ p & -n \end{pmatrix}$.

Making use of (1.4) again,

$$h(R_n T \tau) = c(n'/p) \exp \pi i n' p / 12 \cdot \eta (M_2(\tau + np)/p^2) / \eta (T\tau)$$

= $p^{-1/2} c(n'/p) \exp \pi i n' p / 12 \cdot \exp -\pi i N_2 \cdot \eta ((\tau + np)/p^2) / \eta (\tau),$

where $N_2 = s(-n', p) + (n+n')/12 p$.

After the necessary simplifications, we obtain

$$h(R_n T \tau) = p^{-1} \exp -\pi i n p / 12 \cdot \eta \left(\frac{\tau + n p}{p^2}\right) / \eta(\tau).$$

If we note here that $h(R_nT\tau)$ agrees formally with $h(T\tau)$ for n=0, we have

(2.6)
$$TS_{r} = \sum_{n=0}^{p-1} h^{r}(R_{n}T\tau)$$

$$= p^{-r}\eta^{-r}(\tau) \sum_{n=0}^{p-1} \exp -\pi i n p r / 12 \cdot \eta^{r} \left(\frac{\tau + np}{p^{2}}\right) / \eta(\tau).$$

Expanding into a power series, we have

(2.7)
$$TS_r = p^{-r+1} \prod_{\lambda \ge 0, \lambda = r^{\nu}(p)} p_r(\lambda) x^{(\lambda - r^{\nu})/p^2}.$$

A study of (2.5.1), (2.5.2), and (2.7) leads us to the construction of the following table:

(2.8) (a)
$$r > 0$$
.

 $i \infty$

0

 S_r : Zero-free and pole-free in x unless r is odd and divisible by p, in which case zero of order 1 in x. $S_r + c^r$.

Pole of order $[r\nu/p]$ in $z_p(^3)$. Pole of order

 $\lceil r\nu/p \rceil$ in $z_p(3)$.

r even: Zero of order $r\nu - p[r\nu/p]$ in x(3).

(b) r < 0. Put $r = -r_1$, $r_1 > 0$. We then have:

0

 S_r : Pole of order $r_1\nu$ in x.

Zero of order $1+[r_1\nu/p]$ in z_p .

3. Applications.

(3) Provided that $p_r(r\nu - p[r\nu/p]) \neq 0$.

(3.1)
$$r = -1$$
, $p = 5$.

Then S_{-1} has a pole of order 1 in x at $\tau = i \infty$, and a zero of order 1 in z_5 at $\tau = 0$. This implies that the product gS_{-1} is constant, or that

$$S_{-1} = K_0 g^{-1}$$
.

If we replace τ by $-1/5\tau$ and evaluate K_0 , we obtain the first of Ramanujan's identities:

$$\sum p(5n+4)x^n = 5 \prod (1-x^{5n})^5 (1-x^n)^{-6}.$$

$$(3.2)$$
 $r = -1$, $p = 7$.

Then S_{-1} has a pole of order 2 in x at $\tau = i \infty$, and a zero of order 1 in z_7 at $\tau = 0$. This implies that g^2S_{-1} is linear in g, or that

$$S_{-1} = K_0 g^{-2} + K_1 g^{-1}.$$

If we replace τ by $-1/7\tau$ and evaluate K_0 , K_1 , we obtain the second of Ramanujan's identities:

$$\sum p(7n+5)x^n = 7 \prod (1-x^{7n})^3 (1-x^n)^{-4} + 49x \prod (1-x^{7n})^7 (1-x^n)^{-8}.$$

$$(3.3)$$
 $r = -1$, $p = 13$.

Then S_{-1} has a pole of order 7 in x at $\tau = i \infty$, and a zero of order 1 in z_{13} at $\tau = 0$. This implies that $g^7 S_{-1}$ is a polynomial in g of degree 6, or that

$$S_{-1} = K_0 g^{-7} + K_1 g^{-6} + \cdots + K_6 g^{-1}.$$

If we replace τ by $-1/13\tau$ and evaluate K_0 , K_1 , \cdots , K_6 , we obtain an identity of Zuckerman (see [3]).

$$(3.4)$$
 $r = 24.$

Then $S_{24}+c^{24}$ has a zero of order p-1 at least in x at $\tau=i\infty$, and a pole of order p-1 at most in z_p at $\tau=0$. This implies that the quotient $(S_{24}+c^{24})/\{\eta(p\tau)/\eta(\tau)\}^{24}$ is bounded, which in turn implies that

$$S_{24} = -c^{24} + K_0 \{ \eta(p\tau)/\eta(\tau) \}^{24}$$

If we replace τ by $-1/p\tau$, evaluate K_0 , and set $\tau(n) = p_{24}(n-1)$, we obtain Mordell's identity for $\tau(n)(4)$:

$$\sum \tau(np+p)x^n = \tau(p)\prod (1-x^n)^{24} - p^{11}x^{p-1}\prod (1-x^{np})^{24}.$$

(3.5) We can easily generalize Mordell's identity as follows: Choose r even, $0 < r \le 24$, $r(p-1) \equiv 0$ (24). Put $\delta = r(p-1)/24$. Then we have for $S_r + c^r$:

$$i \infty$$
 0

 $S_r + c^r$: Zero of order δ at least in x. Pole of order δ at most in z_p .

This implies that the quotient $(S_r+c^r)/\{\eta(p\tau)/\eta(\tau)\}^r$ is bounded which

⁽⁴⁾ See [5].

in turn implies that

$$S_r = -c^r + K_0 \{ \eta(p\tau)/\eta(\tau) \}^r.$$

If we replace τ by $-1/p\tau$ and evaluate K_0 , we obtain

$$\sum p_r(np + \delta) x^n = p_r(\delta) \prod (1 - x^n)^r - p^{r/2-1} x^{\delta} \prod (1 - x^{np})^r.$$

(3.6) p = 5.

We have the following table:

	$\iota \infty$	0
S_1 :	Zero-free and pole-free in x .	Zero-free and pole-free in z_5 .
\mathcal{S}_2 :	Zero-free and pole-free in x .	Zero-free and pole-free in z_{δ} .
S_3 :	Zero-free and pole-free in x .	Zero-free and pole-free in z ₅ .
S_4 :	Zero-free and pole-free in x .	Zero-free and pole-free in z ₅ .
$\mathcal{S}_{\mathfrak{s}}$:	Zero of order 1 in x .	Pole of order 1 in z ₅ .

These imply that S_1 , S_2 , S_3 , S_4 are constant, while S_5 is proportional to $B = \{\eta(5\tau)/\eta(\tau)\}^6$. Hence in the polynomial $\prod_{i=0}^4 (u-h(R_i\tau)) = u^5 - c_1u^4 + c_2u^3 - c_3u^2 + c_4u - c_5$, the coefficients c_1 , c_2 , c_3 , c_4 must also be constant, while c_5 is linear in B(5).

Putting $u = h(\tau) = \eta(25\tau)/\eta(\tau) = A$, we find that B is a polynomial of degree 5 in A. The actual polynomial turns out to be

$$(3.6.1) B = 25A5 + 25A4 + 15A3 + 5A2 + A.$$

If we set $A_0 = 5^{1/2}A$, $B_0 = B/A$, then (3.6.1) reads

$$(3.6.2) B_0 = A_0^4 + 5^{1/2} A_0^3 + 3A_0^2 + 5^{1/2} A_0 + 1.$$

(3.6.2) shows the reciprocal nature of the modular equation.

The reason there is an identity (3.6.1) is that $\Gamma_0(25)$ is of genus zero (as are $\Gamma_0(5)$, $\Gamma_0(7)$, $\Gamma_0(13)$) and so a Hauptmodul exists for $\Gamma_0(25)$. (3.6.1) indicates that we may choose $\eta(25\tau)/\eta(\tau)$ for this Hauptmodul(6). The genus of $\Gamma_0(49)$, however, turns out to be 1, so no analogous identity exists for $\{\eta(7\tau)/\eta(\tau)\}^4$ in terms of $\eta(49\tau)/\eta(\tau)$. The polynomial relationship between these functions is quadratic in $\{\eta(7\tau)/\eta(\tau)\}^4$.

Some new identities (of the many which are possible) obtained by specializing the S_r 's follow, without comment. Of particular interest are those for which p differs from 5,7,13 (since then the subgroups in question are not of genus zero). These identities are isolated instances, not at all characteristic

⁽⁶⁾ The c's are the elementary symmetric functions on the roots, and the result follows from Newton's formulae relating the c's and the S's.

⁽⁶⁾ $\eta(25\tau)/\eta(\tau)$ has a zero of order 1 in x at $\tau=i\infty$, a pole of order 1 in z_{25} at $\tau=0$, and is finite and different from zero at the other parabolic points $\pm 1/5$, $\pm 2/5$ of Q_{25} . That is, it has precisely one pole (in the proper uniformizing variable) in Q_{25} . This guarantees that it is a Hauptmodul for $\Gamma_0(25)$.

of the true situation.

1.
$$r=5$$
, $p=5$.

$$\sum p_5(5n)x^n = \prod (1-x^n)^6(1-x^{5n})^{-1}(7).$$

2.
$$r=5$$
. $p=7$.

$$\sum p_5(7n+3)x^n = 10 \prod (1-x^{7n})(1-x^n)^4 + 49x \prod (1-x^{7n})^5.$$

3.
$$r=7$$
. $p=7$.

$$\sum p_7(7n)x^n = \prod (1-x^n)^8(1-x^{7n})^{-1} + 49x \prod (1-x^n)^4(1-x^{7n})^{3(7)}.$$

4.
$$r=2$$
, $p=11$.

$$\sum p_2(11n+10)x^n=\prod (1-x^{11n})^2.$$

5.
$$r=4$$
, $p=11$.

$$\sum p_4(11n + 20)x^n = -11 \prod (1 - x^{11n})^4.$$

6.
$$r=2$$
, $p=17$.

$$\sum p_2(17n + 24)x^n = - \prod (1 - x^{17n})^2.$$

7.
$$r = 6$$
, $p = 31$.

$$\sum p_6(31n + 240)x^n = 961 \prod (1 - x^{31n})^6.$$

BIBLIOGRAPHY

- 1. H. A. Rademacher, *The Ramanujan identities under modular substitutions*, Trans. Amer. Math. Soc. vol. 51 (1942) pp. 609-636.
- 2. G. N. Watson, Ramanujan's Vermutung über Zerfallungs anzahlen, J. Reine Angew. Math. vol. 179 (1938) pp. 97-128.
- 3. H. S. Zuckerman, Identities analogous to Ramanujan's identities involving the partition function, Duke Math. J. vol. 5 (1939) pp. 88-110.
- 4. H. A. Rademacher and A. Whiteman, *Theorems on Dedekind sums*, Amer. J. Math. vol. 63 (1941) pp. 377-407.
 - 5. G. H. Hardy, Ramanujan, Cambridge University Press, 1940, pp. 161-163.
- 6. K. G. Ramanathan, *Identities and congruences of the Ramanujan type*, Canadian Journal of Mathematics vol. 2 (1950) p. 168.

NATIONAL BUREAU OF STANDARDS, WASHINGTON, D. C.

⁽⁷⁾ Dr. Lehmer informs me that these identities are known to him, though he has never published them.