NOTE ON A THEOREM OF GROSSWALD

BY

JOSEPH A. CIMA

In E. Grosswald's paper On some algebraic properties of the Bessel polynomials, appearing in the Transactions [1], he has proven the following theorem:

THEOREM. For even n, the Bessel Polynomial $Y_n(X)$ has no real zero.

Grosswald proves this theorem by establishing four lemmas. However, his proof of Lemma 4 is incorrect in that (13) does not follow from (12). Further, Equation (11) is not true for n=2 and u=3/4 (the numbers (11), (12) and (13) refer to Grosswald's paper [1]). However, the theorem is true and we submit the following proof.

In the proof we utilize the following recurrence relations [2]:

$$(1) Y_{n+1} = (2n+1)XY_n + Y_{n-1},$$

$$(2) X(Y_n' + Y_{n-1}') = n(Y_n - Y_{n-1}),$$

$$(nx+1)Y'_n + Y'_{n-1} = n^2Y_n.$$

All coefficients of the Bessel Polynomials are positive so that:

$$Y_{2n}(X) > 0$$
 for $X \ge 0$.

Grosswald's Lemma 3 shows that for $X \le -1$, $Y_{2n}(X) > 0$. We prove by induction:

$$Y_{2n}(X) > 0$$
 for $-1 < X < 0$.

For n=1, $Y_{2n}(X)=Y_2(X)=1+3X+3X^2>0$. Assume $Y_{2i}(X)>0$ and consider the three classes of X in (-1,0):

(I)
$$Y_{2i+1}(X) = 0$$
, (II) $Y_{2i+1}(X) < 0$, (III) $Y_{2i+1}(X) > 0$.

If $X \in \text{Class I}$ the recurrence relation (1) yields

$$Y_{2i+2}(X) = (4i+3)XY_{2i+1}(X) + Y_{2i}(X)$$

= $Y_{2i}(X) > 0$.

If $X \in \text{Class II}$,

$$XY_{2i+1}(X) > 0$$
,

and (1) again implies $Y_{2i+2}(X) > 0$.

Received by the editors July 6, 1960.

In considering Class III, we note that all zeros of the Bessel Polynomials are simple. See [1, p. 199].

If $X \in \text{Class III}$, assume $Y_{2i+2}(X) < 0$. Since $Y_{2i+2}(0) > 0$, $Y_{2i+2}(-1) > 0$ a minimum of Y_{2i+2} exists, i.e.,

$$Y_{2i+2}(\omega) < 0,$$

$$Y_{2i+2}'(\omega) = 0.$$

By the previous results $\omega \in \text{Class III.}$ We write (3) as

$$(2iX + 2X + 1)Y'_{2i+2} + Y'_{2i+1} = (2i + 2)^{2}Y_{2i+2}.$$

From the recurrence relation above $Y'_{2t+1}(\omega) < 0$. Now consider the recurrence relation (2) written as

$$X(Y'_{2i+2} + Y'_{2i+1}) = (2i + 2)(Y_{2i+2} - Y_{2i+1}).$$

Evaluating the left side of the above relation at the point ω we see it is positive. Evaluating the right-hand side at ω we find it is negative. From this absurdity we arrive at a contradiction, so that there is no point of Class III such that $Y_{2i+2} < 0$. This completes the proof.

For a different proof of the above theorem we refer the reader to Burch-nall [3].

REFERENCES

- 1. E. Grosswald, On some algebraic properties of the Bessel polynomials, Trans. Amer. Math-Soc. vol. 71 (1951) pp. 197-210.
- 2. H. L. Krall and O. Frink, A new class of orthogonal polynomials: The Bessel polynomials, Trans. Amer. Math. Soc. vol. 65 (1949) pp. 100-115.
 - 3. J. L. Burchnall, The Bessel polynomials, Canad. J. Math. vol. 3 (1951) pp. 62-68.

Pennsylvania State University, University Park, Pennsylvania