CONCENTRIC SOLID TORI IN THE 3-SPHERE

BY

C. H. EDWARDS, JR.(1)

1. Introduction. A torus is the topological product of two circles, while a solid torus is the topological product of a circle and a disk. Two solid tori B and B^* , with $B \subset I$ nt B^* , are said to be concentric if and only if $Cl(B^*-B)$ is the topological product of a torus and an interval, while two disjoint tori T and T^* in a 3-manifold M are said to be concentric in M if and only if their union is the boundary in M of the product of a torus and an interval. Notice that, for T and T^* to be concentric, it suffices for T and T^* to be the boundaries of two concentric solid tori B and B^* respectively in M.

In Theorem 3 the relationship of concentricity for polyhedral solid tori in the 3-sphere S^3 is characterized by using some results of Schubert [10] to sharpen the concentric toral theorem of Harrold, Griffith, and Posey [9]. Theorem 3 is used to prove that, if A, B, and C are tame solid tori in S^3 with $A \subset Int B$ and $B \subset Int C$, then A and C are concentric if and only if B is concentric with both A and C (Theorem 5). This result implies that, if $\{B_n\}_1^n$ is a sequence of tame solid tori in S^3 such that $B_{n+1} \subset Int B_n$ for $n \ge 1$, with $\bigcap_{n=1}^{\infty} B_n$ being a tame solid torus B, then there is an integer N such that B_i and B_j are concentric if $i > j \ge N$. It is shown that the same conclusion follows if B is a tame simple closed curve instead of a tame solid torus, but not if B is a wild simple closed curve. Theorem 5 is used in §5 to prove that a closed 3-manifold can not contain an uncountable collection of mutually disjoint tori, no two of which are concentric (Theorem 13).

This paper formed part of a dissertation [6] written at the University of Tennessee under the direction of O. G. Harrold, and some of its results are summarized in [7].

2. Pairs of concentric solid tori. The first step towards the determination of a set of conditions, under which two polyhedral solid tori will be concentric, is provided by the following modification of the concentric toral theorem of Harrold, Griffith, and Posey [9].

THEOREM 1. Suppose that B_1 and B_2 are polyhedral solid tori in S^3 with boundaries T_1 and T_2 respectively such that

(a) $B_2 \subset Int B_1$.

Presented to the Society, August 30, 1960 under the title S³ does not contain uncountably many mutually disjoint tori, no two of which are concentric; received by the editors April 2, 1961.

⁽¹⁾ This research was supported in part through the National Science Foundation, Grant 2793.

- (b) There is a polyhedral annular ring G in $Cl(B_1-B_2)$ such that $G \cap T_i$ is a simple closed curve s_i for i=1, 2.
- (c) There is a pair of disjoint polyhedral disks D^a and D^b such that $D^a_i = D^a \cap B_i$ and $D^b_i = D^b \cap B_i$ are disks with boundaries r^a_i and r^b_i respectively. Furthermore the 1-cycles r^a_i , r^b_i , s_i satisfy the homology relations $r^a_i \sim s_i$, $r^b_i \sim s_i$ on T_i , and none is nullhomologous on T_i , i = 1, 2. Finally s_i meets r^a_i and r^b_i each in a single point, i = 1, 2.
- (d) $D_1^a \cap G$ and $D_1^b \cap G$ are arcs spanning the boundary of G (each has exactly one endpoint on each of the two components of Bd G).

Then B_1 and B_2 are concentric.

The statement of Theorem 1 differs from the statement of the concentric toral theorem only in that Harrold, Griffith, and Posey assumed G to be a disk rather than an annular ring. Since, however, this disk was used merely to obtain an annular ring with the properties described above, their proof applies here without essential alterations.

By a meridian curve of the polyhedral solid torus B is meant a polygonal simple closed polygon on Bd B which bounds in B but not in Bd B. A polyhedral disk D, such that Int $D \subset \text{Int } B$ and such that Bd D is a meridian curve of B, is called a meridianal disk of B. By a longitude curve of B is meant a simple closed polygon on Bd B which is non-nullhomologous in B and which crosses some meridian of B at exactly one point, while a latitude curve of B is a simple closed polygon on Bd B which is non-nullhomologous in B but nullhomologous in B but nullhomologous in B but nullhomologous on Bd B, as are any two latitude curves [10, p. 161], while no meridian curve is homologous on Bd B to a longitude curve.

Using this terminology, the statement of Theorem 1 can be simplified as follows.

THEOREM 2. Suppose that B_1 and B_2 are two polyhedral solid tori in S^3 with boundaries T_1 and T_2 respectively and with $B_2 \subset Int B_1$. If there exist two polyhedral annular rings R_1 and R_2 in $Cl(B_1-B_2)$, with R_1 bounded by two longitude curves on T_1 and T_2 respectively, with R_2 bounded by two meridian curves on T_1 and T_2 respectively, and with $R_1 \cap R_2$ being an arc spanning $Bd R_1$, then B_1 and B_2 are concentric.

Proof. Define $s_i = R_1 \cap T_i$ and $r_i^a = R_2 \cap T_i$ for i = 1, 2. By hypothesis r_2^a is a meridian of B_2 and hence bounds a meridianal disk D_2^a of B_2 . Then $D_2^a = R_2 \cup D_2^a$ is a meridianal disk of B_1 whose intersection with B_2 is a meridianal disk of B_2 . It follows from the hypotheses that $s_i \sim 0$, $r_i^a \sim 0$, $s_i \sim r_i^a$ on T_i for i = 1, 2.

If D^b is a meridianal disk of B_1 sufficiently close to D^a but disjoint with D^a , then $D_2^b = D^b \cap B_2$ is a meridianal disk of B_2 , and $D^b \cap T_i = r_i^b$ is a simple closed curve not nullhomologous on T_i and not homologous to s_i on T_i , and inter-

secting s_i in a single point for i=1, 2. Then $D^b \cap R_1$ will be an arc spanning Bd R_1 , just as does $D^a \cap R_1$.

Theorem 1 now applies directly to imply that B_1 and B_2 are concentric. If K is a polyhedral 3-cell in S^3 , then a chord of K is an oriented polygonal arc u whose endpoints lie on Bd K but which is otherwise contained in the interior of K. If the endpoints of u are joined by a polygonal arc on Bd K, then the knot generated in K by the chord u is defined to be the knot in S^3 (equivalence class of oriented simple closed polygons under orientation-preserving semilinear autohomeomorphisms of S^3) represented by the polygon $u \cup w$, oriented coherently with u. It can be seen that the knot type of $u \cup w$ is independent of the choice of $w \subset Bd$ K [10, p. 155]. If $u \cup w$ is an unknotted simple closed polygon (bounds a disk in S^3), then u is called an u knotted chord of K.

Suppose now that B is a polyhedral solid torus in S^3 . Let B be separated by two disjoint meridianal disks D_1 and D_2 into two 3-cells K_1 and K_2 . Choose two points $x \in Int D_1$ and $y \in Int D_2$. Let a_1 and a_2 be unknotted chords of K_1 and K_2 respectively joining the points x and y, a_1 directed from x to y and a_2 from y to x. The oriented simple closed curve $a_1 \cup a_2$ is called an *oriented center line* of the solid torus B. If the orientation of $a = a_1 \cup a_2$ is disregarded, then a is called simply a *center line* of B. It is easily seen that any two center lines a and a' of B are equivalent in the sense that there exists a semilinear mapping of S^3 onto itself, the identity on $S^3 - B$, carrying a onto a' [10, a, a].

If B is a polyhedral solid torus and k is a simple closed polygon interior to B, the order of B with respect to k is defined to be the minimal number of points of intersection of a meridianal disk of B with the curve k (for all meridianal disks of B), and is denoted by O(B, k). If B and B^* are polyhedral solid tori with $B \subset Int B^*$, the order of B^* with respect to B, denoted by $O(B^*, B)$, is defined to be the order of B^* with respect to a center line of B. This definition of $O(B^*, B)$ is independent of the choice of center line of B [10, p. 172]. The two polyhedral solid tori B and B^* are said to be equivalently knotted if and only if any two center lines c of B and c^* of B^* can be so oriented as to represent the same knot in S^3 .

Now suppose that \bar{k}_1 and \bar{k}_2 are two arbitrary knots in S^3 . Let S be a polyhedral 2-sphere in S^3 , with K_1 and K_2 the closures of its complementary domains. Let u_1 and u_2 be oriented chords of K_1 and K_2 respectively, with common endpoints p and q, u_1 directed from p to q and u_2 from q to p, such that u_i generates the knot \bar{k}_i in K_i , i=1, 2. The knot represented by the oriented polygon $u_1 \cup u_2$ is then defined to be the product $\bar{k}_1\bar{k}_2$ of the knots \bar{k}_1 and \bar{k}_2 . This product of knots is associative and commutative, and the knot represented by a plane triangle plays the role of an identity [10, p. 156].

A characterization of the relation of concentricity for polyhedral solid tori in S^3 will now be given.

THEOREM 3. Let B and B^* be two polyhedral solid tori in S^a with $B \subset Int B^*$. Then B and B^* are concentric if and only if they are equivalently knotted with $O(B^*, B) = 1$.

Proof of sufficiency. The construction here employed is very similar to that used by Schubert in proving that, if B and B^* are equivalently knotted with $O(B^*, B) = 1$, then there is a semilinear homeomorphism of S^3 onto itself carrying B^* onto B and leaving fixed points outside an arbitrary neighborhood of $Cl(B^*-B)$ [10, p. 178].

Let $T = \operatorname{Bd} B$ and $T^* = \operatorname{Bd} B^*$. Since B^* is of order 1 with respect to B, there is a meridianal disk D^* of B^* which intersects B in a meridianal disk D [10, p. 174]. Let E^* be a second meridianal disk of B^* disjoint with D^* but sufficiently near D^* that E^* intersects B in a meridianal disk E. Then D^* and E^* will separate B^* into two 3-cells C_1^* and C_2^* , with C_i^* bounded by the union of the two disks D^* and E^* with an annular ring $G_i \subset T^*$ for i=1, 2. Similarly D and E will separate E into two 3-cells $E_1 \subset E_1^*$ and $E_2 \subset E_2^*$, with E_1^* bounded by the union of the two disks E and E with an annular ring $E_1 \subset E_1^*$ for E_1^* and E_2^* and E_3^* such E_1^* and E_3^* such an annular ring E_1^* for E_1^* and E_2^* such an annular ring E_1^* for E_1^* and E_2^* such an annular ring E_3^* for E_3^* for

Now let a be an oriented center line of the solid torus B, with $a=a_1 \cup a_2$, where a_1 and a_2 are unknotted chords of the 3-cells C_1 and C_2 respectively. Since $O(B^*, B) = 1$ by hypothesis, it follows from a theorem of Schubert [10, p. 171] that either a is an oriented center line of B^* or a is the product of a knot, different from the identity, with the knot represented by an appropriately oriented center line of B^* . Because a is a center line of B, it represents the same knot as any center line of B^* , since B and B^* are by hypothesis equivalently knotted. It therefore follows that a must be a center line of B^* [10, p. 156]. Therefore a_1 and a_2 are unknotted chords of C_1^* and C_2^* respectively [10, p. 161].

It follows finally that $U_1 = \operatorname{Cl}(C_1^* - C_1)$ and $U_2 = \operatorname{Cl}(C_2^* - C_2)$ are unknotted solid tori on each of which $d = \operatorname{Bd} D$ and $e = \operatorname{Bd} E$ are latitude curves [11, p. 161]. Then $d^* = \operatorname{Bd} D^*$ and $e^* = \operatorname{Bd} E^*$ are also latitude curves on U_1 and U_2 because d and d^* bound the annular ring $R = \operatorname{Cl}(D^* - D)$ on $\operatorname{Bd} U_1 \cap \operatorname{Bd} U_2$, while e and e^* bound the annular ring $S = \operatorname{Cl}(E^* - E)$ on $\operatorname{Bd} U_1 \cap \operatorname{Bd} U_2$.

Now let m_1 be a meridian curve of U_1 which intersects each of the curves d, d^* , e, e^* in exactly one point, and let M_1 be a meridianal disk of U_1 bounded by m_1 . Let m_2 be a meridian curve of U_2 which intersects each of the latitude curves d, d^* , e, e^* in exactly one point and such that $m_1 \cap R = m_2 \cap R$ and $m_1 \cap S = m_2 \cap S$. That such a meridian of U_2 can be found follows from the elementary observation that, if the boundary T of a solid torus U is separated into two annular rings A_1 and A_2 by two latitude curves n_1 and n_2 , and if a is an arc in A_1 with one endpoint on n_1 and the other on n_2 , then there is an arc b in A_2 joining the endpoints of a in such a way that $a \cup b$ is a meridian curve of U (this is evident from an examination of the fundamental polygon of a torus). Then let M_2 be a meridianal disk of U_2 bounded by m_2 .

Finally define $R_1 = Cl(D^* - D)$ and $R_2 = M_1 \cup M_2$. It is clear that R_1 is an annular ring with boundary components d and d^* which are meridian curves of B and B^* respectively. If $l = (m_1 \cap T) \cup (m_2 \cap T)$ and $l^* = (m_1 \cap T^*) \cup (m_2 \cap T^*)$, then clearly l and l^* are longitude curves on T and T^* respectively (since $m_1 \cap d = m_2 \cap d$ and $m_1 \cap d^* = m_2 \cap d^*$ are single points) which together form the boundary of R_2 . Since also R_2 is the union of the two disks M_1 and M_2 intersecting in a pair of arcs common to their boundaries, it follows that R_2 is an annular ring.

Since the annular rings R_1 and R_2 are both contained in $U_1 \cup U_2 = Cl(B^*-B)$, and since $R_1 \cap R_2$ is the arc $M_1 \cap R = M_2 \cap R$ spanning the boundaries of R_1 and R_2 , it follows from Theorem 2 that B^* and B are concentric.

Proof of necessity. Suppose now that B and B^* are concentric. Then $Cl(B^*-B)$ can be regarded as the topological product of T and the closed unit interval [0, 1] with $T \times \{0\} = T$ and $T \times \{1\} = T^*$. Since B and B^* are polyhedral, it may be assumed that if $K \subset T$ is polyhedral, then $K \times [0, 1]$ is polyhedral.

Let m_1 and m_2 be two meridian curves on T bounding disjoint meridianal disks D_1 and D_2 respectively of B. Define R_i to be the annular ring $m_i \times [0, 1]$ for i=1, 2. Then $D_1^* = D_1 \cup R_1$ and $D_2^* = D_2 \cup R_2$ are disks whose interiors are contained in Int B^* and whose boundaries are the simple closed curves $m_1^* = m_1 \times \{1\}$ and $m_2^* = m_2 \times \{1\}$ respectively on T^* . Since the projection mapping $p \times \{0\} \rightarrow p \times \{1\}$, being a homeomorphism carrying the torus T onto the torus T^* , carries non-nullhomologous curves on T onto non-nullhomologous curves on T^* , it follows that m_1^* and m_2^* are not nullhomologous on T^* . Consequently D_1^* and D_2^* are disjoint meridianal disks of B^* intersecting B in the meridianal disks D_1 and D_2 respectively.

Hence D_1 and D_2 separate B into two closed 3-cells K_1 and K_2 respectively, while D_1^* and D_2^* separate B^* into two closed 3-cells K_1^* and K_2^* respectively. Let the subscripts be chosen in such a manner that $K_1 \subset K_1^*$ and $K_2 \subset K_2^*$.

Now let u be a center line of B which intersects the 3-cells K_1 and K_2 in the unknotted chords u_1 and u_2 respectively. Then u_1 and u_2 are chords of K_1^* and K_2^* respectively, and to show that u is also a center line of B^* , it suffices to show that u_1 and u_2 are unknotted in K_1^* and K_2^* respectively.

But since $Cl(K_i^*-K_i)$ is the solid torus $G_i \times [0, 1]$, where G_1 and G_2 are the two annular rings into which m_1 and m_2 separate T, it follows [10, p. 167] that u_i generates the same knot in K_i and K_i^* for i=1, 2. Thus u_1 and u_2 are unknotted chords of K_1^* and K_2^* respectively, so that u is a center line of B^* . But the fact that B and B^* share the common center line u implies immediately that B and B^* are equivalently knotted with $O(B^*, B) = 1$. This completes the proof of Theorem 3.

LEMMA 1. Suppose that B and B* are polyhedral solid tori in S³ with $B \subset \text{Int } B^*$. Then $O(B^*, B) = 1$ if and only if there is a polyhedral annular ring

R in $Cl(B^*-B)$ bounded by two meridian curves m and m^* on B and B^* respectively.

Proof. Suppose that $O(B^*, B) = 1$. Then there is a meridianal disk D^* of B^* such that $D = D^* \cap B$ is a meridianal disk of B. Thus $R = \operatorname{Cl}(D^* - D)$ is an annular ring in $\operatorname{Cl}(B^* - B)$ bounded by two meridian curves on B and B^* respectively.

To prove the converse, assume the existence of the annular ring R. Let k be a center line of B, and let D be a meridianal disk of B which intersects k in a single point and whose boundary is m. Then, since the meridianal disk $D^* = D \cup R$ of B^* intersects the center line k of B in a single point, it follows that $O(B^*, B)$ is either 0 or 1. If $O(B^*, B) = 0$, then the algebraic intersection number of D^* with k (to obtain the algebraic intersection number of a polyhedral disk with a polygonal line in general position, associate with each of the points of intersection the number +1 or -1 according to the sense of piercing, and compute the sum of the numbers thus defined) must be 0 [10, p. 170], so that D^* must intersect k in an even number of points. This contradiction proves that $O(B^*, B) = 1$.

LEMMA 2. Suppose that B and B^* are polyhedral solid tori in S^* with $B \subset Int B^*$. If there is a polyhedral annular ring R in $Cl(B^*-B)$ bounded by two longitude curves on B and B^* respectively, then B and B^* are equivalently knotted.

Proof. This follows immediately from the fact that the two boundary curves of an annular ring in S^3 are equivalent and the fact that a center line and a longitude curve of a polyhedral solid torus are equivalent.

THEOREM 4. Let B and B^* be two polyhedral solid tori in S^3 with $B \subset Int B^*$. Consider the following conditions:

- (a) $O(B^*, B) = 1$.
- (b) There is a polyhedral annular ring R in $Cl(B^*-B)$ bounded by two meridian curves on B and B^* respectively.
 - (c) B and B* are equivalently knotted.
- (d) There is a polyhedral annular ring R in $Cl(B^*-B)$ bounded by two longitude curves on B and B^* respectively.

If either of the first two conditions holds simultaneously with either of the last two conditions, then B and B^* are concentric.

Proof. By Lemma 1, (b) implies (a). By Lemma 2, (d) implies (c). But, by Theorem 3, (a) and (c) suffice to imply that B and B^* are concentric-

COROLLARY 1. Suppose that B and B^* are unknotted polyhedral solid tori in S^3 with $B \subset Int B^*$. If there is a polyhedral annular ring R in $Cl(B^*-B)$

bounded by two meridian curves on B and B^* respectively, then B and B^* are concentric.

Proof. Lemma 1 implies that $O(B^*, B) = 1$. But B and B^* are equivalently knotted, both being unknotted. Theorem 3 then shows that B and B^* are concentric.

COROLLARY 2. Suppose that B and B^* are knotted polyhedral solid tori in S^3 , B interior to B^* , which are equivalently knotted. If there is a polyhedral annular ring R in $Cl(B^*-B)$ whose boundary components m and m^* are unknotted non-nullhomologous simple closed curves on Bd B and Bd B^* respectively, then B and B^* are concentric.

Proof. Since an unknotted simple closed curve on the boundary of a knotted solid torus is either nullhomologous or is a meridian curve [10, p. 164], it follows that m is a meridian curve of B, and m^* is a meridian curve of B^* . Lemma 1 then applies to show that $O(B^*, B) = 1$. Since B and B^* are equivalently knotted by hypothesis, Theorem 3 implies that B and B^* are concentric.

3. Sequences of concentric solid tori. The following theorem is one of the principal tools to be used in studying infinite collections of solid tori.

THEOREM 5. Suppose that A, B, and C are tame solid tori in S^3 with $A \subset Int B$ and $B \subset Int C$. Then A and C are concentric if and only if B is concentric with both A and C.

Proof. A compact subset of S^3 is said to be *tame* if it can be carried onto a polyhedral set by a homeomorphism of S^3 onto itself. Since there is therefore a homeomorphism of S^3 onto itself carrying A, B, and C onto polyhedral solid tori, it may be assumed without loss that A, B, and C are themselves polyhedral.

Suppose first that A and C are concentric. It then follows from Theorem 3 that A and C are equivalently knotted with O(C, A) = 1. Schubert has shown that, if k is a simple closed polygon interior to the polyhedral solid torus B_1 , with B_1 interior to the polyhedral solid torus B_2 , then $O(B_2, k) = O(B_2, B_1) \cdot O(B_1, k)$ [10, p. 175]. Therefore $O(C, B) \cdot O(B, A) = O(C, A) = 1$, so that O(C, B) = O(B, A) = 1, since the order of one solid torus with respect to another is a non-negative integer.

It remains to be proved that A, B, and C are equivalently knotted. Since it was shown in the second part of the proof of Theorem 3 that any two concentric polyhedral solid tori have a common center line, let a be an oriented polygon interior to A which is an oriented center line of both A and C. Let b be a center line of B, oriented positively with respect to a, that is, so that a is homologous in B to a positive multiple of b, the generator of the 1-dimensional homology group of B. Since O(B, a) = 1, it follows that $a \sim b$ in B

[10, p. 171], and hence also that $a \sim b$ in C. Now Schubert has shown that, if D is a polyhedral solid torus in S^3 with oriented center line d and if k is an oriented polygon interior to D with O(D, k) = 1 and $d \sim k$ in D, then there is a knot \bar{z} such that $\bar{k} = \bar{d}\bar{z}$, where \bar{k} and \bar{d} are the knots represented by k and d respectively [10, p. 171]. Denoting by \bar{a} and \bar{b} the knots in S^3 represented by a and b respectively, it follows that there is a knot \bar{x} such that $\bar{a} = \bar{b}\bar{x}$, because $a \subset \text{Int } B$ with O(B, a) = 1. Since $b \subset \text{Int } C$ with O(C, b) = 1, it follows that there is a knot \bar{y} such that $\bar{b} = \bar{a}\bar{y}$. Substitution then gives $\bar{b} = \bar{b}\bar{x}\bar{y}$. But Schubert has also shown that the genus of a product knot is equal to the sum of the genera of its factors, and that the identity knot is the only knot whose genus is zero [11]. Thus the genus of each of \bar{x} and \bar{y} is zero, so that each of \bar{x} and \bar{y} is the identity knot.

Consequently $\bar{a} = \bar{b}$, so that the polyhedral solid tori A, B, and C are equivalently knotted. It now follows from Theorem 3 that B is concentric with both A and C.

To prove the converse, suppose that B is concentric with both A and C. Then, by Theorem 3, A and C are equivalently knotted with $O(C, A) = O(C, B) \cdot O(B, A) = 1$, so that A and C are concentric.

LEMMA 3. If B is a polyhedral solid torus in S^3 , then there exist two polyhedral solid tori B_1 and B_2 , each concentric with B, such that $B_1 \subset \text{Int } B$ and $B \subset \text{Int } B_2$.

Proof. Let b be a center line of the solid torus B, and let k be a polygonal closed curve in S^3 equivalent to b. Since, given any curve k, there is in each neighborhood of k a polyhedral solid torus having k as a center line [10, p. 177], choose a polyhedral solid torus C_2 with k as center line. Then let C be a polyhedral solid torus contained in Int C_2 with k as a center line, and let C_1 be a polyhedral solid torus contained in Int C with k as center line.

Since B and C are polyhedral solid tori having equivalent center lines b and k respectively, there is a semilinear homeomorphism f of S^3 onto itself which maps C onto B and k onto b [10, p. 180]. If $B_i = f(C_i)$ for i = 1, 2, then clearly $B_1 \subset \text{Int } B$ and $B \subset \text{Int } B_2$. Since B, B_1 , and B_2 share the common center line b (center lines are preserved under semilinear maps of solid tori), it follows from Theorem 3 that they are mutually concentric.

COROLLARY 3. Suppose that $\{B_n\}_1^{\infty}$ is a sequence of tame solid tori in S^2 , with $B_{n+1}\subset \operatorname{Int} B_n$ for $n\geq 1$, such that $A=\bigcap_{n=1}^{\infty} B_n$ is a tame solid torus. Then there exists an integer N such that B_i and B_j are concentric with each other and with A if $i>j\geq N$.

Proof. Using Lemma 3, choose a tame solid torus C such that $A \subset \text{Int } C$ with A and C concentric. Since $\{S^3 - B_n\}_1^\infty$ is an increasing sequence of open sets whose union is $S^3 - A$, and which therefore covers the compact set $S^3 - \text{Int } C$, there exists an integer N such that $S^3 - \text{Int } C \subset S^3 - B_j$, or $B_j \subset \text{Int } C$, whenever $j \geq N$. It then follows from Theorem 5 that A and B_j

are concentric for $j \ge N$. If $i > j \ge N$, A is interior to B_i and B_i is interior to B_j , so that Theorem 5 implies that B_i is concentric with both A and B_j .

COROLLARY 4. Suppose that $\{B_n\}_1^{\infty}$ is a sequence of tame solid tori in S^3 , with $B_n \subset \text{Int } B_{n+1}$ for $n \geq 1$, such that $\bigcup_{n=1}^{\infty} B_n$ is the interior of a tame solid torus A. Then there exists an integer N such that B_i and B_j are concentric with each other and with A if $i > j \geq N$.

The proof of Corollary 4 is similar to that of Corollary 3.

THEOREM 6. Suppose that K is a tame simple closed curve in S^3 and that $\{B_n\}_1^{\infty}$ is a sequence of tame solid tori, with $B_{n+1} \subset \operatorname{Int} B_n$ for $n \geq 1$, such that $\bigcap_{n=1}^{\infty} B_n = K$. Then there is an integer N such that B_i and B_j are concentric if $i > j \geq N$.

Proof. Since there is a homeomorphism of S^3 onto itself carrying K onto a simple closed polygon, it may be assumed that K itself is a polygonal simple closed curve. Then there is a polyhedral solid torus C having K as a center line [10, p. 177]. Since $\{S^3 - B_n\}_1^{\infty}$ is an increasing sequence of open sets covering the compact set $S^3 - \text{Int } C$, there is an integer N such that $B_j \subset \text{Int } C$ if $j \geq N$. Given i and j such that $i > j \geq N$, choose a polyhedral solid torus A interior to B_i having K as a center line [10, p. 177]. Since A and C have the same center line, it follows from Theorem 3 that they are concentric. Then Theorem 5 implies that each of B_i and B_j is concentric with both A and C, and another application of Theorem 5 shows that B_i and B_j are concentric with each other.

COROLLARY 5. Suppose that $\{B_n\}_1^{\infty}$ is a sequence of tame solid tori in S^3 , with $B_{n+1}\subset \operatorname{Int} B_n$ for $n\geq 1$, such that no two of the tori $\{B_n\}_1^{\infty}$ are concentric. If $\bigcap_{n=1}^{\infty} B_n$ is a simple closed curve K, then K is wildly imbedded in S^3 .

EXAMPLE. In order to see the necessity of the hypothesis in Theorem 6 that the simple closed curve K is tame, that is, that the situation described in Corollary 5 can actually occur, consider a simple closed curve C constructed as follows: Let J be the boundary of the square in the xy-plane (in E^3 compactified at infinity) whose vertices are the points (1, 1, 0), (-1, 1, 0), (-1, -1, 0), and (1, -1, 0). Denote by x_n the point (1/n, 0, 0) on J. For each positive integer $n \ge 1$ let K_n be the 3-cell consisting of all points of E^3 whose distance from x_n is not greater than 1/3n(n+1). Then the 3-cells $\{K_n\}_1^\infty$ are mutually disjoint, and the intersection of K_n with J is a segment w_n with endpoints p_n and q_n . For each n let u_n be a polygonal chord of K_n , with endpoints p_n and q_n , such that u_n generates a trefoil knot in K_n . The simple closed curve C is now defined by

$$C = \left(J - \bigcup_{n=1}^{\infty} w_n\right) \cup \bigcup_{n=1}^{\infty} u_n.$$

It is clear that C can be expressed as the intersection of a decreasing sequence $\{B_i\}_1^{\infty}$ of tame solid tori, such that the solid torus B_i follows C through the first i 3-cells K_1, K_2, \dots, K_i , but contains $\bigcup_{n=i+1}^{\infty} K_n$ in its interior, so that the simple closed polygon $C_i = (J - \bigcup_{n=1}^{i} w_n) \cup \bigcup_{n=1}^{i} u_n$ is a center line of B_i . Since C_i is then the knot product of i trefoil knots, no two of the tame solid tori $\{B_i\}_1^{\infty}$ are equivalently knotted, so that by Theorem 3 no two are concentric.

The property of tame curves in S^3 which is suggested by Theorem 6 and the above example has been used to give a new characterization of tame simple closed curves in the 3-sphere [8].

THEOREM 7. Suppose that $\{B_n\}_n^{\infty}$ and $\{C_n\}_n^{\infty}$ are two sequences of tame solid tori in S^3 , with $B_{n+1}\subset \operatorname{Int} B_n$ and $C_{n+1}\subset \operatorname{Int} C_n$ for $n\geq 1$, such that $\bigcap_{n=1}^{\infty} B_n = \bigcap_{n=1}^{\infty} C_n$. If there is an integer N such that B_i and B_j are concentric when $i>j\geq N$, then there exists an integer M such that C_i and C_j are concentric when $i>j\geq M$.

Proof. If $K = \bigcap_{n=1}^{\infty} B_n = \bigcap_{n=1}^{\infty} C_n$, then $S^3 - \text{Int } B_N \subset S^3 - K = \bigcup_{n=1}^{\infty} (S^3 - C_n)$ so that $\{S^3 - C_n\}_1^{\infty}$ is an increasing sequence of open sets covering the compact set $S^3 - \text{Int } B_N$. It follows that there is an integer M such that $C_j \subset \text{Int } B_N$ if $j \geq M$. Now let i and j be two positive integers such that $i > j \geq M$. Since Int C_i is a neighborhood of K, there is an integer P such that $B_P \subset \text{Int } C_i$. Clearly P > N so that B_P and B_N are concentric. It now follows from Theorem 5 that C_i and C_j are both concentric with B_N , and another application of Theorem 5 shows that C_i and C_j are concentric with each other.

The following theorem and its proof illustrate a useful technique for replacing a sequence of concentric tame solid tori with a sequence of concentric polyhedral solid tori.

THEOREM 8. If $\{B_n\}_1^{\infty}$ is a sequence of tame solid tori in S^3 with $B_{n+1} \subset \text{Int } B_n$ for $n \ge 1$, then there is a homeomorphism f of S^3 onto itself such that (a) f(x) = x if $x \in K = \bigcap_{n=1}^{\infty} B_n$, and (b) each of the solid tori $\{f(B_n)\}_1^{\infty}$ is polyhedral.

Proof. For each $n \ge 1$, denote by T_n the tame torus bounding the solid torus B_n , and define

$$\epsilon_n = \min \left\{ \frac{1}{n}, \frac{1}{3} \rho(T_n, T_{n-1}), \frac{1}{3} \rho(T_n, T_{n+1}) \right\},$$

where ρ is the Euclidean metric in S^3 . If $U_n = \{x \in S^3 : \rho(x, T_n) < \epsilon_n\}$ for each $n \ge 1$, then clearly $U_m \cap U_n = \square$ whenever $m \ne n$. For each n let f_n be a homeomorphism of S^3 onto itself which (a) carries T_n onto a polyhedron, (b) moves each point a distance less than ϵ_n , and (c) is the identity on $S^3 - U_n$. The existence of such homeomorphisms is given by Theorem 9 of [3], which states that, if K is a locally tame closed subset of a triangulated 3-manifold

M with boundary (possibly vacuous), and if C is a closed subset of M such that K is locally polyhedral at each point of $K \cap C$, with ϕ a positive continuous function on M-C, then there exists a homeomorphism g of M onto itself such that x=g(x) if $x \in C$, g(K) is a polyhedron and $\rho(x, g(x)) < \phi(x)$ if $x \in M-C$. Now define a map f on S^3 by

$$f(x) = \begin{cases} x & \text{if } x \in S^3 - \bigcup_{n=1}^{\infty} U_n, \\ f_n(x) & \text{if } x \in U_n. \end{cases}$$

Since the identity is 1-1 on $S^3 - \bigcup_{n=1}^{\infty} U_n$, and since f_n is a homeomorphism of U_n onto itself, it is clear that f is a 1-1 mapping of S^3 onto itself. It is also clear that f is continuous at each point of $S^3 - K$, since f agrees with the identity in some neighborhood of each point of $S^3 - K - \bigcup_{n=1}^{\infty} \operatorname{Cl} U_n$, and with f_n in some neighborhood of a point of U_n , while f_n matches with the identity in a continuous manner at each point of Bd U_n .

To show that f is a homeomorphism of S^3 onto itself, it therefore suffices to show that f is continuous at each point of K, because S^3 is compact and Hausdorff. Since f is the identity on the closed set K it hence suffices to show that if $\{x_k\}_1^\infty$ is a sequence of points of S^3-K converging to a point x of Bd K, then the sequence $\{f(x_k)\}_1^\infty$ converges to x. Since $f(x_k)=x_k$ if $x_k \in S^3-U_{n-1}^\infty$ U_n , it may be assumed without loss that each point x_k of the sequence lies in one of the sets U_n , say U_{n_k} , so that $\rho(x_k, f(x_k)) = \rho(x_k, f_{n_k}(x_k)) < \epsilon_{n_k}$ for each $k \ge 1$. It is clear that $\lim_{k \to \infty} n_k = \infty$. For otherwise, if there were an integer N such that $n_k < N$ for infinitely many values of k, then infinitely many points of the sequence $\{x_k\}_1^\infty$ would lie in $S^3 - B_N$, which would contradict the fact that $\{x_k\}_1^\infty$ converges to $x \in K$, since B_N contains K in its interior. It follows that $\lim_{k \to \infty} \rho(x_k, f(x_k)) \le \lim_{k \to \infty} \epsilon_{n_k} \le \lim_{k \to \infty} 1/n_k = 0$. Consequently $\lim_{k \to \infty} f(x_k) = \lim_{k \to \infty} x_k = x = f(x)$ so that f is continuous at x. Therefore f is a homeomorphism of S^3 onto itself which is the identity on K and carries each of the solid tori $\{B_n\}_1^\infty$ onto a polyhedron.

4. Similarly situated solid tori. Two solid tori B_1 and B_2 in S^3 are said to be *similarly situated* if and only if there exist two concentric tame solid tori A_1 and A_2 in S^3 such that A_1 is interior to both B_1 and B_2 , and B_1 and B_2 are both interior to A_2 .

THEOREM 9. Two tame solid tori B_1 and B_2 in S^2 are concentric if and only if they are similarly situated and have disjoint boundaries.

Proof. First suppose that B_1 and B_2 are similarly situated and have disjoint boundaries T_1 and T_2 . Then by definition there are two concentric tame solid tori A_1 and A_2 such that $A_1 \subset \text{Int } B_1 \cap \text{Int } B_2$ and $B_1 \cup B_2 \subset \text{Int } A_2$. It follows that either $B_1 \subset \text{Int } B_2$ or $B_2 \subset \text{Int } B_1$. To see this, choose $x \in \text{Int } A_1$ and $y \in S^3 - A_2$ and suppose that $T_1 \subset \text{Int } B_2$. If there were a point $z \in \text{Int } B_1$

-Int B_2 , x could be joined to z by an arc in Int B_1 , and y could be joined to z by an arc in S^3 -Int B_2 not intersecting T_1 , which contradicts the fact that T_1 separates x and y in S^3 . Hence $T_1 \subset Int B_2$ implies $B_1 \subset Int B_2$. Since $T_1 \cap T_2 = \square$, the only other possibility is $T_1 \subset S^3 - B_2$, which implies similarly that $B_2 \subset Int B_1$. Therefore Theorem 5 may be applied to show that B_1 and B_2 are concentric.

Conversely, if B_1 and B_2 are concentric with $B_1 \subset \text{Int } B_2$, for instance, Lemma 3 can be used to find tame solid tori A_1 and A_2 , with A_1 interior to and concentric with B_1 , and with B_2 interior to and concentric with A_2 . Theorem 5 then implies that A_1 and A_2 are concentric, so that B_1 and B_2 are similarly situated with disjoint boundaries.

Suppose that $\{B_n\}_0^{\infty}$ is a sequence of homeomorphic compact sets in S^3 . It is said that the sequence $\{B_n\}_1^{\infty}$ converges homeomorphically to B_0 if and only if there exists a sequence $\{\epsilon_n\}_1^{\infty}$ of positive numbers, converging to zero, and a sequence $\{h_n\}_1^{\infty}$ of homeomorphisms, with h_n carrying B_n onto B_0 in such a way that $\rho(x, h_n(x)) \leq \epsilon_n$ for every $x \in B_n$, where ρ is the standard metric for S^3 .

THEOREM 10. Suppose that $\{B_n\}_1^{\infty}$ is a sequence of solid tori in S^3 converging homeomorphically to the tame solid torus B. Then there exists an integer N such that B_n and B are similarly situated for $n \ge N$.

Proof. By Lemma 3 choose two tame solid tori A_1 and A_2 , each concentric with B, with A_1 interior to B and B interior to A_2 . Define

$$\alpha_1 = \min\{\rho(\operatorname{Bd} B, \operatorname{Bd} A_1), \rho(\operatorname{Bd} B, \operatorname{Bd} A_2)\}.$$

Then choose a fixed interior point p_1 of A_1 , a fixed point p_2 of $S^3 - A_2$, and define $\alpha = \min\{\alpha_1, \rho(p_1, \operatorname{Bd} A_1), \rho(p_2, \operatorname{Bd} A_2)\}$. Now let $\{h_n\}_1^{\infty}$ be a sequence of homeomorphisms, h_n taking B_n onto B with $\max_{x \in B_n} \rho[x, h_n(x)] \leq \epsilon_n$, where $\{\epsilon_n\}_1^{\infty}$ is a sequence of positive numbers converging to zero. Choose an integer N such that $\epsilon_n < \alpha$ if $n \geq N$.

If $n \ge N$ and $y \in \operatorname{Bd} B_n$, it then follows that $\rho(y, \operatorname{Bd} B) \le \rho(y, h_n(y)) \le \epsilon_n < \alpha$ so that $\rho(y, \operatorname{Bd} B) < \alpha_1$. Therefore $\operatorname{Bd} B_n$ is exterior to A_1 and interior to A_2 . Either $A_1 \subset \operatorname{Int} B_n$ or $B_n \subset S^3 - A_1$. To the contrary, suppose that there exist points $x \in A_1 - B_n$ and $y \in B_n - (S^3 - A_1) = B_n \cap A_1$. Then x and y can be joined by an arc in A_1 not intersecting $\operatorname{Bd} B_n$, which contradicts the fact that $\operatorname{Bd} B_n$ separates x and y in S^3 . Now suppose that $B_n \subset S^3 - A_1$. Since $p_1 \in A_1 \subset B_n$, there must exist a point $q \in B_n$ such that $h_n(q) = p_1$. But this implies that $\rho(q, h_n(q)) = \rho(q, p_1) \ge (p_1, \operatorname{Bd} A_1) \ge \alpha > \epsilon_n$ which is a contradiction. Therefore $A_1 \subset \operatorname{Int} B_n$. It may be shown similarly that $B_n \subset \operatorname{Int} A_2$.

Since A_1 and A_2 are concentric by Theorem 5, it follows that B and B_n are similarly situated if $n \ge N$, so that the proof of Theorem 10 is complete.

It can be shown that if s is a simple closed polygon contained in the intersection of the boundaries of two similarly situated polyhedral solid tori B_1

and B_2 , then s is nullhomologous on Bd B_1 if and only if it is nullhomologous on Bd B_2 [6, p. 48]. This result can be used to prove that, if B_1 and B_2 are similarly situated polyhedral solid tori, with A_1 and A_2 two concentric polyhedral solid tori such that $A_1 \subset \text{Int } B_1 \cap \text{Int } B_2$ and $B_1 \cup B_2 \subset \text{Int } A_2$, then there is a semilinear homeomorphism of S^3 onto itself which carries B_1 onto B_2 and is the identity on $A_1 \cup (S^3 - A_2)$ [6, p. 50].

5. Uncountable collections of concentric tori(2). If A is a subset of the space X, then A is said to be *collared* in X if and only if there is a homeomorphism f of $A \times [-1, 1]$ into X such that f(a, 0) = a for each $a \in A$. Then $f(A \times [-1, 1])$ is called a *collar* of A in X.

LEMMA 4. If S is a collared closed 2-manifold in S⁸, then S is tame in S⁸.

Proof. Let f be a homeomorphism of $S \times [-1, 1]$ into S^3 such that f(x,0) = x for each $x \in S$. For each positive integer n, define $S_n' = f(S \times \{-1/n\})$ and $S_n'' = f(S \times \{1/n\})$. Let the homeomorphisms h_n' and h_n'' of S onto S_n' and S_n'' respectively be defined by $h_n'(x) = f(x, -1/n)$ and $h_n''(x) = f(x, 1/n)$ for each $x \in S$, $n = 1, 2, \cdots$. Then $\lim_{n \to \infty} \max_{x \in S} \rho[x, h_n'(x)] = 0$. To the contrary, suppose that there is an $\epsilon > 0$, an increasing sequence $\{n_k\}_{k=1}^{\infty}$ of positive integers, and a sequence $\{x_k\}_1^{\infty}$ of points of S such that $\rho[x_k, h_{n_k}'(x_k)] \ge \epsilon > 0$ for each $k = 1, 2, \cdots$. Since S is compact it may be assumed that the sequence $\{x_k\}_1^{\infty}$ converges to a point $x_0 \in S$. But then $\lim_{k \to \infty} \rho[x_k, h_{n_k}'(x_k)] = \lim_{k \to \infty} \rho[x_k, f(x_k, -1/n_k)] = \rho[x_0, f(x_0, 0)] = \rho[x_0, x_0] = 0$, which is a contradiction. In a similar manner it may be shown that $\lim_{n \to \infty} \max_{x \in \epsilon} \rho[x, h_n''(x)] = 0$. Consequently the sequences $\{S_n'\}_1^{\infty}$ and $\{S_n''\}_1^{\infty}$ of closed 2-manifolds in S^3 converge homeomorphically to S from opposite sides. It therefore follows from Bing's characterization of tame surfaces that S is tame in S^3 [5].

The following extension of Theorem 5 will be needed in the proof of Theorem 12.

THEOREM 11. Suppose that A, B, and C are solid tori such that $A \subset Int B$ and $B \subset Int C$, with Bd B collared in C. Then A and C are concentric if and only if B is concentric with both A and C.

Proof. First suppose that A and C are concentric. Let D be a solid torus and suppose that the boundary of D is identified with the boundary of C in such a way that $C \cup D$ is the 3-sphere S^3 . Let E be a solid torus interior to D and concentric with D, and let F be a solid torus interior to D and concentric with D, and let D is the topological product of a torus and an interval so that there is a homeomorphism D of D onto D onto D onto D is the topological product of a torus and an interval so that there is a homeomorphism D of D onto D

⁽²⁾ The author is indebted to the referee for helpful suggestions in connection with this section.

map h of Bd $C \times [-1, 1]$ onto $Cl(C-A) \cup Cl(D-E)$ is defined by h(x, t) = g(x, t) if $t \in [-1, 0]$ and h(x, t) = f(x, t) if $t \in [0, 1]$, then h is clearly a homeomorphism such that h(x, 0) = x for $x \in Bd$ C, so that $Cl(C-A) \cup Cl(D-E)$ is a collar of Bd C in S^3 . Similarly $Cl(C-A) \cup Cl(A-F)$ is a collar of Bd A. It therefore follows from Lemma 4 that the solid tori A, B, and C are tame in S^3 . Consequently Theorem 5 now applies to show that B is concentric with both A and C.

Conversely, if B is concentric with both A and C, then it may be shown as above that $Cl(C-A) = Cl(C-B) \cup Cl(B-A)$ is a collar of Bd B, so that A and C are concentric.

By a *closed 3-manifold* is meant a compact connected separable metric space, each point of which has a neighborhood which is homeomorphic to Euclidean 3-space.

THEOREM 12. Let M be a closed 3-manifold and suppose that \Re is an ununcountable collection of solid tori in M, whose boundaries are mutually disjoint and are collared in M. Then \Re contains a pair of concentric solid tori.

Proof. Notice first that if B is an element of \mathcal{X} , then the boundary T of B separates M. For if Int B denotes the set of those points of B, each of which has a neighborhood in B which is homeomorphic to E^3 , then it follows from Brouwer's theorem on the invariance of interior points [1, p. 168] that Int B = B - T is an open subset of M. Since B is compact, M - B is also an open subset of M. Then M - T is the union of the two disjoint open sets Int B and M - B, so that M - T is not connected.

Suppose that \mathfrak{X} is indexed by an uncountable set Λ , so that $\mathfrak{X} = \{B_{\alpha} : \alpha \in \Lambda\}$. For each $\alpha \in \Lambda$, let $T_{\alpha} = \operatorname{Bd} B_{\alpha}$. Since M is separable, let D be a countable dense subset of M, and define a mapping ϕ of \mathfrak{X} into $D \times D$ by associating with the element B_{α} of \mathfrak{X} an element $\phi(B_{\alpha}) = (x, y)$ of $D \times D$ such that $T_{\alpha} = \operatorname{Bd} B_{\alpha}$ separates x and y in M, with $x \in \operatorname{Int} B_{\alpha}$ and $y \in M - B_{\alpha}$. Since \mathfrak{X} is uncountable and $D \times D$ is countable, it follows that there is an element (a, b) of $D \times D$ such that the subcollection $\mathfrak{X}' = \phi^{-1}(a, b)$ of \mathfrak{X} is uncountable. Thus \mathfrak{X}' is an uncountable subcollection of \mathfrak{X} such that, given $B_{\alpha} \in \mathfrak{X}'$, the two points a and b of M are separated by the boundary T_{α} of B_{α} , with $a \in \operatorname{Int} B_{\alpha}$ and $b \in M - B_{\alpha}$.

Now suppose that B_{α} and B_{β} are any two solid tori in \mathfrak{X}' . Since $T_{\alpha} \cap T_{\beta} = \square$, either $T_{\alpha} \subset \operatorname{Int} B_{\beta}$ or $T_{\alpha} \subset M - B_{\beta}$. If $T_{\alpha} \subset \operatorname{Int} B_{\beta}$, then $B_{\alpha} \subset \operatorname{Int} B_{\beta}$. To the contrary, suppose that $z \in \operatorname{Int} B_{\alpha} - \operatorname{Int} B_{\beta}$. Since $a, z \in \operatorname{Int} B_{\alpha}$, there is an arc l_1 joining a and z and not meeting T_{α} . Since $b, z \in M - \operatorname{Int} B_{\beta}$ and $T_{\alpha} \subset \operatorname{Int} B_{\beta}$, there is an arc l_2 joining b and z and also not meeting T_{α} . But then $l_1 \cup l_2$ is a connected subset of $M - T_{\alpha}$ which contains the points a and b, and this is a contradiction. Similarly $T_{\alpha} \subset M - B_{\beta}$ implies that $B_{\beta} \subset \operatorname{Int} B_{\alpha}$. Hence \mathfrak{X}' is an uncountable subcollection of \mathfrak{X} such that, if B_{α} and B_{β} are

any two solid tori in \mathcal{X}' , either $B_{\alpha} \subset \operatorname{Int} B_{\beta}$ or $B_{\beta} \subset \operatorname{Int} B_{\alpha}$. It may therefore be assumed that the original collection \mathcal{X} has this property.

Now Whyburn [12] has shown that every uncountable nonseparated collection 9 of cuttings of a connected separable metric space M contains an uncountable subcollection \overline{g} , such that to each element T of g and each point p of M-T there corresponds an element T' of \overline{g} which separates T and p in M. Applying this theorem with g being the collection of boundaries of the solid tori in \mathcal{K} , let T_{α_0} be an element of \mathfrak{F} , with B_{α_0} the corresponding solid torus bounded by T_{α_0} . Since T_{α_0} is by hypothesis collared in M, there is a homeomorphism f of $T_{\alpha_0} \times [0, 1]$ into $M - \text{Int } B_{\alpha_0}$ such that f(x, 0) = x if $x \in T_{\alpha_0}$. Then $B_{\alpha_0} \cup f(T_{\alpha_0} \times [0, 1])$ is a solid torus C containing B_{α_0} in its interior and concentric with B_{α_0} . Then, given any point $x \in \text{Bd } C$, there is a torus T_{α_x} in \overline{g} separating x and T_{α_0} in M. Clearly $B_{\alpha_0} \subset \text{Int } B_{\alpha_x}$, so that the collection $\{M-B_{\alpha_x}\}_{x\in\mathbb{B}d}$ of open sets covers Bd C. Since Bd C is compact, there is a finite subcollection $\{M-B_{\alpha_n}\}_{n=1}^k$ which covers Bd C. Since either $B_{\alpha}\subset \operatorname{Int} B_{\beta}$ or $B_{\beta}\subset \operatorname{Int} B_{\alpha}$ for every $\alpha,\beta\in\Lambda$, it may be assumed that Bd $C\subset M$ $-B_{\alpha_1}$, so that T_{α_1} separates T_{α_0} and Bd C in M. It follows that $B_{\alpha_1}\subset \operatorname{Int} C$. For otherwise, if there were a point $p \in \text{Int } B_{\alpha_1} - \text{Int } C$, p could be joined by an arc not meeting T_{α_1} to a point $x \in T_{\alpha_0}$ because $T_{\alpha_0} \subset \text{Int } B_{\alpha_1}$, and p could be joined by an arc not meeting T_{α_1} to a point $y \in Bd$ C because $T_{\alpha_1} \subset Int$ C. Since therefore $B_{\alpha_0} \subset \operatorname{Int} B_{\alpha_1}$ and $B_{\alpha_1} \subset \operatorname{Int} C$, and since it may be assumed that the collar of T_{α_1} is contained by C, Theorem 11 applies to show that B_{α_0} and B_{α_1} are concentric. Consequently ${\mathfrak R}$ contains pairs of concentric solid tori.

COROLLARY 6. If M and \Re are as in Theorem 12, then \Re contains an uncountable subcollection \Re^* such that any two solid tori in \Re^* are concentric.

Proof. Define $B_{\alpha} \sim B_{\beta}$ if either $B_{\alpha} = B_{\beta}$ or the two solid tori B_{α} and B_{β} are concentric. Since it may be assumed, as shown in the proof of Theorem 12, that, given B_{α} and B_{β} in \mathfrak{K} , either $B_{\alpha} \subset \operatorname{Int} B_{\beta}$ or $B_{\beta} \subset \operatorname{Int} B_{\alpha}$, it follows from Theorem 11 that this relation is an equivalence relation in \mathfrak{K} . There is thereby induced a decomposition of \mathfrak{K} into mutually disjoint equivalence classes, such that two solid tori in \mathfrak{K} are elements of the same equivalence class if and only if they are concentric. An application of the axiom of choice gives a collection \mathfrak{K} containing exactly one element of each equivalence class. Since no two solid tori in \mathfrak{K} are concentric, it follows from Theorem 12 that \mathfrak{K} must be countable. Therefore one of the equivalence classes must be uncountable. If \mathfrak{K}^* denotes this uncountable equivalence class, then \mathfrak{K}^* is an uncountable subcollection of \mathfrak{K} such that any two solid tori in \mathfrak{K}^* are concentric.

THEOREM 13. If g is an uncountable collection of mutually disjoint tori in the closed 3-manifold M, then g contains an uncountable subcollection g^* such that any two tori in g^* are concentric in M.

Proof. There are two obstructions to an immediate application of Theorem 12 or Corollary 6. First, the elements of \mathfrak{g} may not bound solid tori in M, and second, the tori in \mathfrak{g} may not be collared in M. However the latter is no real difficulty, since, using results of Bing [4], it may be assumed that each of the tori in \mathfrak{g} is tame, and hence is collared in M. The first difficulty will be circumvented by finding a torus T_0 in \mathfrak{g} whose collar $C(T_0)$ contains uncountably many elements of \mathfrak{g} , so that a simplification to the case of a 3-sphere can be achieved by sewing on two solid tori along the boundary of $C(T_0)$.

Since the 2-dimensional connectivity number (using modulo 2 coefficients) of the closed 3-manifold M is finite, there is a non-negative integer n such that g contains n elements whose union does not separate M, while the union of any n+1 elements of G does separate M. Therefore let T_1, \dots, T_n be elements of g such that $M - (T_1 \cup \cdots \cup T_n)$ is connected, while $M - (T_1 \cup \cdots \cup T_n \cup T)$ is not connected if T is an element of $g = \{T_1, \dots, T_n\}$. Assuming that each of the tori T_i , $i = 1, \dots, n$, has a collar $C(T_i)$ not containing uncountably many elements of G_i , let \overline{M} be the compact 3-manifold obtained by cutting M along T_1, \dots, T_n , or $\overline{M} = M$ $-\bigcup_{i=1}^n \operatorname{Int} C(T_i)$, with the collars $C(T_i)$ chosen mutually disjoint $(\overline{M} = M)$ if n=0). It is now clear that \overline{M} is separated by each torus of the uncountable subcollection \overline{g} consisting of those elements of g which are contained in Int \overline{M} . Consequently Whyburn's results [12] on uncountable nonseparated collections of cuttings of a connected separable metric space can be employed to find an uncountable subcollection g' of \overline{g} and an upper semicontinuous decomposition space M' of \overline{M} in which the elements of \mathfrak{G}' are points. If the element T_0 of G' is a condensation point of G' in M', then the collar $C(T_0)$ of T_0 in M contains an uncountable subcollection G'' of the elements of G. Now identify the boundaries of two solid tori B_1 and B_2 with the boundary components of $C(T_0)$ in such a way that $B_1 \cup C(T_0) \cup B_2$ is the 3-sphere S^3 . By a theorem of Alexander [2], there may be assigned to each torus T_{α} in G'' a solid torus B_{α} in S^3 bounded by T_{α} , with B_{α} containing either B_1 or B_2 in its interior (since it may be assumed without loss that each element of G" separates the boundary components of $C(T_0)$). Corollary 6 now applies to show that g" contains an uncountable subcollection g* such that any two tori in \mathfrak{S}^* are concentric in $C(T_0)$ and therefore in M.

BIBLIOGRAPHY

- 1. P. S. Aleksandrov, Combinatorial topology, Vol. 1, Graylock Press, Rochester, N. Y., 1956.
- 2. J. W. Alexander, On the sub-division of space by a polyhedron, Proc. Nat. Acad. Sci. U.S.A. 10 (1924), 6-8.
 - 3. R. H. Bing, Locally tame sets are tame, Ann. of Math. 59 (1954), 145-158.
- 4. ——, E² does not contain uncountably many mutually exclusive wild surfaces, Abstract 63-801t, Bull. Amer. Math. Soc. 63 (1957), 404.

- 5. —, Conditions under which a surface in E³ is tame, Fund. Math. 47 (1959), 105-139.
- 6. C. H. Edwards, Concentric tori in the three-sphere, doctoral dissertation, University of Tennessee, December, 1960.
- 7. ——, Concentric tori in the 3-sphere, Bull. Amer. Math. Soc. 67 (1961), 220–222.

 8. ——, A characterization of tame curves in the 3-sphere, Abstract 573-32, Notices Amer. Math. Soc. 7 (1960), 875.
- 9. O. G. Harrold, H. C. Griffith, and E. E. Posey, A characterization of tame curves in 3-space, Trans. Amer. Math. Soc. 79 (1955), 12-35.
 - 10. H. Schubert, Knoten und Vollringe, Acta Math. 90 (1953), 132-286.
- 11. —, Die eindeutige Zerlegbarkeit eines Knotens in Primknoten, S.-B. Heidelberger Akad. Wiss. Math. Nat. Kl. 1949, no. 3 (1949), 57-104.
- 12. G. T. Whyburn, Non-separated cuttings of connected point sets, Trans. Amer. Math. Soc. 33 (1931), 444-454.

THE UNIVERSITY OF TENNESSEE, KNOXVILLE, TENNESSEE