INCLUSION THEOREMS FOR CONGRUENCE SUBGROUPS

вv

M. NEWMAN AND I. REINER(1)

1. Introduction. We shall use the following notation throughout: $A^{(r)}$ denotes an $r \times r$ matrix A; $I^{(r)}$ denotes the r-rowed identity matrix; 0 will be used for a zero matrix of appropriate size. Congruence of matrices will be interpreted as elementwise congruence. We write $a \mid b$ to indicate that a divides b. Lower case italic letters will always denote integers.

Let G_t be the proper unimodular group consisting of all $t \times t$ matrices with integral elements and determinant +1. For a fixed partition: t=r+s of t into two positive integers r and s, and for a fixed positive integer n, define the subgroup

(1)
$$G_{r,s}(n) = \left\{ \begin{bmatrix} A^{(r)} & B \\ C & D^{(s)} \end{bmatrix} \in G_t : C \equiv 0 \pmod{n} \right\}.$$

We shall prove:

THEOREM 1. Let m, n be positive integers, and let H be a group such that

$$(2) G_{r,s}(mn) \subset H \subset G_{r,s}(n).$$

Then there exists a divisor d of m such that

$$(3) H = G_{r,s}(dn).$$

Special cases of this have been proved in [1] and [3]. In the case where t=2r, define

$$(4) G_r(m, n) = \left\{ \begin{bmatrix} A^{(r)} & B \\ C & D^{(r)} \end{bmatrix} \in G_{2r} : \begin{array}{c} B \equiv 0 \pmod{m}, \\ C \equiv 0 \pmod{n} \end{array} \right\}.$$

Then we shall show:

THEOREM 2. Let H be a group satisfying

$$(5) G_r(m, n) \subset H \subset G_{2r}.$$

If (m, n) = 1, then there exist integers m_1, n_1 with $m_1 \mid m, n_1 \mid n$, and

$$(6) H = G_r(m_1, n_1).$$

Presented to the Society, October 26, 1957; received by the editors October 14, 1957.

⁽¹⁾ The work of the first author was supported (in part) by the Office of Naval Research, and that of the second author was supported (in part) by a contract with the National Science Foundation.

A special case of this (with r=1) was proved in [2], where it was also shown that the hypothesis (m, n) = 1 could not be dropped.

To generalize further, let $n = (n_1, \dots, n_{t-1})$, and define

(7)
$$G_t(\mathfrak{n}) = G_{1,t-1}(n_1) \cap G_{2,t-2}(n_2) \cap \cdots \cap G_{t-1,1}(n_{t-1}).$$

Thus an element $M \in G_t$ lies in $G_t(\mathfrak{n})$ if and only if for every partition t=r+s $(1 \le r \le t-1)$ we have

$$M = \begin{bmatrix} A^{(r)} & B \\ C & D^{(s)} \end{bmatrix}, \qquad C \equiv 0 \pmod{n_r}.$$

We shall prove:

THEOREM 3. Let $(m_i n_i, m_j n_j) = 1$ for $1 \le i, j \le t-1, i \ne j$. Let H be a group such that

(8)
$$G_t(\mathfrak{m}\mathfrak{n}) \subset H \subset G_t(\mathfrak{n}),$$

where mn denotes $(m_1n_1, \dots, m_{t-1}n_{t-1})$. Then there exists a vector

$$\mathfrak{d}=(d_1,\cdots,d_{t-1}),$$

with $d_1 \mid m_1, \dots, d_{t-1} \mid m_{t-1}$, such that

$$(9) H = G_t(\mathfrak{bn}).$$

Finally, we shall prove analogues of Theorems 1 and 2 for the symplectic modular group Γ_t of order t, which consists of all integral matrices

$$\begin{bmatrix} A^{(t)} & B \\ C & D^{(t)} \end{bmatrix}$$

satisfying

$$AB' = B'A$$
, $CD' = D'C$, $AD' - DC' = I$.

2. We begin the proof of Theorem 1 with two lemmas.

LEMMA 1. Let t=r+s, and let n be a fixed positive integer. For each

$$M = \begin{bmatrix} A^{(r)} & B \\ C & D^{(s)} \end{bmatrix} \in G_t$$

there exists an integral $r \times s$ matrix X such that (|A + XC|, n) = 1.

Proof. It is sufficient to show that for every prime p there exists an integral matrix X_p such that $p \nmid |A + X_p C|$. For we may then find an integral matrix X satisfying $X \equiv X_p \pmod{p}$ for each $p \mid n$. Since $|A + XC| \equiv |A + X_p C| \pmod{p}$, it then follows that (|A + XC|, n) = 1.

Now let p be a fixed prime, and let $\alpha_1, \dots, \alpha_r$ denote the rows of A, and

 $\gamma_1, \dots, \gamma_s$ those of C. Since the rows of X_pC are linear combinations of those of C, we need only show that there exist linear combinations

$$\beta_i = \sum_{j=1}^s x_{ij} \gamma_j$$
 $(1 \le i \le r, x_{ij} \text{ integers})$

such that $p \nmid \det (\alpha_i + \beta_i)$. Thus, we seek integers x_{ij} for which the vectors $\alpha_i + \beta_i$ $(1 \le i \le r)$ are linearly independent modulo p.

Since M is unimodular, the set $\{\alpha_1, \dots, \alpha_r, \gamma_1, \dots, \gamma_s\}$ contains exactly r linearly independent vectors modulo p. Suppose that r' of the α 's are linearly independent modulo p ($r' \leq r$); for simplicity of notation, suppose that these are $\alpha_1, \dots, \alpha_{r'}$. Then each α_k ($r' < k \leq r$) is a linear combination modulo p of $\alpha_1, \dots, \alpha_{r'}$. Further, there exist r-r' vectors $\gamma_1^*, \dots, \gamma_{r-r'}^*$ among $\gamma_1, \dots, \gamma_s$ such that the set $\{\alpha_1, \dots, \alpha_{r'}, \gamma_1^*, \dots, \gamma_{r-r'}^*\}$ is linearly independent modulo p. Then we need only choose $\beta_1 = \dots = \beta_{r'} = 0$, $\beta_{r'+1} = \gamma_1^*, \dots, \beta_r = \gamma_{r-r'}^*$ to achieve the desired result.

LEMMA 2. Let $M \in G_{r,s}(n)$, and let m be a fixed positive integer. Then there exists an integral $r \times s$ matrix X and an integral $s \times r$ matrix Y such that

$$(10) W(nY)S(X) M \in G_{r,s}(m n),$$

where

$$W(nY) = \begin{bmatrix} I^{(r)} & 0 \\ nY & I^{(s)} \end{bmatrix}, \quad S(X) = \begin{bmatrix} I^{(r)} & X \\ 0 & I^{(s)} \end{bmatrix}.$$

The entries of X and Y are integers determined only modulo m. Therefore the set of products W(nY)S(X), as the entries of X and Y range over all residues modulo m, contains a full set of left coset representatives of $G_{\tau,s}(n)$ modulo $G_{\tau,s}(mn)$. Consequently $G_{\tau,s}(mn)$ is of finite index in $G_{\tau,s}(n)$.

Proof. Set

$$M = \begin{bmatrix} A^{(r)} & B \\ nC & D^{(s)} \end{bmatrix} \in G_{r,s}(n).$$

By Lemma 1, we can determine X modulo m such that (|A+nXC|, m)=1. Set $A_0=A+nXC$. Then

$$S(X)M = \begin{bmatrix} A_0 & * \\ nC & * \end{bmatrix},$$

and

$$W(nY)S(X)M = \begin{bmatrix} * & * \\ n(YA_0 + C) & * \end{bmatrix}.$$

In order for (10) to hold, we need only show that Y modulo m can be determined so that $YA_0+C\equiv 0 \pmod{m}$.

Now $(|A_0|, m) = 1$, so that we may find an integer a with $a|A_0| \equiv 1 \pmod{m}$. Letting A_0^{adj} denote the adjoint of A_0 , we set

(11)
$$Y \equiv -aCA_0^{\operatorname{adj}} \pmod{m}.$$

Using $A_0^{\text{adj}} A_0 = |A_0| I$, we obtain

$$YA_0 \equiv -C \pmod{m}$$
,

as desired.

The remainder of the lemma follows at once from (10).

We now proceed with the proof of Theorem 1. Let H be a group such that

$$G_{r,s}(mn) \subset H \subset G_{r,s}(n)$$
.

Using the argument in [1], we find by induction on the total number of prime factors of m that the conclusion of Theorem 1 is valid unless for every d dividing m, $d \neq 1$, we have

$$H \cap G_{r,s}(dn) = G_{r,s}(mn)$$
.

Suppose now that $H \neq G_{r,s}(mn)$. The above then shows that there exists a matrix

$$M = \begin{bmatrix} A^{(r)} & B \\ nC & D^{(s)} \end{bmatrix} \in H$$

such that $C \not\equiv 0 \pmod{d}$ for any divisor d of m, $d \not\equiv 1$. Choose X, Y as in Lemma 2, and use the fact that $S(X) \subseteq H$. Then we see that $W(nY) \subseteq H$, where Y is chosen by use of (11). Hence also $Y \not\equiv 0 \pmod{d}$ for any divisor d of m, $d \not\equiv 1$.

Call an $s \times r$ matrix T permissible if $W(nT) \in H$. We have shown the existence of a permissible matrix Y such that $Y \not\equiv 0 \pmod{d}$ for any divisor d of m, $d \not\equiv 1$. We shall use this to deduce that every matrix is permissible. Since already $S(X) \in H$ for all X, it will then follow from Lemma 2 that $H = G_{r,s}(n)$, and the theorem will be proved.

Now we have

$$W(nT_1) \cdot W(nT_2) = W(n(T_1 + T_2)),$$

and

$$\begin{bmatrix} V^{-1} & 0 \\ 0 & U \end{bmatrix} W(nT) \begin{bmatrix} V & 0 \\ 0 & U^{-1} \end{bmatrix} = W(nUTV), \ U \in G_{\mathfrak{o}}, \ V \in G_{r}.$$

Therefore if T_1 and T_2 are permissible, so is T_1+T_2 . If T is permissible, then

so is -T; and if $U \in G_s$, $V \in G_r$, then UTV is also permissible.

Starting with the permissible Y above, set $Y_1 = UYV$, with $U \in G_s$, $V \in G_r$. Then Y_1 is also permissible, and with proper choice of U and V, we may take Y_1 in Smith normal form:

$${Y}_1 = \left[egin{array}{ccc} h_1 & & & & \\ & h_2 & & & \\ & & \ddots & & \\ & & & h_\mu \end{array}
ight], \qquad \mu = \, \min \, \left(oldsymbol{r}, \, oldsymbol{s}
ight),$$

where $h_1 | h_2 | \cdots | h_{\mu}$. If $(h_1, m) > 1$, then there is a prime p | m such that $Y_1 \equiv 0 \pmod{p}$. Then also $Y \equiv 0 \pmod{p}$, which is impossible. Hence $(h_1, m) = 1$. Let us choose a so that $ah_1 \equiv 1 \pmod{m}$. Then $Y_2 = aY_1$ is also permissible. Since a permissible matrix remains permissible when multiples of m are added to its entries, we therefore have the permissible matrix

$${Y}_3 = \left[egin{array}{cccc} 1 & & & & & \\ & k_2 & & & & \\ & & \ddots & & & \\ & & & k_u \end{array}
ight].$$

Hence also

and

$$Y_5 = Y_3 - Y_4 = \left[egin{array}{cccc} 1 & k_2 & & & & \\ -1 & k_2 & & & & \\ & & 0 & & & \\ & & & \ddots & & \\ & & & & 0 \end{array}
ight]$$

are permissible. In Y_5 add the second row to the first row, and then subtract the matrix so obtained from Y_5 , obtaining the permissible matrix which has 1 in the (1, 1) place, $-k_2$ in the (1, 2) place, and 0 elsewhere. In this matrix add k_2 times the first column to the second column, thereby obtaining the permissible matrix

$$Y_6 = \begin{bmatrix} 1 & & & \\ & 0 & & \\ & & \ddots & \\ & & & \ddots \end{bmatrix}.$$

Since also UY_6V is permissible for all $U \in G_s$, $V \in G_r$, we find that every matrix whose entries are all zeros except for a single 1, must be permissible. Therefore all matrices are permissible, and Theorem 1 is proved.

3. We now prove Theorem 2. Let H be a group satisfying

$$G_r(m, n) \subset H \subset G_{2r}$$

where $G_r(m, n)$ is defined by (4), and where (m, n) = 1. Choose integers a, b satisfying am - bn = 1, and set

$$K = \begin{bmatrix} amI^{(r)} & I \\ bnI & I^{(r)} \end{bmatrix} \in G_{2r}.$$

Then as in [2] we find that $K^{-1}G_r(m, n)K = G_{r,r}(mn)$, and the remainder of the proof of Theorem 2 follows from Theorem 1 just as in [2].

Theorem 2 is false for (m, n) > 1, as is shown in [2].

4. To prove Theorem 3, we begin with several lemmas.

LEMMA 3. Let n_1, \dots, n_{t-1} be pairwise coprime, and let $M \in G_t$. Then there exists an upper triangular matrix $S \in G_t$ such that for each r $(1 \le r \le t-1)$ we have

(12)
$$M = \begin{bmatrix} A^{(r)} & B \\ C & D^{(t-r)} \end{bmatrix}, \quad S \equiv \begin{bmatrix} I^{(r)} & X_r \\ 0 & I^{(t-r)} \end{bmatrix} \pmod{n_r},$$

and

(13)
$$(|A^{(r)} + X_rC|, n_r) = 1.$$

Proof. Let M be fixed. For each r, write M in the form (12). By Lemma 1, we may then choose X_r such that (13) holds. We then use the Chinese remainder theorem to determine an upper triangular matrix S satisfying

$$S \equiv \begin{bmatrix} I^{(r)} & X_r \\ 0 & I^{(t-r)} \end{bmatrix} \pmod{n_r}, \qquad 1 \leq r \leq t-1.$$

This completes the proof of the lemma.

LEMMA 4. Let S be an integral $t \times t$ matrix such that $|S| \equiv 1 \pmod{n}$. Then there exists a matrix $T \in G_t$ such that $T \equiv S \pmod{n}$.

Proof. (Although this lemma is known, references are hard to come by, and so we insert a proof.)

Set T = S + nY; we need only choose Y so that |S + nY| = 1. Let $U, V \in G_t$ be chosen so that USV = D is diagonal, and set X = UYV. Then

$$|S + nY| = |D + nX|,$$

so it suffices to show that we can find X such that |D+nX|=1, where D is diagonal and $|D|\equiv 1 \pmod{n}$.

Let $D = \text{diag } (d_1, \dots, d_t)$, and set |D| = 1 + nd. Choose X so that

$$D + nX = \begin{bmatrix} d_1 + nx & 0 & 0 & \cdots & 0 & ny \\ n & d_2 & 0 & \cdots & 0 & 0 \\ 0 & n & d_3 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & n & d_t \end{bmatrix}.$$

Then

$$|D + nX| = 1 + n(d + xd_2 \cdot \cdot \cdot d_t \pm n^{t-1}y).$$

Since $(d_2 \cdot \cdot \cdot d_t, n) = 1$, we may choose integers x, y such that

$$d + xd_2 \cdot \cdot \cdot d_t \pm n^{t-1} y = 0,$$

which completes the proof.

LEMMA 5. Let $\mathfrak{m} = (m_1, \dots, m_{t-1}), \, \mathfrak{n} = (n_1, \dots, n_{t-1}), \, \text{where } (m_i, n_i) = 1$ for $1 \leq i \leq t-1, \, (m_i n_i, \, m_j n_j) = 1$ for $1 \leq i, \, j \leq t-1, \, i \neq j, \, \text{and let } M \in G_r(\mathfrak{n}).$ Then there is an upper triangular matrix $S \in G_t$ and a lower triangular matrix $W \in G_t$ such that $WSM \in G_r(\mathfrak{mn})$. The entries of W and S are determined only modulo $m_1 \cdots m_{t-1}$, and hence $G(\mathfrak{mn})$ is of finite index in $G(\mathfrak{n})$.

Proof. This lemma follows readily from Lemma 3 in the same way that Lemma 2 follows from Lemma 1.

We now proceed with the proof of Theorem 3. Let \mathfrak{m} , \mathfrak{n} be chosen as in the above lemma, and let H be a group such that

$$G_t(\mathfrak{mn}) \subset H \subset G_t(\mathfrak{n}).$$

As in the proof of Theorem 1, by using induction on the total number of prime factors of $m_1m_2 \cdots m_{t-1}$, we see that the theorem holds unless for every vector $\mathfrak{a} = (a_1, \cdots, a_{t-1})$ such that $a_1 \mid m_1, \cdots, a_{t-1} \mid m_{t-1}$, except

$$a = (1, \cdots, 1),$$

we have

(14)
$$H \cap G_t(\mathfrak{an}) = G_t(\mathfrak{nm}).$$

Suppose that $H \neq G_t(\mathfrak{mn})$; then H must contain an element M such that for each r $(1 \leq r \leq t-1)$ we have

$$M = \begin{bmatrix} A^{(r)} & B \\ n_r C & D^{(t-r)} \end{bmatrix}$$

with $C \not\equiv 0 \pmod{a_r}$ for each divisor a_r of m_r , $a_r \not\equiv 1$.

Now choose an upper triangular matrix S and a lower triangular matrix W as in Lemma 5, such that $WSM \in G_r(\mathfrak{nn}) \subset H$. Since also $S \in H$, this shows that $W \in H$. Further, for each r we have

(15)
$$W \equiv \begin{bmatrix} I^{(r)} & 0 \\ n_r Y_r & I^{(t-r)} \end{bmatrix} \pmod{m_r},$$

where $Y_r \not\equiv 0 \pmod{a_r}$ for any a_r dividing m_r , $a_r \not\equiv 1$.

Call a lower triangular matrix in G_t permissible if it is an element of H. The above-constructed W is permissible. If we can show that all lower triangular matrices in $G_t(\mathfrak{n})$ are permissible, then using Lemma 5 we will deduce that $H = G_t(\mathfrak{n})$, and Theorem 3 will be established.

Define the non-negative integer k by $m_1 = \cdots = m_{k-1} = 1$, $m_k > 1$. (If $m_1 > 1$, then choose k = 1.) We shall show that also $m_{k+1} = \cdots = m_{t-1} = 1$. For let $m_0 = m_{k+1} \cdots m_{t-1}$; then $(m_0, m_k) = 1$.

Now we remark that the matrix Y_r was determined only modulo m_r , and hence since $(m_r, n_r) = 1$, we could have chosen the permissible matrix W so that instead of (15) we have (for each r)

(16)
$$W \equiv \begin{bmatrix} I^{(r)} & 0 \\ n_r V_r & I^{(t-r)} \end{bmatrix} \pmod{m_r n_r}.$$

Then $W \in H$, so also $W^{m_0} \in H$. Now for each r $(1 \le r \le t - 1)$ we have

$$W^{m_0} \equiv \begin{bmatrix} I^{(r)} & 0 \\ n_r m_0 Y_r & I^{(t-r)} \end{bmatrix} \pmod{m_r n_r},$$

whence

$$W^{m_0} \in G_t(n_1, \dots, n_k, m_{k+1}, n_{k+1}, \dots, m_{t-1}, n_{t-1}).$$

Unless $(1, \dots, 1, m_{k+1}, \dots, m_{t-1}) = (1, \dots, 1)$, we deduce from (15) that $W^{m_0} \in G_t(\mathfrak{mn})$, which is impossible because $W^{m_0} \notin G_{k-1,t-k+1}(m_k n_k)$. We thus have shown that $\mathfrak{m} = (1, \dots, 1, m_k, 1, \dots, 1)$.

We are now supposing that

$$G_t(\mathfrak{mn}) \subset H \subset G_t(\mathfrak{n}),$$

where $\mathfrak{m} = (1, \dots, 1, m_k, 1, \dots, 1), m_k > 1$, that (14) holds, and that $H \neq G_t(\mathfrak{m}\mathfrak{n})$. We have shown the existence of a lower triangular matrix $W \in H$ such that (16) holds, with $Y_k \not\equiv 0 \pmod{a_k}$ for any a_k dividing m_k , $a_k \not\equiv 1$. We are trying to prove that every lower triangular matrix in $G_t(\mathfrak{n})$ is permissible (that is, lies in H), and consequently that $H = G_t(\mathfrak{n})$.

Let $U \in G_k$, $V \in G_{t-k}$ be arbitrary. By Lemma 4, there exists a matrix $R \in G_t$ such that

$$R \equiv I \pmod{n_r},$$
 $1 \le r \le t-1, r \ne k,$ $R \equiv \begin{bmatrix} U & 0 \\ 0 & V \end{bmatrix} \pmod{m_k n_k}.$

Then $R \in G_t(\mathfrak{mn}) \subset H$, and hence also $W_1 = RWR^{-1} \in H$. But we have

$$W_1 \equiv \begin{bmatrix} I^{(k)} & 0 \\ n_k V Y_k U^{-1} & I^{(t-k)} \end{bmatrix} \pmod{m_k n_k},$$

and

$$W_1 \equiv \begin{bmatrix} I^{(r)} & 0 \\ n_r Y_r & I^{(t-r)} \end{bmatrix} \pmod{n_r}$$

for $1 \le r \le t-1$, $r \ne k$. The same reasoning as in the proof of Theorem 1 then shows that all lower triangular matrices in $G_t(\mathfrak{n})$ lie in H, whence $H = G_t(\mathfrak{n})$ and Theorem 3 is proved.

5. We conclude with an examination of the symplectic modular group Γ_t of order t (see [4]). Let

$$\Gamma_{t}(m, n) = \left\{ \begin{bmatrix} A^{(t)} & B \\ C & D^{(t)} \end{bmatrix} \in \Gamma_{t} : \begin{array}{c} B \equiv 0 \pmod{m}, \\ C \equiv 0 \pmod{n} \end{array} \right\},$$

and set $\Gamma_t(n) = \Gamma_t(1, n)$. We shall prove analogues of Theorems 1 and 2. We begin with

LEMMA 6. Let n be a fixed positive integer, and let

$$M = \begin{bmatrix} A^{(t)} & B \\ C & D^{(t)} \end{bmatrix} \in \Gamma_{t}.$$

Then there exists a symmetric $t \times t$ matrix X such that (|A + XC|, n) = 1.

Proof. As in the proof of Lemma 1, it suffices to show for each prime p that there exists a symmetric matrix X_p for which $p \nmid |A + X_p C|$. For U, $V \in G_t$ we have

$$\begin{bmatrix} U & 0 \\ 0 & U'^{-1} \end{bmatrix} M \begin{bmatrix} V & 0 \\ 0 & V'^{-1} \end{bmatrix} = \begin{bmatrix} A_1^{(t)} & B_1 \\ C_1 & D_1^{(t)} \end{bmatrix} \in \Gamma_t,$$

with $A_1 = UAV$, $C_1 = U'^{-1}CV$. Set $Y_p = UX_pU'$; then

$$A_1 + Y_p C_1 = U(A + X_p C)V.$$

Hence we need only find a symmetric matrix Y_p such that $p \nmid |A_1 + Y_p C_1|$.

By proper choice of U, $V \in G_t$, we may assume that A_1 is diagonal. Let

$$A_1 \equiv \begin{bmatrix} E^{(k)} & 0 \\ 0 & 0 \end{bmatrix} \pmod{p},$$

where E is diagonal and nonsingular modulo p. (The case where $A \equiv 0 \pmod{p}$ is easily disposed of separately.) Setting

$$C_1 = \begin{bmatrix} C_{11}^{(k)} & C_{12} \\ C_{21} & C_{22}^{(\iota-k)} \end{bmatrix},$$

the symmetry of $A_1'C_1$ shows that $C_{12} \equiv 0 \pmod{p}$. Hence

$$\begin{bmatrix} A_1 \\ C_1 \end{bmatrix} \equiv \begin{bmatrix} E & 0 \\ 0 & 0 \\ C_{11} & 0 \\ C_{21} & C_{22} \end{bmatrix} \pmod{p},$$

whence $p \nmid |C_{22}|$. Then set

$$Y_p = \begin{bmatrix} 0 & 0 \\ 0 & I^{(t-k)} \end{bmatrix},$$

and obtain

$$A_1 + Y_p C_1 \equiv \begin{bmatrix} E & 0 \\ C_{21} & C_{22} \end{bmatrix} \pmod{p};$$

which shows that $p \nmid |A_1 + Y_p C_1|$. This completes the proof of the lemma.

Lemma 7. Let $M \in \Gamma_t(n)$, and let m be a fixed positive integer. Then there exist symmetric integral $t \times t$ matrices X, Y, whose entries are determined only modulo m, such that

$$W(nY)S(X)M \in \Gamma_t(mn),$$

where

$$W(nY) = \begin{bmatrix} I^{(t)} & 0 \\ nY & I^{(t)} \end{bmatrix}, \quad S(X) = \begin{bmatrix} I^{(t)} & X \\ 0 & I^{(t)} \end{bmatrix}.$$

Proof. The proof follows that of Lemma 2. The only additional fact needed is that the matrix Y determined by Equation (11) can be chosen to be symmetric, since the symmetry of $A_0 C$ implies that of CA_0^{adj} .

We now have

THEOREM 4. Let m, n be positive integers, and let H be a group such that

$$\Gamma_t(mn) \subset H \subset \Gamma_t(n)$$
.

Then there exists a divisor d of m such that $H = \Gamma_t(dn)$.

Proof. This theorem follows from Lemmas 6 and 7 in the same manner that Theorem 1 follows from Lemmas 1 and 2. We omit the details.

THEOREM 5. Let m, n be positive coprime integers, and let H be a group satisfying

$$\Gamma_t(m, n) \subset H \subset \Gamma_t$$
.

Then there exist integers m_1 , n_1 with $m_1 \mid m$, $n_1 \mid n$, and $H = \Gamma_t(m_1, n_1)$.

Proof. The proof of Theorem 2 carries over to this case with minor modifications. We omit the details.

REFERENCES

- 1. Morris Newman, Structure theorems for modular subgroups, Duke Math. J. vol. 22 (1955) pp. 25-32.
- 2. ——, An inclusion theorem for modular groups, Proc. Amer. Math. Soc. vol. 8 (1957) pp. 125-127.
- 3. Irving Reiner and J. D. Swift, Congruence subgroups of matrix groups, Pacific J. Math. vol. 6 (1956) pp. 529-540.
- 4. L. K. Hua and Irving Reiner, On the generators of the symplectic modular group, Trans. Amer. Math. Soc. vol. 65 (1949) pp. 415-426.

NATIONAL BUREAU OF STANDARDS, WASHINGTON, D. C. UNIVERSITY OF ILLINOIS, URBANA, ILL.