ON THE HOMOTOPY CLASSIFICATION OF THE EXTENSIONS OF A FIXED MAP

BY

W. D. BARCUS AND M. G. BARRATT

1. Introduction. In considering the homotopy classification of the maps of a CW complex into any topological space X, we are led to the problem of enumerating the homotopy classes of extensions of a given map $u: K \rightarrow X$ over a larger complex $L \supset K$. We examine this for the case in which L - K consists only of disjoint cells, for maps and homotopies relative to a base point $k_0 \in K$.

For a given map $u: (K, k_0) \rightarrow (X, x_0)$, we define in §2 for each $\alpha \in \pi_q(K, k_0)$ a homomorphism

$$\alpha_u \colon \pi_1(\mathfrak{F}, u) \to \pi_{g+1}(X, x_0)$$

where \mathfrak{F} is the function space of maps $(K, k_0) \rightarrow (X, x_0)$. If $L = K \cup e^{q+1}$ is formed by attaching the cell e^{q+1} by a map in the class α , and if u extends over L, then we prove that the homotopy classes (rel k_0) of extensions are in 1-1 correspondence with the cokernel of α_u . This may easily be generalized to a complex $L = K \cup \{e^{q_i+1}\}$ such that the e^{q_i+1} are disjoint.

The difficulty lies in computing α_u , even when the group $\pi_1(\mathfrak{F},u)$ is known. We show how α_u can be computed when K is a cluster of spheres: the result is given in terms of α , its Hopf invariants (including the higher Hopf invariants in the sense of Hilton [3]), the homotopy groups of X, and the operations of composition, suspension, and formation of Whitehead products. This covers, for example, the case when L is a sphere bundle over a sphere with a cross-section, such as the product of two spheres.

In §7 we give applications of the theory to two other problems; the more important of these is a formula for expanding a Whitehead product of the form $[\alpha \circ \gamma, \beta]$. It should be noted that the Whitehead product we use (§4) differs from that defined by J. H. C. Whitehead by a sign.

2. Homotopy groups of function spaces. Let K be a CW complex. The function space X^K of maps (=continuous functions) is given the compact-open topology. Then the natural function $\theta: X^{(K \times T)} \to (X^K)^T$, given by

$$(\theta f)(t)(k) = f(k, t),$$
 $k \in K, t \in T,$

is a homeomorphism if T is a CW complex such that $K \times T$, given the product topology, is also a CW complex (the proof is elementary; cf. [2] and [9] for other cases in which θ is a homeomorphism). Notice that if I is the unit

Received by the editors October 20, 1956.

interval, then $K \times I$ is always a CW complex. It is convenient to identify $X^{K \times I}$ and $(X^K)^I$ by means of θ .

NOTATION. A fixed base point will always be chosen in each space, and denoted by a subscript 0: thus, $k_0 \in K$, $x_0 \in X$. The only exception is that $0 = (0, \dots, 0)$ will be the base point in I^n ; the base point in $K \times I^n$ will be $(k_0, 0)$. The function space, with the compact-open topology, of maps $(K, k_0) \to (X, x_0)$ will in the future be denoted by X^K ; no ambiguity will arise, since no further reference will be made to the space of maps $K \to X$. The domain space K will always be assumed to be a CW complex, k_0 a vertex.

Let $u: (K, k_0) \rightarrow (X, x_0)$ be a map; it follows from the first paragraph of this section that we may equally well represent elements of $\pi_1(X^K, u)$ as homotopy classes of maps

$$\hat{F}: I \to X^K$$
 such that $\hat{F}(0) = u = \hat{F}(1)$,

or

$$F: (K \times I, k_0 \times I) \to (X, x_0)$$
 such that $F(k, 0) = u(k) = F(k, 1), k \in K$.

Therefore a map $g: (Q, q_0) \rightarrow (K, k_0)$ induces a homomorphism

$$g^*: \pi_1(X^K, u) \to \pi_1(X^Q, ug)$$

by $g^*{F} = {F(g \times 1)}$, where 1 is the identity map of I and

$$g \times 1: (Q \times I, q_0 \times I) \rightarrow (K \times I, k_0 \times I)$$

is the product map.

Now a path \hat{L} in X^K from u_0 to u_1 is equivalent to a homotopy $L: (K \times I, k_0 \times I) \rightarrow (X, x_0)$ from u_0 to u_1 ; the path \hat{L} defines an isomorphism in the usual way from the homotopy groups based at u_1 to those based at u_0 : we write for this

$$(2.1) L_{\#}: \pi_{1}(X^{K}, u_{1}) \to \pi_{1}(X^{K}, u_{0}).$$

Lemma (2.2).
$$g*L_{\#}=(L(g\times 1))_{\#}g*:\pi_1(X^K, u_1) \longrightarrow \pi_1(X^Q, u_0g).$$

Let g_0 , g_1 : $(Q, q_0) \rightarrow (K, k_0)$, and let G: $(Q \times I, q_0 \times I) \rightarrow (K, k_0)$ be a homotopy from g_0 to g_1 . Then

LEMMA (2.3).
$$g_0^* = (uG) \# g_1^* : \pi_1(X^K, u) \to \pi_1(X^Q, ug_0).$$

The proofs of these elementary lemmas are omitted; it is easy to deduce from them

COROLLARY (2.4). If g is a homotopy equivalence, then g* is an isomorphism.

Suppose now that $(Q, q_0) = (S^q, s_0)$, where we consider $S^q = s_0 \cup e^q$ as a CW complex with a characteristic map

$$i^q: (I^q, \dot{I}^q) \rightarrow (S^q, s_0)$$

which is a homeomorphism of $I^q - \dot{I}^q$ onto e^q of degree +1. Let $v: (S^q, s_0) \to (X, x_0)$, and define $v^{\flat}: (S^q \times I, s_0 \times I) \to (X, x_0)$ by $v^{\flat}(s, t) = v(s)$, for $s \in S^q$, $t \in I$. We then define

(2.5)
$$v_b : \pi_1(X^{S^q}, v) \to \pi_{q+1}(X, x_0)$$

as follows: for $\{F\} \in \pi_1(X^{S^q}, v)$, $v_{\natural} \{F\}$ is the value of the separation element (1) $d(F, v^{\flat})$ on the cell $(e^q \times e^1, s_0 \times 0)$ with the product orientation, where $e^1 = I - \dot{I}$. It is readily verified that

LEMMA (2.6). v_{\sharp} is an isomorphism; and if M is a homotopy from v to v', then $v'_{\sharp} = v_{\sharp} M_{\sharp}$.

Now let g_0 , g_1 : $(S^q, s_0) \rightarrow (K, k_0)$, let G be a homotopy from g_0 to g_1 , and let $u \in X^K$. Then

Hence the homomorphism $(ug)_{\dagger}g^*$ depends only on the homotopy class $\alpha \in \pi_q(K, k_0)$ of g, and we may define

(2.7)
$$\alpha_u = (ug) \lg g^* \colon \pi_1(X^K, u) \to \pi_{q+1}(X, x_0).$$

LEMMA (2.8). If L is a homotopy from u_0 to u_1 , then $\alpha_{u_1} = \alpha_{u_0} L_{\#}$.

The lemma follows from (2.2) and (2.6).

3. The classification theorems. We now explain the use of α_u in homotopy classification. First, let $L = K \cup e^{q+1}$, where e^{q+1} has an attaching map $g: (S^q, s_0) \to (K, k_0)$ in a homotopy class $\alpha \in \pi_q(K, k_0)$. Then a map $u: (K, k_0) \to (X, x_0)$ has an extension to (L, k_0) if and only if

$$(3.1) u_*\alpha = 0.$$

If this is satisfied, let f_0 , f_1 be two extensions of u such that there is a homotopy $\overline{H}: (L \times I, k_0 \times I) \to (X, x_0)$ from f_0 to f_1 . Then $H = \overline{H} \mid (K \times I, k_0 \times I)$ determines an element $\{H\} \subset \pi_1(X^K, u)$: we shall prove

LEMMA (3.2). The value of the separation element $d(f_1, f_0)$ on the cell (e^{q+1}, k_0) is $\alpha_u\{H\} \in \pi_{q+1}(X, x_0)$.

From the lemma we deduce

THEOREM (3.3). Let $u: (K, k_0) \rightarrow (X, x_0)$ extend to (L, k_0) . Then the homotopy classes rel k_0 of extensions are in 1-1 correspondence with the elements of the cokernel of α_u , i.e. of $\pi_{q+1}(X, x_0)/\alpha_u\pi_1(X^K, u)$.

The lemma leads in fact to a more general result: let $L = K \cup \{e^{q_i+1}\}$, where the cells e^{q_i+1} are disjoint, and each possesses an attaching map

⁽¹⁾ Cf. Appendix.

 $g_i: (S^{q_i}, s_0) \to (K, k_0)$ in a class $\alpha_i \in \pi_{q_i}(K, k_0)$. Set $C(L, K) = \sum \pi_{q_i+1}(X, x_0)$, the strong sum, where the homotopy groups are indexed by the cells of L - K; a map $u: (K, k_0) \to (X, x_0)$ extends to (L, k_0) if and only if $u_*\alpha_i = 0$ for all i. Then the homomorphisms $(\alpha_i)_u$ together define

$$\alpha_u \colon \pi_1(X^K, u) \to C(L, K)$$

such that the coordinate of $\alpha_u(\xi)$ in $\pi_{q_{i+1}}(X, x_0)$ is $(\alpha_i)_u(\xi)$.

THEOREM (3.4). Let $u: (K, k_0) \rightarrow (X, x_0)$ extend to (L, k_0) . Then the homotopy classes rel k_0 of extensions are in 1-1 correspondence with the elements of the cokernel of α_u , i.e. with the cosets $C(L, K)/\alpha_u \pi_1(X^K, u)$.

We now prove (3.2)-(3.4); we first need an elementary lemma which will be used again later.

Let P be a finite CW complex on I^n such that $0 = (0, \dots, 0)$ is a vertex. Let $\{\sigma^n\}$ be the set of n-cells of P, and let the orientation of each, given by the chosen characteristic map $c_\sigma: (I^n, \dot{I}^n, 0) \rightarrow (\bar{\sigma}^n, \dot{\sigma}^n, p_\sigma)$, agree with the orientation induced by inclusion in I^n . For each σ let $T_\sigma: (I, 0, 1) \rightarrow (P, 0, p_\sigma)$ be a path in P. Suppose that h', $h: (P, 0) \rightarrow (X, x_0)$ agree on P^{n-1} . Then the separation element d(h', h) on (σ, p_σ) has a value $\delta_\sigma \in \pi_n(X, hp_\sigma)$. Treating I^n as a CW complex with just one n-cell in the usual way, we also have a separation element d(h', h) on $(I^n, 0)$ with a value $\delta \in \pi_n(X, x_0)$.

LEMMA (3.5). $\delta = \sum (hT_{\sigma}) \# \delta_{\sigma}$, where # denotes the operation of the path on the homotopy group, and the summation is over all $\sigma \in \{\sigma^n\}$.

Since all paths T_{σ} for a given p_{σ} are homotopic in I^{n} , $(hT_{\sigma})_{\#}$ does not depend on the choice of T_{σ} . Notice that an equivalent result holds with I^{n} replaced by a sphere S^{n} , taking i^{n} as the characteristic map of the cell $e^{n} = S^{n} - s_{0}$.

The proof of this lemma is omitted.

Proof of (3.2). We identify (S^q, s_0) with $(\dot{I}^{q+1}, 0)$, and write $j=j^q\colon (S^q, s_0)\to (\dot{I}^{q+1}, 0)$ for the identity map. We first show that the triple $(L, K, k_0)=(I^{q+1}, S^q, 0)$ is a universal example. Let the cell e^{q+1} in $L=K\cup e^{q+1}$ have characteristic map $\bar{g}\colon (I^{q+1}, S^q, 0)\to (L, K, k_0)$, and attaching map $g=\bar{g}\mid (S^q, 0)$. Let $e_0^{q+1}=I^{q+1}-S^q$ have characteristic and attaching maps \bar{j}, \bar{j} , the identity maps; and using the notation of (3.2), set $f_1'=f_1\bar{g}, f_0'=f_0\bar{g}, \overline{H}'=\overline{H}(g\times 1), H'=H(g\times 1), u'=ug$. Suppose that (3.2) holds for the universal example, so that $d(f_1', f_0')=\iota_{u'}\{H'\}$, where ι is the class of j, and the separation element is evaluated on $(e_0^{q+1}, 0)$. Then if $d(f_1, f_0)$ is evaluated on (e_0^{q+1}, k_0) we have

$$d(f_1, f_0) = d(f'_1, f'_0) = \iota u'\{H'\} = u''_1 j^* \{H'\}$$

$$= u''_1 \{H'\} = (ug)_{\sharp} \{H(g \times 1)\}$$

$$= (ug)_{\sharp} g^* \{H\} = \alpha_u \{H\},$$

from the definitions.

We now prove (3.2) for the universal example by means of an explicit construction. The separation element $d(f_1, f_0)$ on $(e_0^{q+1}, 0)$ is represented by the map $E: ((I^{q+1} \times I)^{\cdot}, 0) \rightarrow (X, x_0)$ given by

$$E(p, t) = \begin{cases} f_1(p), & t = 1 \\ f_1(p) = f_0(p), & 0 < t < 1 \\ f_0(p), & t = 0. \end{cases} p \in I^{q+1}, t \in I,$$

Take a cellular decomposition of $\dot{I}^{q+2} = (I^{q+1} \times I)$ such that $\dot{I}^{q+1} = 0 \cup e^q$; $I^{q+1} = \dot{I}^{q+1} \cup e^{q+1}$; $I = 0 \cup 1 \cup e^1$. Thus

$$\dot{I}^{q+2} = (\dot{I}^{q+1} \times \dot{I} \cup 0 \times I) \cup (e^{q+1} \times 0) \cup (e^{q+1} \times 1) \cup (e^q \times e^1).$$

Now \overline{H} agrees with E on the q-section of \dot{I}^{q+2} , and also on the cells $e^{q+1} \times 0$, $e^{q+1} \times 1$. Hence, by using Lemma (3.5) for a sphere, and noting that the orientation of $e^q \times e^1$ is *opposite* to that induced by inclusion in \dot{I}^{q+2} , the separation element $d(\overline{H} \mid (I^{q+1} \times I)^{\cdot}, E)$ on $(\dot{I}^{q+2}, 0)$ is equal to minus the element $d(\overline{H} \mid \dot{I}^{q+1} \times I, E \mid \dot{I}^{q+1} \times I)$ on $(e^q \times e^1, 0)$. But maps of $(\dot{I}^{q+2}, 0)$ into (X, x_0) determine elements of $\pi_{q+1}(X, x_0)$, so that the former separation element is

$${\overline{H} \mid (I^{q+1} \times I)^{+}} - {E} = 0 - {E} = - {E};$$

and since $\overline{H} | \dot{I}^{q+1} \times I = H$, $E | \dot{I}^{q+1} \times I = u^{\flat}$, the latter separation element is

$$d(H, u^{\flat})(e^q \times e^1, 0) = u_{\natural} \{H\}$$
 by definition,
= $u_{\natural} i^* \{H\} = \iota_{\iota} \{H\}.$

Hence $d(f_1, f_0)(I^{q+1}, 0) = \iota_u\{H\}$, which proves (3.2) for the universal example.

Proof of (3.3). The homotopy classes rel K of extensions of u are in 1-1 correspondence with the elements of $\pi_{q+1}(X, x_0)$; they may be distinguished by the separation elements of representative maps. Let f_0 , f_1 be two extensions of u for which there is a homotopy \overline{H} rel k_0 from f_0 to f_1 . Then by (3.2), the separation element on (e^{q+1}, k_0) is contained in $\alpha_u \pi_1(X^K, u)$. Conversely, if f_0 , f_1 are two extensions of u such that $d(f_1, f_0) = \alpha_u\{H\}$, with $H: (K \times I, k_0 \times I) \to (X, x_0)$, let \overline{H} be an extension of H to $L \times I$ such that $\overline{H}(p, 0) = f_0(p)$, $p \in L$, and define $f'_1: (L, k_0) \to (X, x_0)$ by $f'_1(p) = \overline{H}(p, 1)$. Then by (3.2), $d(f'_1, f_0) = \alpha_u\{H\} = d(f_1, f_0)$. Hence $d(f_1, f'_1) = 0$, and $f_1 \simeq f'_1$ rel K. Since $f'_1 \simeq f_0$ rel k_0 , $f_1 \simeq f_0$ rel k_0 .

Proof of (3.4). If $L = K \cup \{e^{q_i+1}\}$ is formed by attaching a set of cells to K, we may alter K within homotopy type so that the base point k_0 lies on the boundary of each cell; this does not change the group $\pi_1(X^K, u)$ by more than an isomorphism. Then, if u extends to two maps $f_0, f_1: (L, k_0) \to (X, x_0)$, the maps determine an element $d(f_1, f_0) \in C(L, K)$ such that the coordinate of $d(f_1, f_0)$ in $\pi_{q_i+1}(X, x_0)$ is $d(f_1, f_0)(e^{q_i+1}, k_0)$ (which may be defined in the sub-

complex $K \cup e^{q_i+1}$). Then it is easy to show from Lemma (3.2) by the method used in the proof of (3.3) that f_0 and f_1 are homotopic if and only if there exists $\{H\} \in \pi_1(X^K, u)$ such that $d(f_1, f_0)(e^{q_i+1}, k_0) = (\alpha_i)_u\{H\}$ for all i. The theorem then follows at once.

An alternative proof of the above two theorems can be obtained by considering homotopy sequences of the fibering $X^L \rightarrow X^K$ induced by the inclusion $K \subset L$.

4. The addition, product, and composition theorems. In this section we give three theorems which are useful in the computation of the homomorphism α_u .

Let α , $\beta \in \pi_q(K, k_0)$, $u \in X^K$, $\xi \in \pi_1(X^K, u)$; and let \cdot denote the operation of π_1 on π_r .

Theorem (4.1) (Addition Theorem). If q > 1,

$$(\alpha + \beta)_u(\xi) = \alpha_u(\xi) + \beta_u(\xi);$$

if q = 1 (so that $u_*\alpha \in \pi_1(X, x_0)$), then

$$(\alpha + \beta)_{u}(\xi) = \alpha_{u}(\xi) + (u_{*}\alpha) \cdot \beta_{u}(\xi).$$

Thus if q > 1, the transformation $(\alpha, \xi) \rightarrow \alpha_u(\xi)$ is a pairing of $\pi_q(K, k_0)$ and $\pi_1(X^K, u)$ to $\pi_{q+1}(X, x_0)$; if q = 1, the transformation might be called a crossed pairing. We shall prove the theorem later, by means of an explicit construction.

Now let $\gamma \in \pi_m(K, k_0)$, $\delta \in \pi_n(K, k_0)$ be represented by maps $f: (I^m, \dot{I}^m) \to (K, k_0)$ and $g: (I^n, \dot{I}^n) \to (K, k_0)$ respectively. Then the Whitehead product $[\gamma, \delta]$ is defined to be the class of the map $p: (\dot{I}^{m+n}, 0) = (I^m \times \dot{I}^n \cup \dot{I}^m \times I^n, 0) \to (K, k_0)$ given by

$$p(s, t) = f(s), s \in I^m, t \in \dot{I}^n$$
$$g(t), s \in \dot{I}^m, t \in I^n.$$

Notice that because of our orientation conventions (cf. Appendix), $[\gamma, \delta]$ is not the same as that defined by J. H. C. Whitehead in [8]; we write the latter, defined by using homology orientations, as $[\gamma, \delta]'$. The relation is easily seen to be $[\gamma, \delta] = (-1)^{m+n-1} [\gamma, \delta]'$.

Let $u \in X^K$, $\xi \in \pi_1(X^K, u)$.

THEOREM (4.2) (PRODUCT THEOREM). $[\gamma, \delta]_u(\xi)$ is given by

(i)
$$-[u_*\gamma, \delta_u(\xi)] + (-1)^{n+1}[\gamma_u(\xi), u_*\delta]$$
 if $m, n > 1$;

(ii)
$$-[u_*\gamma, \delta_u(\xi)] + (-1)^{n+1}[\gamma_u(\xi), u_*\gamma \cdot u_*\delta]$$
 if $m = 1, n > 1$;

(iii)
$$-[u_*\delta \cdot u_*\gamma, \delta_n(\xi)] + (-1)^{n+1}[\gamma_n(\xi), u_*\delta]$$
 if $m > 1, n = 1$;

(iv)
$$-\left[u_*\delta\cdot u_*\gamma,\,\delta_u(\xi)\right]-(-1)^{n+1}u_*\delta\cdot\left[\gamma_u(\xi),\,-(u_*\gamma\cdot u_*\delta)\right]\quad\text{if }m=n=1.$$

If we agree to use π_r for r > 1 as a trivial group of operators, then (iv) is

seen to include the other formulae. The proof will be given in §8.

Two simple consequences of (4.2) are the following:

COROLLARY (4.3). If
$$\gamma \in \pi_1(K, k_0)$$
, $\delta \in \pi_n(K, k_0)$, $n > 1$, then

$$(\gamma \cdot \delta)_u(\xi) = u_* \gamma \cdot \delta_u(\xi) - [\gamma_u(\xi), u_* \gamma \cdot u_* \delta].$$

This follows from (4.2) (ii) and (4.1), since $\gamma \cdot \delta = [\gamma, \delta]' + \delta = (-1)^n [\gamma, \delta] + \delta$.

Now let $\alpha = P(\delta_1, \dots, \delta_s)$ be a multiple Whitehead product formed from the ordered set $\delta_1, \dots, \delta_s$ ($\delta_i \in \pi_{n_i}(K, k_0), n_i > 1$) by the insertion of s-1 brackets []. Let P_i denote the product $P(u_*\delta_1, \dots, (\delta_i)_u(\xi), \dots, u_*\delta_s)$ formed in the same way, but with δ_j replaced by $u_*\delta_j$ if $j \neq i$, and δ_i by $(\delta_i)_u(\xi)$.

COROLLARY (4.4). $\alpha_u(\xi) = \sum_i \pm P_i$, where the signs are determined by P and the integers n_i .

The proof is by repeated application of (4.2)(i). For example,

$$\begin{split} \left[\delta_{1}, \left[\delta_{2}, \delta_{3}\right]\right]_{u}(\xi) &= \left[u_{*}\delta_{1}, \left[u_{*}\delta_{2}, \left(\delta_{3}\right)_{u}\xi\right]\right] \\ &+ \left(-1\right)^{n_{3}}\left[u_{*}\delta_{1}, \left[\left(\delta_{2}\right)_{u}\xi, u_{*}\delta_{3}\right]\right] \\ &+ \left(-1\right)^{n_{2}+n_{3}-1}\left[\left(\delta_{1}\right)_{u}\xi, \left[u_{*}\delta_{2}, u_{*}\delta_{3}\right]\right]. \end{split}$$

We now use (4.1) and (4.4) to simplify α_u when $\alpha = \beta \circ \phi$, $(\beta \in \pi_n(K, k_0), \phi \in \pi_q(S^n, s_0))$. To express the result we need certain of the higher Hopf invariants of ϕ (cf. [3]); the definition of these depends on a choice of basic products $\omega_i \in \pi_{r_i}(S^n \vee S_0^n, s_0)$, $n \geq 2$, as defined and ordered in [3], with $\omega_{-2} = \iota^n$, $\omega_{-1} = \iota^n_0$, respectively the generators of $\pi_n(S^n \vee S_0^n, s_0)$ represented by maps of degree +1 of S^n onto S^n and S_0^n . Then it is shown in [3] that

$$(4.5) (\iota^{n} + \iota^{n}_{0}) \circ \phi = \iota^{n} \circ \phi + \iota^{n}_{0} \circ \phi + \sum_{i=0}^{\infty} \omega_{i} \circ H_{i}(\phi),$$

where $H_i(\phi) \in \pi_q(S^{r_i})$ is termed a higher Hopf invariant of ϕ .

For elements γ , δ in the homotopy groups of any space Y, define inductively $\sigma_0(\gamma, \delta) = [\gamma, \delta], \cdots, \sigma_p(\gamma, \delta) = [\gamma, \sigma_{p-1}(\gamma, \delta)]$. Then it follows from the ordering $\iota^n < \iota^n_0$ chosen above that $\sigma_p(\iota^n, \iota^n_0)$ is a basic product of weight p+2 for $p \ge 0$. If $\sigma_p(\iota^n, \iota^n_0) = \omega_{i_p}$, write $B_p(\phi) = H_{i_p}(\phi)$, the corresponding higher Hopf invariant. Let S_* be the suspension homomorphism.

THEOREM (4.6) (SPHERE THEOREM). Let $\phi \in \pi_q(S^n)$, $n \ge 2$, $v \in X^{g^n}$, and let $\zeta \in \pi_{n+1}(X, x_0)$. Then

$$\phi_{\mathbf{v}}v_{\mathbf{l}}^{-1}(\zeta) = \zeta \circ S_{\mathbf{v}}\phi + \sum_{0}^{\infty} (-1)^{p+1}\sigma_{p}(v_{\mathbf{v}}\iota^{n}, \zeta) \circ S_{\mathbf{v}}B_{p}(\phi).$$

In particular, the sphere theorem allows us to compute any homomorphism of the fundamental groups of the loop spaces $\pi_1(\Omega^n X, v) \to \pi_1(\Omega^q X, vf)$ induced by a map $f: S^q \to S^n$.

Let β , ϕ , u, ξ be as above, and let $b: (S^n, s_0) \rightarrow (K, k_0)$ be a representative map for β . Then it follows from the definitions that

$$(4.7) \qquad (\beta \circ \phi)_u(\xi) = \phi_{ub}(ub) \mathfrak{h}^{-1}\beta_u(\xi).$$

Theorem (4.6), together with (4.7), yields

COROLLARY (4.8) (COMPOSITION THEOREM).

$$(\beta \circ \phi)_u(\xi) = \beta_u(\xi) \circ S_*\phi + \sum_{n=0}^{\infty} (-1)^{n+1} \sigma_p(u_*\beta, \beta_u(\xi)) \circ S_*B_p(\phi).$$

In particular, if q < 3n-2, then $B_p(\phi) = 0$ for all p > 0, and $B_0(\phi) = H(\phi)$, the generalized Hopf invariant. The formula then reduces to

$$(4.9) \qquad (\beta \circ \phi)_u(\xi) = \beta_u(\xi) \circ S_*\phi - [u_*\beta, \beta_u(\xi)] \circ S_*H(\phi).$$

Proof of (4.1). Let a, $b: (S^q, s_0) \rightarrow (K, k_0)$ represent α , β respectively. Denoting by $i = i^q: (I^q, \dot{I}^q) \rightarrow (S^q, s_0)$ a characteristic map for the cell $e^q = S^q - s_0$ as before, we can represent $\alpha + \beta$ by $c: (S^q, s_0) \rightarrow (K, k_0)$, defined by

$$ci(t_1, \dots, t_q) = ai(2t_1, t_2, \dots, t_q)$$
 if $t_1 \le 1/2$
= $bi(2t_1 - 1, t_2, \dots, t_q)$ if $t_1 \ge 1/2$.

Let $F: (K \times I, k_0 \times I) \rightarrow (X, x_0)$ represent $\xi \in \pi_1(X^K, u)$; then

$$(4.10) (\alpha + \beta)_u(\xi) = d(F(c \times 1), u^{\flat}(c \times 1))(e^q \times e^1, s_0 \times 0),$$

where $e^1 = I - \dot{I}$.

Let the subsets I_1^q , $I_2^q \subset I^q$ be determined by $t_1 \le 1/2$, $t_1 \ge 1/2$, respectively, and define cells σ_1 , $\sigma_2 \subset I^q \times I$ as the interiors of $I_1^q \times I$, $I_2^q \times I$, with base points $p_1 = 0 = (0, \dots, 0)$, $p_2 = (1/2, 0, \dots, 0)$ respectively. Let T be a path from 0 to p_2 given by $T(t) = (t/2, 0, \dots, 0)$. Applying (3.5) to the separation element in (4.10), we obtain

$$(\alpha + \beta)_{u}(\xi) = d(F(ci \times 1), u^{\flat}(ci \times 1))(\sigma_{1}, p_{1})$$

$$+ (u^{\flat}(ci \times 1)T)_{\#}d(F(ci \times 1), u^{\flat}(ci \times 1))(\sigma_{2}, p_{2})$$

$$= \alpha_{u}(\xi) + (uci T)_{\#}\beta_{u}(\xi).$$

If q > 1, uciT is the constant path; if q = 1, it represents $u_*\alpha$. This proves (4.1). In order to prove (4.6) we need the following lemma:

LEMMA (4.11). Let
$$\phi \in \pi_q(S^n, s_0)$$
, $\zeta \in \pi_{n+1}(X, x_0)$. Then $\phi_{x_0}(x_0)^{-1}_{\natural}(\zeta) = \zeta \circ S_*\phi$.

Proof. Let $F: (S^n \times I, s_0 \times I) \to (X, x_0)$ represent $(x_0)_{\sharp}^{-1} \zeta$ (so that $F(S^n \times I) = x_0$), and let $r: S^k \times I \to S^{k+1}$ be the identification map, of degree +1, which pinches $S^k \times I \cup s_0 \times I$ to a point. Then the following diagram commutes, where f represents ϕ , and $F' = Fr^{-1}$:

$$(S^{q} \times I, S^{q} \times \dot{I} \cup s_{0} \times I) \xrightarrow{f \times 1} (S^{n} \times I, S^{n} \times \dot{I} \cup s_{0} \times I) \xrightarrow{F} (X, x_{0})$$

$$\downarrow r \qquad \qquad \downarrow r \qquad \qquad \downarrow r$$

$$(S^{q+1}, s_{0}) \xrightarrow{Sf} (S^{n+1}, s_{0})$$

Clearly

$$\zeta = (x_0) \, \{ F \} = d(F, x_0) (e^n \times e^1, s_0 \times 0) = \{ F' \}.$$

And similarly

$$\phi_{x_0}\{F\} = d(F(f \times 1), x_0^{\flat}(f \times 1))(e^q \times e^1, s_0 \times 0)$$

= $\{F'(Sf)\} = \{F'\} \circ S_*\phi = \zeta \circ S_*\phi.$

Proof of (4.6). Let $g: S^n \to S^n \setminus S_0^n$ represent $\iota^n + \iota_0^n$, and let $u = v \setminus x_0$: $S^n \setminus S_0^n \to X$. We identify

$$\pi_1(X^{S^n \vee S_0^n}, u) = \pi_1(X^{S^n}, v) + \pi_1(X^{S_0^n}, x_0)$$

in the natural way, so that elements of the group may be written $(v_{\eta}^{-1}\eta, (x_0)_{\eta}^{-1}\zeta)$, for η , $\zeta \in \pi_{n+1}(X, x_0)$; and we further abbreviate this notation to (η, ζ) . It is easily verified that

(4.12)
$$\iota_u^n(\eta,\zeta) = \eta, \qquad (\iota_0^n)_u(\eta,\zeta) = \zeta.$$

Then

$$((\iota^{n} + \iota_{0}^{n}) \circ \phi)_{u}(0, \zeta) = \phi_{ug}(ug)_{\natural}^{-1}(\iota^{n} + \iota_{0}^{n})_{u}(0, \zeta)$$

$$= \phi_{ug}(ug)_{\natural}^{-1}\zeta \text{ by (4.1), (4.12),}$$

$$= \phi_{v}v_{\natural}^{-1}\zeta \text{ by (2.6), (2.8) since } v \simeq ug.$$

On the other hand, we have the expansion of (4.5)

$$(4.14) \qquad \qquad (\iota^{n} + \iota^{n}_{0}) \circ \phi = \iota^{n} \circ \phi + \iota^{n}_{0} \circ \phi + \sum_{i=0}^{\infty} \omega_{i} \circ H_{i}(\phi),$$

and we may apply the addition theorem to the left-hand side of (4.13) in this expanded form. Since $u_*\iota_0^n=0$, it follows from (4.4) that the expression

$$(\omega_i \circ H_i(\phi))_u(0,\zeta) = (H_i(\phi))_{x_0}(x_0)_{\xi}^{-1}(\omega_i)_u(0,\zeta)$$

is 0 if ω_i involves ι_0^n more than once. By definition $\{\sigma_p(\iota^n, \iota_0^n)\}$, p = -1, 0, 1, \cdots consists of those basic products which involve ι_0^n only once. If $\omega_{i_p} = \sigma_p$, then writing $B_p(\phi) = H_{i_p}(\phi)$, we have by induction

$$\sigma_{p}(\iota^{n}, \iota_{0}^{n})_{u}(0, \zeta) = -\left[u_{*}\iota^{n}, \sigma_{p-1}(\iota^{n}, \iota_{0}^{n})_{u}(0, \zeta)\right]$$

$$= (-1)^{p+1}\sigma_{p}(u_{*}\iota^{n}, (\iota_{0}^{n})_{u}(0, \zeta))$$

$$= (-1)^{p+1}\sigma_{p}(v_{*}\iota^{n}, \zeta),$$

using (4.12) and the fact that $u_*\iota^n = v_*\iota^n$. Hence

$$(4.15) \quad (\sigma_p(\iota^n, \iota_0^n) \circ B_p(\phi))_u(0, \zeta) = (B_p(\phi))_{z_0}(x_0)_{\natural}^{-1}((-1)^{p+1}\sigma_p(v_*\iota^n, \zeta))$$

$$= (-1)^{p+1}\sigma_n(v_*\iota^n, \zeta) \circ S_*B_n(\phi)$$

by (4.11).

Applying the addition theorem to the left-hand side of (4.13), expanded as in (4.14), and using (4.12) and (4.15) to calculate the terms, we obtain the expression in Theorem (4.6).

5. **Examples.** Using the notation of (3.3), let $L = K \cup e^{q+1}$, where the class of the attaching map is $\alpha \in \pi_q(K, k_0)$, and let $u: (K, k_0) \to (X, x_0)$ have an extension over L. Then to classify the extensions of u, we must compute α_u ; and the theorems of the preceding section allow this to be done in certain cases. In particular, if we know the homomorphisms $(\delta_t)_u$ for certain elements $\delta_t \in \pi_{n_t}(K, k_0)$, then we may compute α_u for any α formed from the δ_t by the operations of addition, formation of Whitehead products, and composition with elements of homotopy groups of spheres. In the special case $K = S^{n_1} \lor \cdots \lor S^{n_r}$, Hilton has shown that all elements of the homotopy groups of K can be so formed from the generators $\iota^{n_1}, \cdots, \iota^{n_r}$.

As an example, let $K = S^m \bigvee S^n$, with $m \le n$, and suppose for simplicity that q < 3m - 2. Let ν , ω denote the classes of $v = u \mid S^m$, $w = u \mid S^n$ respectively. We identify

$$\pi_1(X^K, u) = \pi_1(X^{S^m}, v) + \pi_1(X^{S^n}, w)$$

in the natural way. Abbreviating $(\eta, \zeta) = (v_{\dagger}^{-1}\eta, w_{\dagger}^{-1}\zeta), \eta \in \pi_{m+1}(X, x_0), \zeta \in \pi_{n+1}(X, x_0), we compute <math>\alpha_u(\eta, \zeta) \in \pi_{q+1}(X, x_0)$. Leaving aside the cases m=1 or n=1,

$$\pi_q(K) = \pi_q(S^m) + \pi_q(S^n) + [\iota^m, \iota^n] \circ \pi_q(S^{m+n-1});$$

let $\alpha = \alpha_1 + \alpha_2 + [\iota^m, \iota^n] \circ \beta$, where $\alpha_1 \in \pi_q(S^m)$, $\alpha_2 \in \pi_q(S^n)$, $\beta \in \pi_q(S^{m+n-1})$. Then

$$\alpha_u(\eta,\zeta) = (\alpha_1)_u(\eta,\zeta) + (\alpha_2)_u(\eta,\zeta) + ([\iota^m,\iota^n] \circ \beta)_u(\eta,\zeta).$$

Now from (4.6)

$$(\alpha_1)_u(\eta, \zeta) = \eta \circ S_*\alpha_1 - [\nu, \eta] \circ S_*H(\alpha_1),$$

$$(\alpha_2)_u(\eta, \zeta) = \zeta \circ S_*\alpha_2 - [\omega, \zeta] \circ S_*H(\alpha_2)$$

and from (4.2) and (4.8), since β is a suspension,

$$([\iota^m,\,\iota^n]\circ\beta)_u(\eta,\,\zeta)\,=\,(-[\nu,\,\zeta]\,+\,(-1)^{n+1}[\eta,\,\omega])\circ S_*\beta.$$

This determines $\alpha_u(\eta, \zeta)$ as a sum of these expressions. If m = n = 1, then α_u can be found by the addition theorem. If m = 1 < n, then α is a sum $\sum \xi_i \cdot \alpha_i$, $\xi_i \in \pi_1(S^1)$, $\alpha_i \in \pi_q(S^n)$. α_u is then given by the addition theorem and (4.3).

As a special case of the example, we consider maps $S_1^n \times S_2^n \to S^n$, $n \ge 2$; here $\alpha = [\iota_1^n, \iota_2^n]$. If v, w have degrees p, q respectively, p, $q \ne 0$, we say that an extension of u is of type (p, q). The obstruction to such an extension is $u_*[\iota_1^n, \iota_2^n] = pq[\iota^n, \iota^n]$. Suppose that u has an extension: then the homotopy classes of extensions are in 1-1 correspondence with $\pi_{2n}(S^n)/\alpha_u(v_{\sharp}^{-1}\pi_{n+1}(S^n), w_{\sharp}^{-1}\pi_{n+1}(S^n))$. The subgroup contains only the elements 0, $q[\iota^n, \eta]$, $p[\iota^n, \eta]$, if $n \ge 3$, where η is the generator of $\pi_{n+1}(S^n)$. Now Hilton and Whitehead have shown [4] that $[\iota^n, \eta] \ne 0$ if and only if $n \equiv 1 \mod 4$. Hence, using known results on Whitehead products,

EXAMPLE (5.1). There exist maps $S_1^n \times S_2^n \to S^n$, $n \ge 2$, of type (p,q), $p,q \ne 0$, if and only if n is odd, and either pq is even or $\pi_{2n+1}(S^{n+1})$ has an element of Hopf invariant 1. Suppose that p,q, and n are such that maps do exist. Then the homotopy classes of such maps are in 1-1 correspondence with the elements of $\pi_{2n}(S^n)$ if p and q are both even, or if $n = -1 \mod 4$; otherwise they are in 1-1 correspondence with the elements of

$$\pi_{2n}(S^n)/[\iota^n, \pi_{n+1}(S^n)] = \pi_{2n}(S^n)/Z_2.$$

Other examples are easily given; for instance

EXAMPLE (5.2). The identity map $S^n \rightarrow S^n$ always extends to maps $S^n \times S^{n-1} \rightarrow S^n$; the homotopy classes of extensions are in 1-1 correspondence with the elements of $\pi_{2n-1}(S^n)/[\iota^n, \pi_n(S^n)] \approx S_*\pi_{2n-1}(S^n)$.

EXAMPLE (5.3). Let u be a map of $S^1 \bigvee S^1$ into the real projective plane which is nontrivial on both circles. Then there are two homotopy classes rel s_0 of extensions of u to $S^1 \times S^1$.

6. An application: the group of homotopy equivalences. We shall outline an application of the above methods to the group of homotopy classes of homotopy equivalences of a space with itself, denoted Eq.

Let K be a 1-connected CW complex, and let $K \cup e^{q+1}$ be formed by attaching a cell e^{q+1} , $q > \dim K$, with $\alpha \in \pi_q(K)$ the class of the attaching map and $\bar{\alpha} \in \pi_{q+1}(K \cup e^{q+1}, K)$ the class of the characteristic map. Let

$$i: K \subset K \cup e^{q+1}$$

be the inclusion, and define a homomorphism

$$d^* \colon i_*\pi_{q+1}(K) \to Eq(K \ \bigcup \ e^{q+1})$$

as follows: $d^*(\beta)$ is the homotopy class of an extension g of i such that $d(g,1)(e^{q+1})=\beta$, where 1 denotes the identity map of $K \cup e^{q+1}$. Since $q>\dim K$ if f is a homotopy equivalence of $K \cup e^{q+1}$, then $f_*\bar{\alpha}=\epsilon(f)\bar{\alpha}$, where $\epsilon(f)=\pm 1$. We also define homomorphisms

$$j^* : Eq(K \cup e^{q+1}) \to Eq(K), \qquad j_0^* : Eq(K \cup e^{q+1}) \to Eq(S^{q+1}),$$
 by $j^* \{ f \} = \{ f | K \}, j_0^* \{ f \} = \epsilon(f) \iota^{q+1}.$

THEOREM (6.1). The following sequences are exact:

$$i_*\pi_{q+1}(K) \xrightarrow{d^*} Eq(K \cup e^{q+1}) \xrightarrow{j^*} Eq(K),$$
 if $2\alpha \neq 0$;
 $i_*\pi_{q+1}(K) \xrightarrow{d^*} Eq(K \cup e^{q+1}) \xrightarrow{j^*+j_0^*} Eq(K) + Eq(S^{q+1}),$ if $2\alpha = 0$.

From Lemma 7 of [6] it follows that the image of j^* is the set of classes $\{h\}$ such that $h_*\alpha = \pm \alpha$; denote this subgroup by $Eq_e(K)$. The image of $j^* + j_0^*$ is then $Eq_e(K) + Eq(S^{q+1})$, if $2\alpha = 0$. The kernel of d^* is

$$i_*\pi_{q+1}(K) \cap \alpha_i\pi_1((K \cup e^{q+1})^K, i)$$

where the base point $k_0 \in K$ is any point of e^{q+1} . Methods were given in the previous sections for calculating α_i if K is a bunch of spheres, so that in this case we can find $Eq(K \cup e^{q+1})$ up to extension.

The operations of $Eq_{\epsilon}(K)$, or $Eq_{\epsilon}(K) + Eq(S^{q+1})$, on $i_*\pi_{q+1}(K)/i_*\pi_{q+1}(K)$ $\cap \alpha_i\pi_1$ are given as follows: Let $\gamma \in \pi_{q+1}(K)$, $\psi = \{h\} \in Eq(K)$, $\epsilon \iota^{q+1} \in Eq(S^{q+1})$. Then

- (i) If $2\alpha \neq 0$, then $\psi \cdot (i_*\gamma) = i_*h_*\gamma$;
- (ii) If $2\alpha = 0$, then $(\psi, \epsilon \iota^{q+1}) \cdot (i_* \gamma) = \epsilon i_* h_* \gamma$.

The extension is not known to us, in general.

7. Further applications. In this section we shall show how the theory of §§2-4 can be applied to obtain information about Whitehead products.

THEOREM (7.1). If $\gamma \in \pi_q(S^m)$, then in $\pi_{q+n-1}(S^m \vee S^n)$ we have $[\iota^m_0 \gamma, \iota^n] = [\iota^m, \iota^n] \circ S_*^{n-1} \gamma + \sum_0^{\infty} (-1)^{(p+1)(n+1)} \sigma_{p+1}(\iota^m, \iota^n) \circ S_*^{n-1} B_p(\gamma)$, for m, n > 1, where $\sigma_{p+1}(\iota^m, \iota^n)$ and $B_p(\gamma)$ are defined as in (4.6).

Proof. Using the elementary relation

$$[\eta, \iota^1] = \iota^1 \cdot \eta - \eta, \qquad \text{for } \eta \in \pi_q(S^m),$$

to expand both sides of the identity $(\iota^1 \cdot \iota^m) \circ \gamma = \iota^1 \cdot (\iota^m \circ \gamma)$, we obtain

$$(7.3) ([\iota^m, \iota^1] + \iota^m) \circ \gamma = [\iota^m \circ \gamma, \iota^1] + \iota^m \circ \gamma.$$

Now as shown in the addition theorem, if $u \in X^K$, $\xi \in \pi_1(X^K, u)$, then the transformation $(u, \xi) : \pi_q(K, k_0) \to \pi_{q+1}(X, x_0)$ given by $(u, \xi)\alpha = \alpha_u(\xi)$ is a homomorphism for q > 1. Taking $K = S^m \vee S^1$, $X = S^m \vee S^2$, u such that $u_* \iota^m = \iota^m$, $u_* \iota^1 = 0$, and ξ such that $\iota^m_u(\xi) = 0$, $\iota^1_u(\xi) = \iota^2$, and applying (u, ξ) to both sides of (7.3), we obtain by use of the composition theorem

$$(-[\iota^{m}, \iota^{2}] + 0) \circ S_{*}\gamma + \sum_{0}^{\infty} (-1)^{p+1}\sigma_{p}(0 + \iota^{m}, -[\iota^{m}, \iota^{2}] + 0) \circ S_{*}B_{p}(\gamma)$$

$$= -[\iota^{m} \circ \gamma, \iota^{2}] + 0;$$

using the definition of $\sigma_{p+1}(\iota^m, \iota^n)$, this yields the equation in (7.1) for the case n=2.

We can now prove (7.1) by induction on n. Suppose that (7.1) holds for

n, and apply (u, ξ) to both sides of the equation, with $K = S^m \bigvee S^n$, $X = S^m \bigvee S^{n+1}$, u such that $u_* \iota^m = \iota^m$, $u_* \iota^n = 0$, and ξ such that $\iota^m_u(\xi) = 0$, $\iota^n_u(\xi) = \iota^{n+1}$. We obtain

$$-\left[\iota^{m} \circ \gamma, \iota^{n+1}\right] = -\left[\iota^{m}, \iota^{n+1}\right] \circ S_{*}^{n} \gamma$$

$$+ \sum_{0}^{\infty} (-1)^{(p+1)(n+1)} (-1)^{p+2} \sigma_{p+1}(\iota^{m}, \iota^{n+1}) \circ S_{*}^{n} B_{p}(\gamma)$$

which yields the required equation for n+1. This proves (7.1).

Theorem (7.1) may be used as a universal example to derive

COROLLARY (7.4). If
$$\gamma \in \pi_q(S^m)$$
, $\alpha \in \pi_m(X)$, $\beta \in \pi_n(X)$, $m, n > 1$, then $[\alpha \circ \gamma, \beta] = [\alpha, \beta] \circ S_*^{n-1} \gamma + \sum_0^{\infty} (-1)^{(p+1)(n+1)} \sigma_{p+1}(\alpha, \beta) \circ S_*^{n-1} B_p(\gamma)$.

The corollary generalizes a formula of G. W. Whitehead [5, (3.59)] for the case in which γ is a suspension.

As a further application, we give a simple inductive proof of the Jacobi identity for Whitehead products in $\pi_{p+q+r-2}(S^p \vee S^q \vee S^r)$ (cf. [3] et al.). With our conventions for the Whitehead product, the identity is given by

THEOREM (7.5).

$$(-1)^{(p+1)r}[[\iota^{p}, \iota^{q}], \iota^{r}] + (-1)^{(r+1)q}[[\iota^{r}, \iota^{p}], \iota^{q}]$$

$$+ (-1)^{(q+1)p}[[\iota^{q}, \iota^{r}], \iota^{p}] = 0, \qquad p, q, r \ge 2.$$

Proof. It is elementary that the following relation holds in $\pi_2(S^2 \vee S_0^2 \vee S^1)$: $\iota^1 \cdot [\iota^2, \iota_0^2] = [\iota^1 \cdot \iota^2, \iota^1 \cdot \iota_0^2]$. Expanding both sides by (7.2),

$$(7.6) [[\iota^2, \iota_0^2], \iota^1] + [\iota^2, \iota_0^2] = [[\iota^2, \iota^1] + \iota^2, [\iota_0^2, \iota^1] + \iota_0^2].$$

Choosing $K = S^2 \bigvee S_0^2 \bigvee S_1$, $X = S^2 \bigvee S_0^2 \bigvee S_1^2$ $u \in X^K$ such that $u_* \iota^2 = \iota^2$, $u_* \iota_0^2 = \iota_0^2$, $u_* \iota^1 = 0$, $\xi \in \pi_1(X^K, u)$ such that $\iota_u^2(\xi) = (\iota_0^2)_u(\xi) = 0$, $\iota_u^1(\xi) = \iota_1^2$, and applying (u, ξ) to both sides of (7.6) we obtain $-[[\iota^2, \iota_0^2], \iota_1^2] = [\iota_0^2, [\iota_0^2, \iota_1^2]] + [[\iota^2, \iota_1^2], \iota_0^2]$ which yields (7.5) for p = q = r = 2.

Suppose inductively that the identity of (7.5) holds for p, q, r. Taking $K = S^p \bigvee S^q \bigvee S^r$, $X = S^p \bigvee S^q \bigvee S^{r+1}$, $u \in X^K$ such that $u_* \iota^p = \iota^p$, $u_* \iota^q = \iota^q$, $u_* \iota^r = 0$, and $\xi \in \pi_1(X^K, u)$ such that $\iota^p_u(\xi) = \iota^q_u(\xi) = 0$, $\iota^r_u(\xi) = \iota^{r+1}$, by applying (u, ξ) to both sides of the equality in (7.5) we obtain the same equality with r replaced by r+1. This proves (7.5).

The proof could equally well start with the relation $\iota^1 \cdot \left[\iota_0^1, \iota_1^1\right] = \left[\iota^1 \cdot \iota_0^1, \iota^1 \cdot \iota_1^1\right]$ which can be verified purely formally.

Notice that if we apply homomorphisms (u, ξ) to both sides of (7.6) with u and ξ appropriately chosen to raise the dimensions of ι^2 and ι_0^2 , but leave ι^1 fixed, then we obtain a generalization of the Jacobi identity for the case in which one factor is of dimension 1; this can be written

(7.7)
$$(-1)^{p+1}[[\iota^{p}, \iota^{q}], \iota^{1}] + [[\iota^{1}, \iota^{p}], \iota^{q}]$$

$$+ (-1)^{(q+1)p}[[\iota^{q}, \iota^{1}], \iota^{p}] + [[\iota^{1}, \iota^{p}], [\iota^{q}, \iota^{1}]] = 0.$$

Equation (7.7) also follows directly from the properties of the operation of π_1 , in the manner of (7.6)

Theorem (7.5) is a universal example for the Jacobi identity in the homotopy groups of any space.

8. Proof of the product theorem. We shall now prove Theorem (4.2). As universal examples for K, γ , and δ we take $S^m \vee S^n$, ι^m , and ι^n respectively. Then if K, γ , and δ are arbitrary, there is a map $h: S^m \vee S^n \to K$ such that $h_*\iota^n = \gamma$ and $h_*\iota^n = \delta$. Since

$$[\gamma, \delta]_u = (h_*[\iota^m, \iota^n])_u = [\iota^m, \iota^n]_{uh}h^*,$$

and $\gamma_u = \iota_{uh}^m h^*$, $\delta_u = \iota_{uh}^n h^*$, one verifies immediately that Theorem (4.2) for the general case follows if we have proved it for the universal example.

Let $w: S^m \to X$, $v: S^n \to X$ define $u = w \setminus v: S^m \setminus S^n \to X$; we identify $\pi_1(X^{S^m \setminus S^n}, u) = \pi_1(X^{S^m}, w) + \pi_1(X^{S^n}, v)$ under the natural isomorphism, so that there is a natural isomorphism $(w_{\natural}^{-1}, v_{\natural}^{-1}): \pi_{m+1} + \pi_{n+1} \to \pi_1(X^{S^m \setminus S^n}, u)$, where $\pi_k = \pi_k(X, x_0)$. Let

$$\kappa = [\iota^m, \ \iota^n]_u(w\bar{\mathfrak{q}}^{-1}, \ v\bar{\mathfrak{q}}^{-1}) \colon \pi_{m+1} + \pi_{n+1} \to \pi_{m+n};$$

let ω , ν denote $w_*\iota^m$, $v_*\iota^n$, and let $\lambda \in \pi_{m+1}$, $\rho \in \pi_{n+1}$. Then Theorem (4.2) for the universal example can be written

(8.1) (i)
$$\kappa(\lambda, \rho) = -[\omega, \rho] + (-1)^{n+1}[\lambda, \nu]$$
 if $m, n > 1$,
(ii) $\kappa(\lambda, \rho) = -[\omega, \rho] + (-1)^{n+1}[\lambda, \omega \cdot \nu]$ if $m = 1, n > 1$,
(iii) $\kappa(\lambda, \rho) = -[\nu \cdot \omega, \rho] + (-1)^{n+1}[\lambda, \nu]$ if $m > 1, n = 1$,
(iv) $\kappa(\lambda, \rho) = -[\nu \cdot \omega, \rho] - \nu \cdot [\lambda, -(\omega \cdot \nu)]$ if $m = n = 1$.

We write the fundamental group additively, and shall first deduce (8.1) (iv) from the addition theorem. In this case $S^m \vee S^n = S^1 \vee S^1$, and we set $\iota = \iota^m$, $\iota' = \iota^n$. Then for

$$\xi = (w_{\bar{h}}^{-1}\lambda, v_{\bar{h}}^{-1}\rho) \in \pi_1(X^{S^1 \vee S^1}, u),$$

it is clear that $\iota_u(\xi) = \lambda$, $\iota_u'(\xi) = \rho$. Now $[\iota, \iota'] = (\iota' + \iota) - (\iota + \iota')$, and

$$(\iota' + \iota)_u(\xi) = \iota_u'(\xi) + u_*\iota' \cdot \iota_u(\xi) = \rho + \nu \cdot \lambda.$$

Since

$$(-(\iota + \iota') + (\iota + \iota'))_u(\xi) = (-(\iota + \iota'))_u(\xi) + (-(\omega + \nu)) \cdot (\iota + \iota')_u(\xi),$$

$$(-(\iota + \iota'))_u(\xi) = -(-\nu - \omega) \cdot (\lambda + \omega \cdot \rho).$$

Therefore

(8.2)
$$\kappa(\lambda, \rho) = [\iota, \iota']_{u}(\xi) = ((\iota' + \iota) - (\iota + \iota'))_{u}(\xi)$$

$$= \rho + \nu \cdot \lambda - (\nu + \omega) \cdot ((-\nu - \omega) \cdot (\lambda + \omega \cdot \rho))$$

$$= \nu \cdot (\lambda - (\omega - \nu - \omega) \cdot \lambda) + \rho - (\nu + \omega - \nu) \cdot \rho$$

$$= -\nu \cdot [\lambda, \omega \cdot (-\nu)] - [\rho, \nu \cdot \omega].$$

This proves (8.1)(iv).

We can now suppose that m+n>2; if we prove that

(8.3)
$$\kappa(0, \rho) = -\left[\omega, \rho\right] \qquad \text{if } n > 1,$$
$$= -\left[\nu \cdot \omega, \rho\right] \qquad \text{if } n = 1,$$

it will follow that

$$\kappa(\lambda, 0) = [\iota^{m}, \iota^{n}]_{u}(w_{\natural}^{-1}\lambda, v_{\natural}^{-1}0) = ((-1)^{mn}[\iota^{n}, \iota^{m}])_{u}(w_{\natural}^{-1}\lambda, v_{\natural}^{-1}0)$$

$$= (-1)^{mn+1}[\nu, \lambda] \quad \text{or} \quad (-1)^{n+1}[\omega \cdot \nu, \lambda]$$

$$= (-1)^{n+1}[\lambda, \nu] \quad \text{or} \quad (-1)^{n+1}[\lambda, \omega \cdot \nu]$$

according as m > 1 or m = 1. Then (8.3) implies that $\kappa(\lambda, \rho) = \kappa(\lambda, 0) + \kappa(0, \rho)$ is given by (8.1)(i), (ii), or (iii), and we need only prove (8.3).

Consider the case $(X, x_0) = (S^m \bigvee S^{n+1}, s_0)$, $w = j^m$, the identity map of S^m , $v = s_0$, $\rho = \iota^{n+1}$, where $m, n \ge 1$ and m+n > 2; we prove by considering representative maps that

LEMMA (8.4). In this case $\kappa(0, \iota^{n+1}) = -[\iota^m, \iota^{n+1}].$

Proof. $[\iota^m, \iota^n]$ is represented by $p: \dot{I}^{m+n} = (I^m \times I^n) \cdot \to S^m \vee S^n$,

$$p(y, y') = i^{m}(y) \qquad \text{if } y \in I^{m}, y' \in \dot{I}^{n},$$
$$= i^{n}(y') \qquad \text{if } y \in \dot{I}^{m}, y' \in I^{n}.$$

Define maps E, F: $((S^m \lor S^n) \times I, s_0 \times I) \rightarrow (S^m \lor S^{n+1}, s_0)$ by

$$E(z, t) = z,$$
 $z \in S^{m}, t \in I,$
 $= s_{0},$ $z \in S^{n};$
 $F(z, t) = z,$ $z \in S^{m},$
 $= i^{n+1}((i^{n})^{-1}(z), t),$ $z \in S^{n}.$

Then $F(p\times 1)$, $E(p\times 1): (\dot{I}^{m+n}\times I, 0\times I) \to (S^m \vee S^{n+1}, s_0)$ agree on $\dot{I}^{m+n}\times \dot{I}\cup 0\times I$; and since F represents $((\dot{J}^m)_{\natural}^{-1}0, s_{0\natural}^{-1}\iota^{n+1})\in \pi_1(X^{S^m\vee S^n}, u)$, we have

$$\kappa(0, \iota^{n+1}) = d(F(p \times 1), (E(p \times 1))((\dot{I}^{m+n} - 0) \times I, 0 \times 0).$$

Extend $F(p\times 1)$, $E(p\times 1)$ over $\dot{I}^{m+n+1} = \dot{I}^{m+n} \times I \cup I^{m+n} \times \dot{I}$ to \overline{F} , \overline{E} respectively, as follows: for $y\in I^m$, $y'\in I^n$, $t\in \dot{I}$ define

$$\overline{F}(y, y', t) = i^m(y) \qquad \text{if } y' \in \dot{I}^n,$$

$$= i^{n+1}(y', t) = s_0 \qquad \text{if } y \in \dot{I}^m;$$

and the same for \overline{E} . \overline{F} and \overline{E} are readily seen to be the canonical maps representing $[\iota^m, \iota^{n+1}]$ and $[\iota^m, 0]$ respectively; also, \overline{F} and \overline{E} agree on $I^{m+n} \times \dot{I} \cup 0 \times I$. Setting $e^{m+n+1} = \dot{I}^{m+n+1} = 0$, and applying Lemma (3.5) as in the proof of (3.2), it follows that $d(F(p \times 1), E(p \times 1)) = d(\overline{F} | \dot{I}^{m+n} \times I, \overline{E} | \dot{I}^{m+n} \times I)$ on $((\dot{I}^{m+n} = 0) \times I, 0 \times 0)$ is equal to $-d(\overline{F}, \overline{E})(e^{m+n+1}, 0)$. Thus

$$\kappa(0, \iota^{n+1}) = -d(\overline{F}, \overline{E})(e^{m+n+1}, 0) = -(\{\overline{F}\} - \{\overline{E}\}) = -\{\overline{F}\} = -[\iota^m, \iota^{n+1}]$$
 which proves (8.4).

The space $S^m \bigvee S^{n+1}$ in (8.4) is a universal example for the case $v = x_0$; for, given any (X, x_0) , w, ρ , there exists $g: (S^m \bigvee S^n, s_0) \to (X, x_0)$ such that $g \mid (S^m, s_0) = w$ and $\{g \mid S^{n+1}\} = \rho$.

COROLLARY (8.5).
$$\kappa(0, \rho) = -[\omega, \rho]$$
 if $v = x_0$, with X , w , ρ arbitrary.

Now let all of X, w, v, ρ be arbitrary. Define $h=j^m \vee h'$: $(S^m \vee S^n, s_0) \to (S^m \vee S^n_1 \vee S^n_2, s_0)$, where $h': S^n \to S^n_1 \vee S^n_2$ is such that $h_*' \iota^n = \iota^n_1 + \iota^n_2$. Let $\bar{v} = (x_0 \vee v)h'$; then $h^*: \pi_1(X^{S^m \vee S^n_1 \vee S^n_2}, w \vee x_0 \vee v) \to \pi_1(X^{S^m \vee S^n}, w \vee \bar{v})$. We identify the second group with $\pi_1(X^{S^m}, w) + \pi_1(X^{S^n}, \bar{v})$, and treat the first similarly. Then it is clear from the definition of \flat as a separation element, and from the definition of h^* , that

$$h^*(\bar{w}_{\natural}^{-1}\lambda, \bar{x}_{0}_{\natural}^{-1}\rho_{1}, \bar{v}_{\natural}^{-1}\rho_{2}) = (\bar{w}_{\natural}^{-1}\lambda, \bar{v}_{\natural}^{-1}(\rho_{1} + \rho_{2})).$$

Let M be a homotopy rel S^m from $w \vee \bar{v}$ to $u = w \vee v$; under the above identification $M_{\bar{f}} = ((M \mid S^m)_{\bar{f}}, (M \mid S^n)_{\bar{f}})$. Since $v_{\natural} = (M \mid S^n)_{\bar{f}}\bar{v}_{\natural}$ by (2.6), and $(M \mid S^m)_{\bar{f}}$ is the identity,

$$M_{\sharp}(w_{\sharp}^{-1}\lambda, \bar{v}_{\sharp}^{-1}(\rho_{1}+\rho_{2})) = (w_{\sharp}^{-1}\lambda, v_{\sharp}^{-1}(\rho_{1}+\rho_{2})).$$

Setting $r = w \bigvee x_0 \bigvee v$,

$$\begin{bmatrix} \iota^m & \iota_1^n + \iota_2^n \end{bmatrix}_r = (h_* \begin{bmatrix} \iota^m, \iota^n \end{bmatrix})_r = \begin{bmatrix} \iota^m, \iota^n \end{bmatrix}_{rh} h^* = \begin{bmatrix} \iota^m, \iota^n \end{bmatrix}_u M_{\sharp} h^*$$

and hence

(8.6)
$$\kappa(0, \rho) = \begin{bmatrix} {}^{m}, {}^{n} \end{bmatrix}_{u} (w_{\natural}^{-1}0, v_{\natural}^{-1}\rho) \\ = \begin{bmatrix} {}^{n}, {}^{n} \end{bmatrix}_{u} M_{\sharp} h^{*} (w_{\natural}^{-1}0, x_{0\natural}^{-1}\rho, v_{\natural}^{-1}0) \\ = \begin{bmatrix} {}^{m}, {}^{n}_{1} + \iota_{2} \end{bmatrix}_{r} (w_{\natural}^{-1}0, x_{0\natural}^{-1}\rho, v_{\natural}^{-1}0).$$

If $m \ge 1$, n > 1, then it follows from the addition theorem that $[\iota^m, \iota_1^n + \iota_2^n]_r = [\iota^m, \iota_1^n]_r + [\iota^m, \iota_2^n]_r$. The first term yields $[\iota^m, \iota_1^n]_r (w_{\natural}^{-1}0, x_{0\natural}^{-1}\rho, v_{\natural}^{-1}0) = -[\omega, \rho]$ by (8.5), while the second term yields 0. Hence

(8.7)
$$\kappa(0, \rho) = -\left[\omega, \rho\right] \qquad \text{for } m \ge 1, n > 1.$$

If m > 1, n = 1, then

$$\begin{bmatrix} \iota^m, \ \iota^n_1 + \iota^n_2 \end{bmatrix} = (\iota^n_1 + \iota^n_2) \cdot \iota^m - \iota^m = \begin{bmatrix} \iota^n_2 \cdot \iota^m, \ \iota^n_1 \end{bmatrix} + \begin{bmatrix} \iota^m, \ \iota^n_2 \end{bmatrix}.$$

Applying the addition theorem, and noting that the second term again gives 0,

$$[8.8) \qquad \left[{{\iota}^{n}, \ \iota_{1}^{n} + \ \iota_{2}^{n}} \right]_{r} (w_{+}^{-1}0, \ x_{0}^{-1}\rho, \ v_{+}^{-1}0) = \left[{{\iota}^{n}, \ \iota_{1}^{n}}, \ \iota_{1}^{n} \right]_{r} (w_{+}^{-1}0, \ x_{0}^{-1}\rho, \ v_{+}^{-1}0).$$

Let $k = l \vee j_1^n : (S^m \vee S^n, s_0) \rightarrow (S^m \vee S_1^n \vee S_2^n, s_0)$, where l represents $\iota_2^n \cdot \iota_2^m$, so that rk represents $\nu \cdot \omega$ on S^m and 0 on S^n . Then $k^* : \pi_1(X^{S^m \vee S_1^n \vee S_2^n}, r) \rightarrow \pi_1(X^{S^m \vee S^n}, rk)$ is clearly such that

$$k^*(w_{\natural}^{-1}0, x_{0\natural}^{-1}\rho, v_{\natural}^{-1}0) = (l_{\natural}^{-1}0, x_{0\natural}^{-1}\rho).$$

Since $k_*[\iota^m, \iota^n] = [\iota_2^n \cdot \iota^m, \iota_1^n],$

(8.9)
$$\begin{bmatrix} \iota_{2}^{n} \cdot \iota^{m}, \ \iota_{1}^{n} \end{bmatrix}_{r} (w_{\natural}^{-1}0, x_{0}^{-1}\rho, v_{\natural}^{-1}0) = [\iota^{m}, \iota^{n}]_{rk} k^{*} (w_{\natural}^{-1}0, x_{0}^{-1}\rho, v_{\natural}^{-1}0) \\ = [\iota^{m}, \iota^{n}]_{rk} (l_{\natural}^{-1}0, x_{0}^{-1}\rho) = - [\nu \cdot \omega, \rho] \text{ by (8.5)}.$$

Equations (8.6), (8.8), and (8.9) yield

(8.10)
$$\kappa(0, \rho) = -\left[\nu \cdot \omega, \rho\right] \quad \text{if } m > 1, n = 1.$$

Equations (8.7) and (8.10) together prove (8.3), and hence Theorem (4.2). **Appendix. Separation elements**

Let I^n be the subset of Euclidean n-space consisting of n-tuples of real numbers (y_1, \dots, y_n) , $0 \le y_i \le 1$, oriented by the generator of $H_n(I^n, \dot{I}^n)$ represented by the identity map of I^n in the cubical singular theory. Let J^{n-1} be the closure of the subset of \dot{I}^n for which $y_n < 1$, and let I_1^{n-1} be the subset of \dot{I}^n for which $y_n = 1$. If $x_0 \in A \subset X$, then elements of $\pi_n(X, A, x_0)$ are represented by maps $f: (I^n, \dot{I}^n, J^{n-1}) \to (X, A, x_0)$, and the boundary operator

$$\partial \colon \pi_n(X, A, x_0) \to \pi_{n-1}(A, x_0, x_0) = \pi_{n-1}(A, x_0)$$

is defined by $\partial \{f\} = \{f | I_1^{n-1}\}$. If we identify $(S^{n-1}, s_0) = (\dot{I}^n, 0)$, where $0 = (0, \dots, 0)$, then the specification of the boundary operator determines an orientation of S^{n-1} (cf. [7, §4]). It is to be noted that this is not the orientation given by the homology boundary.

Let h_t : $(I^n, \dot{I}^n, J^{n-1}, 0) \rightarrow (I^n, \dot{I}^n, J^{n-1}, 0)$ be a homotopy such that h_0 = identity, $h_1(J^{n-1}) = 0$. h_t determines a 1-1 correspondence between the sets of homotopy classes of maps $g: (I^n, \dot{I}^n, 0) \rightarrow (X, A, x_0)$ and the elements of $\pi_n(X, A, x_0)$ by $\{g\} \rightarrow \{gh_1\}$, and similarly between the homotopy classes of maps $g': (\dot{I}^n, 0) \rightarrow (A, x_0)$ and the elements of $\pi_{n-1}(A, x_0)$. Using this correspondence, we may represent elements of $\pi_n(X, A, x_0)$ and $\pi_{n-1}(A, x_0)$ by maps of $(I^n, \dot{I}^n, 0)$ and $(\dot{I}^n, 0)$ respectively.

We define separation elements as follows (cf. [1] for the original definition). Let K be a CW complex (2) and let $\sigma \in K$ be an n-cell with characteristic map $c_{\sigma} : (I^{n}, \dot{I}^{n}, 0) \rightarrow (\bar{\sigma}, \dot{\sigma}, p_{\sigma})$, where $p_{\sigma} \in \dot{\sigma}$ is a point. If $f, g: (\bar{\sigma}, p_{\sigma}) \rightarrow (X, x_{0})$

⁽²⁾ A fixed choice of characteristic map for each cell is implied in the definition of a CW complex.

agree on $\dot{\sigma}$, they determine a separation element $d(f, g)(\sigma, p_{\sigma}) \in \pi_n(X, x_0)$, represented by $F: (\dot{I}^{n+1}, 0) \to (X, x_0)$,

$$F(y_1, \dots, y_{n+1}) = \begin{cases} fc_{\sigma}(y_1, \dots, y_n) & \text{if } y_{n+1} = 1, \\ fc_{\sigma}(y_1, \dots, y_n) = gc_{\sigma}(y_1, \dots, y_n) & 0 < y_{n+1} < 1, \\ gc_{\sigma}(y_1, \dots, y_n) & \text{if } y_{n+1} = 0. \end{cases}$$

Thus $d(f, g)(\sigma, p_{\sigma}) = d(fc_{\sigma}, gc_{\sigma})(I^{n}, 0)$ (we shall not bother to distinguish between the open and the closed cell, provided this causes no confusion).

It follows from the orientation convention that if $f(\dot{\sigma}) = x_0$, $g(\bar{\sigma}) = x_0$, then $d(f, g)(\sigma, p_{\sigma}) = \{fc_{\sigma}\}$.

REFERENCES

- 1. S. Eilenberg, Cohomology and continuous mappings, Ann. of Math. vol. 41 (1940) pp. 231-251.
- 2. R. H. Fox, On topologies for function spaces, Bull. Amer. Math. Soc. vol. 51 (1945) pp. 429-432.
- 3. P. J. Hilton, On the homotopy groups of the union of spheres, J. London Math. Soc. vol. 30 (1955) pp. 154-171.
- 4. P. J. Hilton and J. H. C. Whitehead, Note on the Whitehead product, Ann. of Math. vol. 58 (1953) pp. 429-442.
- 5. G. W. Whitehead, A generalization of the Hopf invariant, Ann. of Math. vol. 51 (1950) pp. 192-237.
- 6. J. H. C. Whitehead, On simply-connected, 4-dimensional polyhedra, Comment. Math. Helv. vol. 22 (1949) pp. 48-92.
- 7. ——, On certain theorems of G. W. Whitehead, Ann. of Math. vol. 58 (1953) pp. 418-428.
- 8. ———, On adding relations to homotopy groups, Ann. of Math. vol. 42 (1941) pp. 409-428.
- 9. J. R. Jackson, Spaces of mappings on topological products with applications to homotopy theory, Proc. Amer. Math. Soc. vol. 3 (1952) pp. 327-333.

Brown University,

PROVIDENCE, R. I.

Brasenose College,

OXFORD, ENGLAND