SEMIGROUP OF ENDOMORPHISMS OF A LOCALLY COMPACT GROUP(1)

BY

MORIKUNI GOTO AND NAOKI KIMURA

Introduction. A homomorphism of a group \mathfrak{G} into itself is called an endomorphism of \mathfrak{G} . The set of all endomorphisms of \mathfrak{G} forms a semigroup (2) containing all automorphisms of \mathfrak{G} . If \mathfrak{G} has a topology in which it is a topological group, then it will be natural to limit ourselves to the study of the set of all continuous endomorphisms of \mathfrak{G} , which set is also a semigroup containing the group of all bicontinuous automorphisms of \mathfrak{G} . In the present paper we are interested in these semigroups for locally compact topological groups.

Let G be a locally compact group, and let $\mathfrak{E}(G)$ be the semigroup of all continuous endomorphisms of G. The first step of our investigation is to topologize $\mathfrak{E}(G)$ in such a way that $\mathfrak{E}(G)$ becomes a topological semigroup, (3) which will be done in §1. The results in §1 and in §2 will indicate that the topology introduced here is the unique natural one.

 $\S 2$ will be devoted to the special case where G is a Lie group, mainly for the purpose of later use. The fact that any continuous endomorphism of a Lie group induces an endomorphism of the Lie algebra (infinitesimal group) is useful to us.

In §3 we shall consider the case of compact groups. Let us denote by $\mathfrak{E}(G)$ the connected component containing the identity of $\mathfrak{E}(G)$. Then in the case in which G is a compact group, $\mathfrak{E}(G)$ is composed of bicontinuous automorphisms (Theorem 1), and the structure of the group $\mathfrak{E}(G)$ will be determined completely.

In §4 we consider the group $\widetilde{\mathfrak{A}}(G)$ of all bicontinuous automorphisms of a locally compact group G. $\widetilde{\mathfrak{A}}(G)$ will be topologized relatively as a subspace of $\widetilde{\mathfrak{C}}(G)$. Then $\widetilde{\mathfrak{A}}(G)$ is, of course, a topological semigroup. Moreover, under a certain additional condition, we may prove the continuity of the operation of taking inverses in $\widetilde{\mathfrak{A}}(G)$ so that $\widetilde{\mathfrak{A}}(G)$ will also be a topological group (Theorem 2). This proof uses certain properties of endomorphisms.

In §5 we shall discuss in detail the structure of $\mathfrak{E}(G)$ for a locally compact connected group G under the structure theorem of locally compact groups. Most of the theorems and arguments used here are quite analogous to those

Received by the editors September 27, 1956.

⁽¹⁾ This work was done under the support of the National Science Foundation.

⁽²⁾ A set with a binary operation (multiplication) is called a semigroup if the operation is associative.

⁽³⁾ A semigroup is called a topological semigroup if it is a topological space and if multiplication is continuous with respect to both variables.

in a paper by one of the authors on the automorphism group of G. The main results are stated in Theorem 3, Theorem 4 and Theorem 5.

1. Topology of the semigroup of endomorphisms. Let G be a locally compact topological group(4). By an endomorphism of G we mean a continuous homomorphism from G into itself. Let σ and τ be endomorphisms of G. Then the product $\sigma\tau$ defined by $(\sigma\tau)(x) = \sigma(\tau(x))$, $x \in G$, is also an endomorphism. So the set $\mathfrak{E}(G)$ of all endomorphisms of G forms a semigroup. Let now $\mathfrak{A}(G)$ be the subset of $\mathfrak{E}(G)$ composed of all bicontinuous automorphisms(5) of G. Then $\mathfrak{A}(G)$ clearly forms a group.

In §1 we shall consider a natural topology of $\mathfrak{E}(G)$. Although most of the results here seem to be known, we shall discuss the basic properties of the topology of $\mathfrak{E}(G)$ for the sake of completeness.

Let G be a locally compact group. By a *nucleus* we mean here an open neighborhood U of the identity e whose closure is compact and satisfies $U = U^{-1}$. As is known, all the nuclei form a base of neighborhoods of e. For a given triple of an endomorphism ρ , a compact subset \Re , and a nucleus U of G, we define a subset $(\rho; \Re, U)$ of $\mathfrak{F}(G)$ in the following way:

$$(\rho; \Re, U) = \{ \sigma \mid \sigma \in \widetilde{\mathfrak{E}}(G), \rho(x)^{-1}\sigma(x) \in U \text{ for all } x \in \Re \} (6).$$

Proposition 1. By considering the set of all possible $(\rho; \Re, U)$'s as a base of neighborhoods of ρ , $\mathfrak{F}(G)$ becomes a topological space satisfying the separation axiom of Hausdorff. Moreover the multiplication of $\mathfrak{F}(G)$: $\mathfrak{F}(G) \times \mathfrak{F}(G) \ni (\rho, \sigma) \to \rho \sigma \in \mathfrak{F}(G)$ is continuous with respect to the topology.

- **Proof.** (i) Clearly we have $(\rho; \Re_1 \cup \Re_2, U_1 \cap U_2) \subset (\rho; \Re_1, U_1) \cap (\rho; \Re_2, U_2)$. Now let σ be in $(\rho; \Re, U)$. Then the set $\Re' = \{\rho(x)^{-1}\sigma(x) \mid x \in \Re\}$ is compact as a continuous image of \Re . Since \Re' is a subset of U, we can find a nucleus U' so that (σ) \Re' $U' \subset U$, and we have $(\sigma; \Re, U') \subset (\rho; \Re, U)$. Therefore the set of all $(\rho; \Re, U)$'s defines a topology.
- (ii) In order to show that $\widetilde{\mathfrak{C}}(G)$ is a Hausdorff space we take two distinct endomorphisms ρ_1 and ρ_2 of G. Take an element x of G so that $\rho_1(x) \neq \rho_2(x)$. Then for a nucleus U satisfying $\rho_1(x)^{-1}\rho_2(x) \in U^2$ we have $(\rho_1; \{x\}, U) \cap (\rho_2; \{x\}, U) = \emptyset$, where $\{x\}$ denotes the set composed of a single element x, and \emptyset is the empty set.
- (iii) For a given neighborhood $(\sigma\tau; \Re, U)$ of $\sigma\tau$, we take a nucleus V satisfying $\sigma(V) V \subset U$. Then we have (8)

$$(\sigma; \tau(\Re)\overline{V}, V)(\tau; \Re, V) \subset (\sigma\tau; \Re, U),$$

⁽⁴⁾ On topological groups and especially on locally compact topological groups, see Pontrjagin [14] and Weil [15].

⁽⁵⁾ A continuous automorphism is not bicontinuous in general. However if the space of G is a countable union of compact sets, then the continuity of an automorphism implies openness. Cf. Goto [8].

⁽⁶⁾ $\{* \mid \cdots \}$ is the set of *'s satisfying \cdots .

⁽⁷⁾ In general, $\mathfrak{AB} = \{ab \mid a \in \mathfrak{A}, b \in \mathfrak{B}\}\$ for two subsets \mathfrak{A} and \mathfrak{B} of a semigroup \mathfrak{G} .

⁽⁸⁾ \overline{V} denotes the closure of V.

which implies the continuity of the multiplication.

Hereafter by a topology of $\widetilde{\mathfrak{E}}(G)$ we mean the topology introduced above. Here we mention two propositions concerning $\widetilde{\mathfrak{E}}(G)$ without proof, because these are direct consequences of the definition of the topology.

PROPOSITION 2. The mapping μ from $\mathfrak{E}(G) \times G$ into G defined by $\mu(\rho, x) = \rho(x)$ is continuous. Moreover the above topology of $\mathfrak{E}(G)$ is the weakest of the topologies of $\mathfrak{E}(G)$ having the properties in Proposition 1 and making μ continuous.

PROPOSITION 3. Let G be a locally compact group, and let N be a closed normal subgroup of G. Let $\widetilde{\mathfrak{E}}^N(G)$ be the subset (semigroup) of $\widetilde{\mathfrak{E}}(G)$ composed of endomorphisms which map N into itself. Let σ be in $\widetilde{\mathfrak{E}}^N(G)$. Then σ induces an endomorphism $\psi(\sigma)$ of G/N, and the mapping $\psi \colon \widetilde{\mathfrak{E}}^N(G) \to \widetilde{\mathfrak{E}}(G/N)$ is continuous.

PROPOSITION 4. Let G be a locally compact group generated by a nucleus W, then the set of neighborhoods of ρ given by $\{(\rho; \overline{W}, V) | V \text{ runs over all nuclei} \}$ forms a base of ρ in $\mathfrak{E}(G)$.

Proof. Let $(\rho; \Re, U)$ be a neighborhood of ρ . Then we can find a positive integer n so that $\Re \subset W^n$. Since \overline{W} is compact and ρ is continuous, $\rho(\overline{W})$ is compact. Hence we can find a nucleus V so that $V^n \subset U$ and zV = Vz for $z \in \rho(\overline{W})$.

Let us prove that $(\rho; \overline{W}, V) \subset (\rho; \Re, U)$.

Let $y = x_1 x_2 \cdots x_n$, $x_i \in \overline{W}$, be an element in \overline{W}^n , and let σ be in $(\rho : \overline{W}, V)$. Since $\rho(x_i)^{-1}\sigma(x_i) \in V$ and $\rho(x_i)^{-1}V = V\rho(x_i)^{-1}$, we have $\rho(y)^{-1}\sigma(y) = \rho(x_n)^{-1}\rho(x_{n-1})^{-1}\cdots\rho(x_1)^{-1}\sigma(x_1)\cdots\sigma(x_n) \in V^n \subset U$, whence $(\rho; \overline{W}, V) \subset (\rho; \overline{W}^n, U) \subset (\rho; \Re, U)$.

Next, let us consider some further concepts related to $\mathfrak{E}(G)$ which shall be necessary for our purposes later.

1°. Semigroup of compact subsets of G. Let G be a locally compact group, and let 2^G be the set of all compact nonempty subsets of G. 2^G forms a semigroup with respect to the product $\Re_1\Re_2 = \{k_1k_2 | k_1 \in \Re \text{ and } k_2 \in \Re_2\}$, (Gleason [4]). Let U be a nucleus, and \Re an element of 2^G . Define the set $(\Re; U)$ by $(\Re; U) = \{\Re' | \Re' \in 2^G, \Re' \subset \Re U \text{ and } \Re \subset \Re' U\}$. Now it is easy to prove the following propositions:

PROPOSITION 5. By considering all $(\Re: U)$'s, where U runs over all nuclei, as a base of the neighborhoods of \Re in 2^G , 2^G becomes a locally compact Hausdorff space so that the multiplication is continuous.

PROPOSITION 6. The mapping ν from $\mathfrak{E}(G) \times 2^{\mathfrak{g}}$ into $2^{\mathfrak{g}}$ defined by $\nu(\rho, \Re) = \rho(\Re)$ is continuous.

2°. Automorphism group of G. Since $\widetilde{\mathfrak{A}}(G)$ is a subset of $\mathfrak{E}(G)$, we may consider the relative topology of $\widetilde{\mathfrak{A}}(G)$ as a subspace of $\widetilde{\mathfrak{E}}(G)$, which we shall use as the topology of $\widetilde{\mathfrak{A}}(G)$ hereafter, (Goto [7], Hochschild [9], Iwasawa [10]

and Nomizu and Goto [13]).

To show that $\widetilde{\mathfrak{A}}(G)$ is a topological group under some additional conditions, we need the structure theorem of locally compact groups, and the proof will be given in §4.

3°. Component group (semigroup). Let G be a topological semigroup(8) with the identity e. Then the connected component G^{0} containing e is a closed sub-semigroup. We call G^{0} the component semigroup of G. If in particular G is a topological group, then G^{0} becomes a subgroup called the component group of G.

We shall use the notation $\mathfrak{C}(G)$ for the component semigroup of $\mathfrak{C}(G)$ and $\mathfrak{A}(G)$ for the component semigroup of $\mathfrak{A}(G)$.

 4° . Group of inner automorphisms. Let G be a locally compact group and a an element of G. The mapping $\tau_a(x) = a^{-1}xa$ ($x \in G$) defines a bicontinuous automorphism of G. τ_a is called an inner automorphism of G. The correspondence $a \to \tau_a$ gives a continuous homomorphism of G into $\widetilde{\mathfrak{A}}(G)$, and the kernel coincides with the center of G.

We denote the group of all inner automorphisms by $\Im(G)$. If G is connected, then $\Im(G) \subset \mathfrak{A}(G)$. Let H be a subgroup of G. The set $\{\tau_a \mid a \in H\}$ forms a subgroup of $\Im(G)$. We shall use the notation $\Im_G(H)$ for this group.

2. Lie group case. In §2 we shall be concerned with $\mathfrak{F}(L)$ where L is a Lie group. Some of the arguments here are quite smilar to those for $\mathfrak{J}(L)$ in §XV, Chapter IV of Chevalley: Lie groups I.

Let $\mathfrak L$ be an r-dimensional Lie algebra over the field of real numbers. A linear homomorphic mapping of $\mathfrak L$ into itself is called an endomorphism of $\mathfrak L$, and the set of all endomorphisms of $\mathfrak L$ will be denoted by $\mathfrak E(\mathfrak L)$. Let now GL(r) be the semigroup of all linear transformations of r-dimensional vector space. Then $\mathfrak E(\mathfrak L)$ is a sub-semigroup of GL(r). As the topology of GL(r), we use the usual euclidean one of r^2 -dimensional vector space.

Let e_1, e_2, \dots, e_r be a basis of \mathfrak{L} . Assume the commutator multiplication of \mathfrak{L} is expressed by $[e_i, e_j] = \sum_s \gamma_{ij}^s e_s$ with respect to the basis, where γ_{ij}^s 's are real numbers called structure constants. Let σ be a linear transformation of the vector space \mathfrak{L} so that $\sigma(e_i) = \sum_u \xi_i^u e_u$. If $\sigma \in \mathfrak{E}(\mathfrak{L})$ then we have $[\sigma(e_i), \sigma(e_j)] = \sigma([e_i, e_j])$, and vice versa. The condition that a linear transformation σ be an endomorphism is written in the form

$$\sum_{u,v} \xi_i^u \xi_j^v \gamma_{uv}^k = \sum_s \gamma_{ij}^s \xi_s^k.$$

Therefore $\mathfrak{F}(\mathfrak{L})$ is an algebraic set and is closed in GL(r).

Now let L be a connected Lie group, and let $\mathfrak L$ be the Lie algebra of L. We can identify a sufficiently small nucleus of L with a neighborhood of $\mathfrak L$ in $\mathfrak L$ by taking a canonical system of coordinates of the first kind (Pontrjagin [14]), and for any local endomorphism of L we have a corresponding endomorphism of $\mathfrak L$. Hence for any endomorphism σ of L we have the correspond-

ing endomorphism $\psi(\sigma)$ of \mathfrak{L} . The correspondence $\sigma \rightarrow \psi(\sigma)$ is clearly a continuous homomorphism, and since L is generated by any nucleus, the homomorphism ψ is one-to-one.

In particular, let L be a connected simply connected Lie group. Then any local endomorphism generates an endomorphism of L, and we obtain a bicontinuous isomorphism $\mathfrak{E}(L) \cong \mathfrak{E}(\mathfrak{L})$.

Next, let us consider a connected Lie group L which is not necessarily simply connected, and let \tilde{L} be the universal covering group of L. Then there exists a discrete normal, hence central, subgroup F of \tilde{L} , which is isomorphic to the fundamental group of the space of L, so that $\tilde{L}/F\cong L$. Consider the sub-semigroup $\mathfrak{E}^F(\tilde{L})$ of $\mathfrak{E}(\tilde{L}) = \{\sigma \mid \sigma \in \mathfrak{E}(\tilde{L}), \ \sigma(F) \subset F\}$. Then $\mathfrak{E}^F(\tilde{L})$ is clearly a closed sub-semigroup of $\mathfrak{E}(\tilde{L})$, and an element of $\mathfrak{E}^F(\tilde{L})$ induces an endomorphism $\phi(\sigma)$ of $\tilde{L}/F\cong L$. On the other hand for a given endomorphism σ' of L, we have a corresponding local endomorphism of \tilde{L} , which induces σ in $\mathfrak{E}(\tilde{L})$ so that $\sigma(F) \subset F$ and $\phi(\sigma) = \sigma'$. So $\mathfrak{E}(L)$ is naturally identified with $\mathfrak{E}^F(\tilde{L})$, which is closed in $\mathfrak{E}(\tilde{L})$. Thus we get

Proposition 7. Let L be an r-dimensional connected Lie group. Then we have a bicontinuous isomorphism of $\mathfrak{E}(L)$ onto a closed sub-semigroup of GL(r). Hence $\mathfrak{E}(L)$ is locally compact.

Remark. Although $\widetilde{\mathfrak{A}}(L)$ is a Lie group, $\widetilde{\mathfrak{E}}(L)$ is not locally euclidean in general.

In a manner analogous to the proof of Proposition 7, we have the following

Proposition 8. Let L be a connected Lie group of r-dimension, and let D be a discrete normal subgroup of L. Let $\mathfrak{F}_D(L)$ be the sub-semigroup composed of all endomorphisms of L which leave every element of D fixed, and let $\mathfrak{F}_D(L)$ be the component semigroup of $\mathfrak{F}_D(L)$. Then $\mathfrak{F}_D(L)$, and accordingly $\mathfrak{F}_D(L)$ also, is a closed sub-semigroup of GL(r).

Let σ be an endomorphism of a connected Lie group L, and let $|\sigma|$ be the determinant of the corresponding linear transformation. Then the mapping $\sigma \rightarrow |\sigma|$ clearly defines a continuous homomorphism of $\mathfrak{E}(L)$ into the multiplicative semigroup of real numbers. Since $|\sigma| \neq 0$ implies σ is a local automorphism and vice versa, we have the following

PROPOSITION 9. Let σ be an endomorphism of a connected Lie group L. Then σ is onto if and only if $|\sigma| \neq 0$.

In general, an endomorphism of L onto itself is not an automorphism. However it is obviously true for simply connected groups, and is also true in the following case.

PROPOSITION 10. Let L be a connected Lie group whose center is discrete. Then any onto endomorphism is an automorphism.

Proof. Let σ be an endomorphism of L onto L, and let D be the kernel of the homomorphism σ . Then $L \cong L/D$. So dim $L = \dim L/D$, whence D is discrete. Therefore D is contained in the center C of L. Now, it is clear that C/D is the center of L/D. Hence C is isomorphic with C/D. On the other hand, since C has a finite system of generators (Goto [5]), C cannot be isomorphic with any proper factor group. Hence D = e(9).

COROLLARY. Let S be a connected semi-simple Lie group. Then $\mathfrak{C}(S) = \mathfrak{A}(S)$, which is open in $\mathfrak{C}(S)$.

Proof. It is well-known(10) that $|\sigma| = \pm 1$ for $\sigma \in \widetilde{\mathfrak{A}}(S)$. On the other hand a semi-simple Lie group has a discrete center. Hence $|\sigma|$ can take only the values ± 1 or 0 for $\sigma \in \widetilde{\mathfrak{E}}(S)$. Since the mapping $\sigma \to |\sigma|$ is continuous and |1| = 1, $\mathfrak{E}(S) \subset \{\sigma \mid |\sigma| = 1\} \subset \widetilde{\mathfrak{A}}(S)$, which is open and closed in $\widetilde{\mathfrak{E}}(S)$. Hence $\mathfrak{E}(S) = \mathfrak{A}(S)$. On the other hand $\mathfrak{A}(S)$ is known to be open in $\widetilde{\mathfrak{A}}(S)$ (10).

PROPOSITION 11. Let L be a connected Lie group. Then $\widetilde{\mathfrak{A}}(L)$ is open in $\widetilde{\mathfrak{G}}(L)$.

Proof. (i) Let Z be a compact connected abelian Lie group. Take a canonical coordinate system of the first kind in Z so that $(x_i)(y_i) = (x_i + y_i \pmod{1})$. Then with respect to the coordinate system, any endomorphism of Z has a matrix with integer coefficients. So $\mathfrak{E}(Z)$ is discrete. Hence $\mathfrak{I}(Z)$ is, of course, open in $\mathfrak{E}(Z)$.

Let now L be a semi-simple Lie group or a vector group of finite dimension. Then $\widetilde{\mathfrak{A}}(L)$ coincides with $\widetilde{\mathfrak{C}}'(L) = \{\sigma \mid \sigma \in \widetilde{\mathfrak{C}}(L), \mid \sigma \mid \neq 0\}$.

(ii) Let L be a connected Lie group and let $\widetilde{\mathfrak{E}}'(L)$ be the sub-semigroup of $\widetilde{\mathfrak{E}}(L)$ composed of all onto endomorphisms. $\widetilde{\mathfrak{E}}'(L)$ is clearly open in $\widetilde{\mathfrak{E}}(L)$. Now in L we shall construct a sequence of closed normal subgroups

$$L = L_0 \supset L_1 \supset \cdots \supset L_n = e,$$

so that

$$\tilde{\mathfrak{E}}'(L)L_i \subset L_i$$

and each factor group L_i/L_{i+1} is semi-simple, compact abelian, or is a vector group. For that we take as L_1 the radical (maximal connected closed solvable normal subgroup), take as L_3 the closure of the commutator subgroup of L_1 , and the closure of the commutator subgroup of L_3 as L_5 , and so on. L_{2m} will be given so that L_{2m}/L_{2m+1} is the maximal compact subgroup of L_{2m-1}/L_{2m+1} for $m=1, 2, 3, \cdots$.

Then since any element of $\mathfrak{E}'(L)$ is a local automorphism of L we have $\mathfrak{E}'(L)L_1\subset L_1$. Then it is clear that $\mathfrak{E}'(L)L_i\subset L_i$ for $i=2,3,\cdots$. Also, from

⁽⁹⁾ We may use the notation e sometimes instead of $\{e\}$.

⁽¹⁹⁾ It is known that $\mathfrak{A}(S) = \mathfrak{F}(S)$ and $\mathfrak{F}(S)$ has a finite index in $\widetilde{\mathfrak{A}}(S)$. (See Gantmacher [2]). Since $\mathfrak{F}(S)$ is a connected Lie group with no nontrivial abelian factor groups, $|\sigma| = 1$ for $\sigma \in \mathfrak{F}(S)$. So $|\sigma|$ is a representation of the finite group $\widetilde{\mathfrak{A}}(S)/\mathfrak{F}(S)$ into the multiplicative group of real numbers. Hence $|\sigma| = \pm 1$.

the construction, L_0/L_1 is semi-simple, L_{2m-1}/L_{2m} is a vector group, and L_{2m}/L_{2m+1} is compact and abelian.

(iii) Let σ be an endomorphism of L onto itself. Then σ induces an endomorphism σ_i of L_i/L_{i+1} , and σ is an automorphism if and only if all σ_i 's are so. Since the mapping $\sigma \rightarrow \sigma_i$ is continuous by Proposition 3, the problem is reduced to the special cases of (i).

COROLLARY. Let L be a connected Lie group. If the radical of L is simply connected, then $\widetilde{\mathfrak{E}}'(L) = \widetilde{\mathfrak{A}}(L)$.

Proof. The Corollary is true for vector groups and semi-simple Lie groups. On the other hand if the radical of L is simply connected, then in the sequence of factor groups in the proof above, each L_i/L_{i+1} can be either a vector group or a semi-simple group.

3. Compact group case(11). In §3 the following theorem and some related results shall be obtained.

THEOREM 1. Let G be a compact group. Then $\mathfrak{E}(G) = \mathfrak{A}(G)$.

Before proving the theorem, we shall obtain the following preliminary proposition.

PROPOSITION 12. Let G be a locally compact group, and U a nucleus of G. If U contains a closed subgroup K containing all subgroups of G in U, then

$$\widetilde{\mathfrak{G}}^K(G) = \{ \sigma \mid \sigma \in \widetilde{\mathfrak{G}}(G), \sigma(K) \subset K \}$$

forms an open and closed sub-semigroup of $\mathfrak{F}(G)$.

Hence we have $\mathfrak{E}(G) \subset \widetilde{\mathfrak{E}}^K(G)$.

Proof. Let T be the set of all compact subgroups of G, and let T' be the set of all closed subgroups of K. Then T is a closed subset of 2^{g} , and T' is clearly an open and compact subset of T. Hence by Proposition 5

$$\mathfrak{E}^{K}(G) = \{ \sigma \mid \sigma \in \widetilde{\mathfrak{E}}(G), \, \sigma(T') \subset T' \}$$

is closed and open.

Proof of Theorem 1. (i) Let L^0 be a compact connected Lie group, let S be the commutator subgroup of L^0 , and let Z be the component group of the center of L^0 . Then S is a closed semi-simple normal subgroup, and $L^0 = SZ$ is a locally direct decomposition.

Let σ be an endomorphism of L^0 . Since any endomorphism leaves the commutator subgroup fixed, σ induces an endomorphism of S. If in particular $\sigma \in \mathfrak{E}(L^0)$, then the induced endomorphism σ_1 of S is an automorphism by the corollary to Proposition 10.

Since (12) [Z, S] = e, we have $[\sigma(Z), \sigma(S)] = e$, namely $[\sigma(Z), S] = e$. There-

⁽¹¹⁾ About the theory of compact groups, see Pontrjagin [14] and Weil [15].

⁽¹²⁾ Let \mathfrak{A} and \mathfrak{B} be nonempty subsets of a group \mathfrak{G} . $[\mathfrak{A}, \mathfrak{B}]$ denotes the subgroup generated by $\{aba^{-1}b^{-1}|a\in\mathfrak{A} \text{ and }b\in\mathfrak{B}\}$. For example $[\mathfrak{G},\mathfrak{G}]$ is the commutator subgroup of \mathfrak{G} .

fore $[\sigma(Z), L^0] = e$. On the other hand $\sigma(Z)$ is connected. Hence $\sigma(Z) \subset Z$. So σ induces an endomorphism of Z. By using the connectedness of $\mathfrak{E}(L^0)$ again, we have $\sigma = 1$ on Z.

These show that $\sigma \in \widetilde{\mathfrak{A}}(L^0)$, so $\sigma \in \mathfrak{A}(L^0)$.

(ii) Let L be a compact Lie group, and L^0 the component group of L. Let σ be an endomorphism of L. Then σ leaves L^0 invariant and induces an endomorphism $\psi(\sigma)$ of L^0 . Since ψ is continuous, we have $\psi(\mathfrak{C}(L)) \subset \mathfrak{C}(L^0) = \mathfrak{A}(L^0)$.

Let $L = a_1 L^0 \dotplus \cdots \dotplus a_m L^0$ be the coset decomposition of L with respect to L^0 . Then the set $\{\sigma \mid \sigma \in \widetilde{\mathfrak{E}}(L), \ \sigma(a_1) \in a_1 L^0, \ \cdots, \ \sigma(a_m) \in a_m L^0\}$ forms an open and closed sub-semigroup of $\widetilde{\mathfrak{E}}(L)$, and contains $\mathfrak{E}(L)$. Hence $\sigma(a_i) \in a_i L^0$ for $\sigma \in \mathfrak{E}(L)$.

Therefore σ is an automorphism of L.

(iii) Let G be a compact group. Then we can find a set $\{U_{\alpha}\}$ of nuclei, forming a base at e, so that

$$U_{\alpha} = L_{\alpha}' \times N_{\alpha}$$

namely $U_{\alpha} = L'_{\alpha} N_{\alpha}$, $L'_{\alpha} \cap N_{\alpha} = e$, $[L'_{\alpha}, N_{\alpha}] = e$, where N_{α} is a closed normal subgroup of G, $L_{\alpha} = G/N_{\alpha}$ is a Lie group, and L'_{α} is a local Lie group isomorphic to a nucleus of L_{α} . We may assume that L'_{α} does not contain any subgroup other than e. Then U_{α} and N_{α} clearly satisfy the assumptions in Proposition 12. Therefore an element σ in $\mathfrak{E}(G)$ induces an endomorphism σ_{α} of L_{α} , which is obviously in $\mathfrak{E}(L_{\alpha}) = \mathfrak{A}(L_{\alpha})$.

Let D be the kernel of σ . Since σ_{α} is one-to-one on L_{α} , D should be contained in N_{α} . On the other hand $\bigcap N_{\alpha} \subset \bigcap U_{\alpha} = e$. Hence D = e, that is, σ is one-to-one.

Now, let us show that σ is an onto mapping. Let a be an element of G, and let M_{α} be the set of all elements a_{α} so that $\sigma(a_{\alpha}) \subset aN_{\alpha}$. Since σ_{α} is an automorphism, M_{α} is not empty. Moreover, for given $\alpha_1, \alpha_2, \cdots, \alpha_n$, we can find α_0 so that $\bigcap_{i=1}^n U_{\alpha_i} \supset U_{\alpha_0}$. For such α_0 we have $N_{\alpha_1} \cap \cdots \cap N_{\alpha_n} \supset N_{\alpha_0}$ whence $M_{\alpha_1} \cap \cdots \cap M_{\alpha_n} \supset M_{\alpha_0}$. Therefore the set $\{M_{\alpha}\}$ of compact sets has the finite intersection property. So we can take b in $\bigcap M_{\alpha}$. Then $\sigma(b) = aN_{\alpha}$ for all α . Hence $\sigma(b) = a$.

COROLLARY 1. Let G be a compact group and G^0 the component group of G. Then

$$\mathfrak{G}(G) = \mathfrak{A}(G) \cong \mathfrak{J}(G^0) \cong \Pi_{\alpha}S_{\alpha},$$

where $\Im(G^0)$ is the group of all inner automorphisms of G, induced by elements of G^0 and S_{α} 's are compact connected simple Lie groups with no centers (Iwasawa [10] and Goto [7]).

Next, let us consider a locally compact connected group G. By the radical of G we mean also the uniquely determined maximal solvable closed con-

nected normal subgroup R (Gleason [3], Iwasawa [10] and Matsushima [11]). If R is compact, we can find a closed connected normal semi-simple Lie group L and a compact connected normal subgroup K so that G = LK, [L, K] = e, and $L \cap K$ is a finite group (Goto [6]). Then the following corollary is a direct consequence of Proposition 10 and Theorem 2.

COROLLARY 2. Let G be a locally compact connected group whose radical is compact. Then $\mathfrak{E}(G) = \mathfrak{A}(G) = \mathfrak{F}(G)$.

Here the last equality follows from the corresponding theorem for connected semi-simple Lie groups(10).

4. **Automorphism group.** First, let us remember the already known structure theorem of locally compact groups.

Structure Theorem. Let G be a locally compact group. Then we can find a base at e, composed of nuclei of the form $W = L_i^* \times K$, where L_i^* is a local Lie group, and K is a compact subgroup (Montgomery-Zippin [12], Iwasawa [10] and Yamabe [16; 17]).

Let us consider the group L^* which is generated by L_i^* in G. Then we can find a uniquely determined connected Lie group L which maps continuously and isomorphically onto L^* . The subgroup L^*K is open in G.

If in particular G is connected, then K is a normal subgroup and $G = L^*K$, $[L^*, K] = e$. Denote by D^* the intersection of L^* and K, and let D be the inverse image of D^* in L. Then the fact $L_i^* \cap K = e$ implies that D is a discrete normal, accordingly central, subgroup of L.

Let us call a local decomposition of G, as in the structure theorem, a canonical decomposition, including the notions of L, L^*, D and D^* , in the connected case.

THEOREM 2. Let G be a locally compact group, and let $W_0 = L_0^* \times K$ be a local canonical decomposition of G. If G is generated by W_0 , then $\widetilde{\mathfrak{A}}(G)$ is a topological group, (i.e., σ^{-1} is a continuous function on $\widetilde{\mathfrak{A}}(G)$).

- **Proof.** (i) Let L be a connected Lie group and L_0 a nucleus of L. As we saw, $\mathfrak{E}(L)$ has a linear representation obtained by taking a canonical system of coordinates of the first kind. Let L_1 and L_2 be open spheres of radius r_1 and r_2 , respectively, with respect to the coordinate system. If $r_1 < r_2$ and if r_2 is sufficiently small, then we can find a neighborhood \mathfrak{U} of the identity 1 of $\mathfrak{E}(L)$ so that $\mathfrak{U} \ni \tau$ implies $L_1 \subset \tau(L_2) \subset L_0$. Since $\mathfrak{U}(L)$ is open in $\mathfrak{E}(L)$ by Proposition 11 we may take \mathfrak{U} in $\mathfrak{U}(L)$.
- (ii) Let G be a locally compact group satisfying the assumptions in Theorem 2. Since G is generated by W_0 , K is a normal subgroup of G. We use the notation L here for the factor group G/K. By (i) we get nuclei L_1^* and L_2^* of L_0^* so that $L_1^* \subset \tau(L_2^*) \subset L^*$ for $\tau \in \mathbb{I}$ where \mathbb{I} is a neighborhood of 1 in $\widetilde{\mathfrak{E}}(L)$. The nucleus $W_1 = L_1^* \times K$ also generates G.

Let us consider the sub-semigroup $\widetilde{\mathfrak{E}}^K(G)$ of $\widetilde{\mathfrak{E}}(G)$ composed of all endomorphisms leaving K invariant. Then we have a continuous homomorphism ψ from $\widetilde{\mathfrak{E}}^K(G)$ into $\widetilde{\mathfrak{E}}(L)$. Since $\widetilde{\mathfrak{E}}^K(G)$ is open in $\mathfrak{E}(G)$, by Proposition 12, and any neighborhood of 1 contains a neighborhood of the form $(1; \overline{W}_1, V)$, we may find a nucleus V of G so that $\psi((1; \overline{W}_1, V)) \subset \mathfrak{U}$.

We use the notation $[1; \Re, V]$ for the intersection of $(1; \Re, V)$ and $\widetilde{\mathfrak{A}}(G)$. Since $\mathfrak{U} \subset \widetilde{\mathfrak{A}}(L)$, any element σ of $[1; W_1, V]$ induces an automorphism of L, whence $\sigma(K) = K$.

Let σ be in $[1; W_2, V]$ where $W_2 = L_2^* \times K$. Then for $x \in \overline{W}_2$, $x^{-1}\sigma(x) \in V$, namely $(\sigma^{-1}(y))^{-1}y \in V$ for $y \in \sigma(\overline{W}_2)$. Since $V = V^{-1}$, we have $y^{-1}(\sigma^{-1}(y)) \in V$ for $y \in \sigma(\overline{W}_2)$. On the other hand since $\psi(\sigma) \in \mathfrak{U}$ we have $L_1^* \subset \psi(\sigma) L_2^* \subset L_0^*$. Therefore $\sigma(W_2) = \sigma(L_2^*) \times \sigma(K) = \sigma(L_2^*) \times K = \psi(\sigma) L_2^* \times K \supset L_1^* \times K = W_1$. Hence for $y \in \overline{W}_1$, we have $y^{-1}(\sigma^{-1}(y)) \in V$, namely

$$[1; \overline{W}_2, V]^{-1} \subset [1; \overline{W}_1, V]$$

which proves the continuity of σ^{-1} .

5. Structure of $\mathfrak{E}(G)$ of a locally compact connected group G. Let $G = L^*K$ be a canonical decomposition of a locally compact connected group G. In §5 we will study the structure of $\mathfrak{E}(G)$ with respect to the decomposition (Goto [7]).

Let K^0 be the component group of K. Then K^0 is a normal subgroup. Let k_1 and k_2 be elements of K^0 . If $k_1^{-1}xk_1=k_2^{-1}xk_2$ for every $x\in K$, then $k_1k_2^{-1}$ is contained in the center of K^0 . On the other hand, in a connected topological group any compact abelian normal subgroup is central, because $\mathfrak{A}(Z)$ for a compact abelian group Z consists only of the identity (Iwasawa [10]). Hence $k_1k_2^{-1}$ is contained in the center of G. Let $\mathfrak{F}_G(K^0)$ and $\mathfrak{F}_K(K^0)$ be the subgroups of $\mathfrak{A}(G)$ and $\mathfrak{A}(K)$ composed of all inner automorphisms induced by elements of K^0 respectively. Then by the above argument we have a natural bicontinuous isomorphism between $\mathfrak{F}_G(K^0)$ and $\mathfrak{F}_K(K^0)$.

Let σ be an element in $\mathfrak{C}(G)$. Then by Proposition 12 we have $\sigma(K) \subset K$. Hence σ induces an endomorphism of K. Since $\mathfrak{C}(K)$ is connected, $\sigma \in \mathfrak{C}(K) = \mathfrak{J}_K(K^0)$ on K by Theorem 2. So we obtain a natural homomorphism ϕ from $\mathfrak{C}(G)$ into $\mathfrak{J}_G(K^0)$, ϕ is clearly an onto mapping.

Let now \mathfrak{B} be the set of all elements of $\mathfrak{E}(G)$ which go to the identity by ϕ :

$$\mathfrak{B} = \{ \sigma \mid \sigma \in \mathfrak{E}(G), \, \phi(\sigma) = 1 \} = \{ \sigma \mid \sigma \in \mathfrak{E}(G), \, \sigma(x) = x \text{ for all } x \in K^0 \}.$$

We shall prove that $\Im_G(K^0)$ and \mathfrak{B} are elementwise commutative. Let ρ be in $\Im_G(K^0)$. Then there is an element a of K^0 such that $\rho(x) = a^{-1}xa$ for $x \in G$. Now let σ be in \mathfrak{B} . Then for x in G we have

$$(\sigma \rho)(x) = \sigma(a^{-1}xa) = \sigma(a)^{-1}\sigma(x)\sigma(a) = a^{-1}\sigma(x)a = (\rho\sigma)(x),$$

namely $\sigma \rho = \rho \sigma$.

Let σ be an element in $\mathfrak{E}(G)$. Then

$$\psi(\sigma) = \phi(\sigma)^{-1}\sigma \in \mathfrak{B},$$

because $\phi(\psi(\sigma)) = \phi(\phi(\sigma)^{-1})\phi(\sigma) = \phi(\sigma)^{-1}\phi(\sigma) = 1$. So σ has a decomposition

(*)
$$\sigma = \phi(\sigma)\psi(\sigma)$$
 where $\phi(\sigma) \in \Im_G(K^0)$ and $\psi(\sigma) \in \mathfrak{B}$.

Let $\sigma = \rho \tau(\rho \in \mathfrak{F}_G(K^0), \tau \in \mathfrak{B})$ be another decomposition. Then $\phi(\sigma) = \phi(\rho)\phi(\tau) = \phi(\phi(\sigma))\phi(\psi(\sigma))$, so $\rho = \phi(\sigma)$. Hence $\tau = \rho^{-1}\sigma = \psi(\sigma)$. Therefore the decomposition (*) is unique.

Since ϕ and ψ are clearly both continuous, the mapping θ :

$$\mathfrak{F}(G) \ni \sigma \to \theta(\sigma) = (\phi(\sigma), \psi(\sigma)) \in \mathfrak{F}_G(K^0) \times \mathfrak{B}$$

is continuous. Moreover θ is an onto mapping because $\mathfrak{C}(G)$ contains both $\mathfrak{F}_G(K^0)$ and \mathfrak{B} .

Next, let us prove the continuity of θ^{-1} . Let $(\sigma; \Re, U)$ be a neighborhood of σ in $\mathfrak{E}(G)$. Take nuclei U_1 and U_2 of G so that $U_1^2 \subset U$ and $\phi(\sigma)(U_2) \subset U_1$. Then it is easy to show that

$$\theta(\sigma; \Re, U) \supset (\phi(\sigma); (\psi(\sigma)\Re)\overline{U}_2, U_1) \times (\psi(\sigma); \Re, U_2),$$

which implies the openness of θ .

Thus we get the following theorem.

THEOREM 3. Let $G = L^*K$ be a canonical decomposition of a locally compact connected group G, and let K^0 be the component group of K. Then $\mathfrak{S}(G)$ is a topological direct product of \mathfrak{A} and \mathfrak{B} :

$$\mathfrak{E}(G) = \mathfrak{A} \times \mathfrak{B},$$

where $\mathfrak{A} = \mathfrak{F}_G(K^0)$ = the group of inner automorphisms induced by K^0 , and $\mathfrak{B} = semigroup \{\sigma | \sigma \in \mathfrak{E}(G), \sigma(x) = x \text{ for all } x \in K^0\}.$

Now, about the structure of the semigroup \mathfrak{B} , we can prove the following theorem.

THEOREM 4. In Theorem 3.

(1) we have a bicontinuous isomorphism f from $\mathfrak{E}_D(L)$ into \mathfrak{B} :

$$f(\mathfrak{E}_{\mathcal{D}}(L))\subset\mathfrak{B}.$$

(2) If L^* is mapped into itself by $\mathfrak{E}(G)$, then

$$f(\mathfrak{C}_D(L)) = \mathfrak{B}$$

and $\mathfrak{E}(G)$ is locally compact.

Proof. (1) Let x be an element of L. We use the notation x^* for the corresponding element of L^* . Let σ be in $\mathfrak{E}_D(L)$. Define the function f by

$$\begin{cases} f(\sigma)x^* = (\sigma(x))^* & x^* \in L^*, \\ f(\sigma)y = y & y \in K, \end{cases}$$

then $f(\sigma)$ can easily be extended uniquely into a homomorphism of $G = L^*K$

into itself. Since $f(\sigma)$ is continuous on a nucleus of G, $f(\sigma)$ is an endomorphism of G. Thus we get a homomorphism f from $\mathfrak{E}_D(L)$ into $\mathfrak{E}(G)$. Clearly f is one-to-one.

Now it is enough for our purposes to show the bicontinuity of f.

Take a neighborhood $(f(\sigma); \overline{L}_l^* \times K, U)$ of $f(\sigma)$. Then we can find a nucleus V of L so small that $k^{-1}V^*k \subset U$ for any k in K. If $\rho \in (\sigma; \overline{L}_l, V)$, then $\sigma(x)^{-1}\rho(x) \in V$ for $x \in \overline{L}_l$. Hence for any $x^* \in \overline{L}_l^*$, $k \in K$,

$$\begin{split} ((f(\sigma))(x^*k))^{-1}(f(\rho))(x^*k) &= (f(\sigma)(k))^{-1}(f(\sigma)(x^*))^{-1}(f(\rho)(x^*))(f(\rho)(k)) \\ &= k^{-1}(\sigma(x)^{-1}\rho(x))^*k \in k^{-1}V^*k \subset U, \end{split}$$

namely $f(\sigma; \overline{L}_l, V) \subset (f(\sigma); \overline{L}_l^* \times K, U)$, which implies the continuity of f.

Next, let $(\sigma; \Re, U)$ be a neighborhood of σ in $\mathfrak{E}_D(L)$. Then there exists a nucleus $L_l^* \times K$ in G such that $L_l \subset U$. Take any element ρ of $\mathfrak{E}_D(L)$ such that $f(\rho) \in (f(\sigma), K^*, L_l^* \times K)$. Then for $x \in \Re$, $(f(\sigma)(x^*))^{-1}(f(\rho)(x^*)) = (\sigma(x)^{-1}\rho(x))^* \in L_l^* \times K$, whence $\sigma(x)^{-1}\rho(x) \in U$, namely $\rho \in (\sigma; \Re, U)$. This shows that f^{-1} is continuous.

(2) If $\mathfrak{E}(G)L^*\subset L^*$, then every element of $\mathfrak{E}(G)$ induces an endomorphism of L^* . On the other hand every element of $\mathfrak{E}(G)$ induces an inner automorphism of K, and leaves every element of D^* fixed. So we can define a homomorphism f' from $\mathfrak{E}(G)$ into $\mathfrak{E}_D(L)$. f' is clearly one-to-one on \mathfrak{B} , and coincides with f^{-1} . Therefore $f(\mathfrak{E}_D(L)) = \mathfrak{B}$.

Since L is a connected Lie group, $\mathfrak{E}_D(L)$ is locally compact by Proposition 8, and so is \mathfrak{B} . Since \mathfrak{A} is a compact group, $\mathfrak{E}(G) = \mathfrak{A} \times \mathfrak{B}$ is locally compact.

Remark. $\mathfrak{E}(G)L^*\subset L^*$ is not valid in general. However we may prove the following

THEOREM 5. Let $G = L^*K$ be a canonical decomposition of a locally compact connected group. Then L^* is mapped into itself by $\mathfrak{E}(G) : \mathfrak{E}(G)L^* \subset L^*$, if either

- (a) the center of K is totally disconnected, or
- (b) L is perfect (i.e. [L, L] = L).

Proof. Let σ be an element of $\mathfrak{E}(G)$. We may find a connected nucleus L_{ρ} of L such that

$$\sigma(L_{\rho}^*) \subset L_{l}^* \times K$$

where L_{ρ}^* denotes the image of L_{ρ} in L^* . Then for $x \in L_{\rho}^*$ we have a continuous decomposition

$$\sigma(x) = l(x)k(x)$$
 where $l(x) \in L_l^*$, $k(x) \in K$.

Let y be an element of K. Since xy = yx, we have $\sigma(x)\sigma(y) = \sigma(y)\sigma(x)$, and therefore

$$l(x)k(x)\sigma(y) = \sigma(y)l(x)k(x) = l(x)\sigma(y)k(x),$$

whence $k(x)\sigma(y) = \sigma(y)k(x)$. Since σ induces an automorphism of K, $\sigma(y)$ can be an arbitrary element of K. Hence k(x) is contained in the center of K.

Now we consider the two cases (a) and (b) separately:

- (a) Because $\{k(x) | x \in L_{\rho}^*\}$ is connected, and is contained in the totally disconnected center of K.
- (b) because k(x) gives a continuous homomorphism from a perfect local Lie group L_{ρ}^* into a commutative group,

k(x) = e in both cases.

Namely $\sigma(L_i^*) \subset L_i^*$, whence $\sigma(L^*) \subset L^*$.

COROLLARY. Let G be a locally compact connected group. If G is perfect or the center of G is totally disconnected, then $\mathfrak{E}(G)$ is locally compact.

- **Proof.** (a) If G is perfect, so is the factor group G/K. On the other hand, every connected locally isomorphic group of a connected perfect Lie group is perfect. Since L is locally isomorphic with G/K, L is perfect.
- (b) The center of G contains the center of K. So if the former is totally disconnected, then so is the latter.

BIBLIOGRAPHY

- 1. C. Chevalley, Theory of Lie groups, I, Princeton, 1946.
- 2. F. Gantmacher, Canonical representation of automorphisms of a complex semi-simple Lie group, Rec. Math. (Mat. Sbornik) N.S. vol. 5 (1939) pp. 101-144.
- 3. A. M. Gleason, The structure of locally compact groups, Duke Math. J. vol. 18 (1951) pp. 85-104.
 - 4. ----, Groups without small subgroups, Ann. of Math. vol. 56 (1952) pp. 193-212.
- 5. M. Goto, Faithful representations of Lie groups I, Mathematica Japonicae vol. 1 (1948) pp. 107-119.
- 6. ——, Linear representations of topological groups, Proc. Amer. Math. Soc. vol. 1 (1950) pp. 425-437.
- 7. ——, On the group of automorphisms of a locally compact connected group, Memoirs of the Amer. Math. Soc., no. 14, 1955, pp. 23-29.
- 8. ——, Dense imbeddings of locally compact connected groups, Ann. of Math. vol. 61 (1955) pp. 154-169.
- 9. G. Hochschild, The automorphism group of a Lie group, Trans. Amer. Math. Soc. vol. 72 (1952) pp. 209-216.
- 10. K. Iwasawa, On some types of topological groups, Ann. of Math. vol. 50 (1949) pp. 507-558.
- 11. Y. Matsushima, On the decomposition of an (L)-group, J. Math. Soc. Japan vol. 1 (1950) pp. 264-274.
 - 12. D. Montgomery and L. Zippin, Topological transformation groups, New York, 1955.
- 13. K. Nomizu and M. Goto, On the group of automorphisms of a topological group, Tôhoku Math. J. vol. 2 (1950) pp. 47-50.
 - 14. L. Pontrjagin, Topological groups, Princeton, 1939.
- 15. A. Weil, L'intégration dans les groupes topologiques et ses applications, Paris, Hermann, 1940.
- H. Yamabe, On the conjecture of Iwasawa and Gleason, Ann. of Math. vol. 58 (1953) pp. 48-54.
- 17. ———, A generalization of a theorem of Gleason, Ann. of Math. vol. 58 (1953) pp. 351-365.

Tulane University, New Orleans, La.