NONEXISTENCE OF LOW DIMENSION RELATIONS BETWEEN STIEFEL WHITNEY CLASSES(1)

ву EDGAR H. BROWN, JR.

1. Introduction. Let W_m be the polynomial algebra $Z_2[w_1, w_2, \dots, w_m]$ where w_1, w_2, \dots, w_m are indeterminants and Z_2 denotes the integers modulo two. We make W_m into a graded algebra by the condition: dim $w_i = i$. For each differentiable m-manifold M let

$$\psi_M \colon \mathfrak{W}_m \to H^*(M; \mathbb{Z}_2)$$

be the algebra homomorphism defined by $\psi_M(w_i) = W_i$ where W_i is the *i*th Stiefel Whitney class of M. If \mathfrak{M}_m is some class of differentiable m-manifolds let

$$I(\mathfrak{M}_m) = \bigcap \ker \psi_M \colon M \in \mathfrak{M}_m.$$

Thus $I(\mathfrak{M}_m)$ is the ideal of polynomial relations satisfied by the Stiefel Whitney classes of all the manifolds in \mathfrak{M}_m . Let \mathfrak{N}_m be the class of C^{∞} , compact, m-manifolds without boundary. An unsolved problem is the determination of $I(\mathfrak{N}_m)$ for each m. If A is a graded algebra, A_q will denote its elements of dimension q. By dimensional considerations, $I(\mathfrak{M}_m)_q = \mathfrak{W}_{m,q}$ for q > m. In [2] Dold has shown that all the elements of $I(\mathfrak{N}_m)_m$ can be obtained from the Wu formulas. For low values of m one can also show that all the elements of $I(\mathfrak{N}_m)$ come from the Wu formulas (the writer has checked this for $m \leq 5$), but it is an unsolved problem whether this is true in general. In this paper we prove a conjecture of Dold, namely:

THEOREM I. $I(\mathfrak{N}_m)_q = 0$, if $2q \leq m$.

In fact we prove the following:

Lemma 1.1. For each integer m there is a compact, C^{∞} m-manifold M (M may be chosen with or without boundary) such that

$$\psi_M \colon \mathfrak{W}_{m,q} \to H^q(M; \mathbb{Z}_2)$$

is an injection for $2q \leq m$.

The construction of M satisfying 1.1 makes use of the following construction which the writer understands is similar to one defined by Barry Mazur. Recall the mapping cylinder C_f of a continuous function $f: X \to Y$ is the identification space formed from $X \times [0, 1] \cup Y$ by identifying (x, 1) and f(x)

Received by the editors July 20, 1961.

⁽¹⁾ This research was partially supported by National Science Foundation Grant G-8207.

for each $x \in X$. We also identify x and (x, 0) so that $X \subset C_f$. Let K be a CW complex. A C^{∞} manifold M with boundary N will be called a *tubular neighborhood* of K if there is a continuous function $F: N \to K$ such that C_F is the underlying topological space of M, the inclusion map of $N \times [0, 1)$ into M is differentiable of class C^{∞} and the inclusion of K in M is a C^{∞} embedding on each open cell of K.

If X is a topological space, $A \subset X$, $i: A \to X$ is the inclusion map and ξ is a bundle over X, then the induced bundle over A, $i*\xi$, will be denoted by $\xi \mid A$. For any differentiable manifold M, $\tau(M)$ will denote its tangent bundle.

THEOREM II. If K is a finite, n dimensional CW complex, η is a real m-plane bundle over K and $2n \leq m$, then there is a finite CW complex K' and a homotopy equivalence $g: K' \to K$ such that K' has an m-dimensional tubular neighborhood M for which $g*\eta$ and $\tau(M) \mid K'$ are equivalent.

As will be seen in the proof of Theorem II, roughly speaking, K' is obtained from K by deforming the attaching maps of the cells of K.

In §3 we show that 1.1 follows from II by taking K to be [m/2] skeleton of BO_m , the classifying space of the orthogonal group O_m , and η to be the m-plane bundle over K induced from the canonical m-plane bundle over BO_m .

Remark. Let \mathfrak{N}_m^0 be the subclass of \mathfrak{N}_m consisting of the orientable manifolds. By the same techniques as are used to prove Theorem I one can show that

$$I(\mathfrak{N}_m^0)_q = \{w_1\}_q$$

if $2q \le m$ and $\{w_1\}$ is the ideal generated by w_1 . One uses the same argument as is used for Theorem I except that one uses BSO_m in place of BO_m .

2. **Proof of Theorem II.** We first show that if M_1 is a compact tubular neighborhood of K_1 and M_2 is obtained by attaching a handle to M_1 , then M_2 is a tubular neighborhood of a complex K_2 obtained from K_1 by attaching a cell to K_1 .

Let R be the real numbers and let

$$R^{n} = R \times R \times \cdots \times R$$
 (R taken n times),
 $|(x_{1}, x_{2}, \cdots, x_{n})| = (x_{1}^{2} + x_{2}^{2} + \cdots + x_{n}^{2})^{1/2},$
 $E^{n} = \{x \in R^{n} | |x| \leq 1\},$
 $S^{n-1} = \{x \in R^{n} | |x| = 1\},$
 $\tilde{E}^{n} = E^{n} - S^{n}.$

Suppose M_1 is a compact tubular neighborhood of a CW complex K_1 , dim $M_1=m$ and $M_1=C_{F_1}$ where $N_1=\partial M_1$ and $F_1\colon N_1\to K_1$. Choose a Riemannian metric on N_1 . Suppose $f\colon S^p\to N_1$ is a C^∞ embedding such that the normal bundle ν of $f(S^p)$ in N_1 is trivial. Choose linearly independent cross-sections v_i , $1\leq i\leq m-p-1$, of ν so that the map

$$\bar{h}: S^p \times E^{m-p-1} \to N_1$$

given by

$$\bar{h}(x, y_1, y_2, \cdots, y_{m-p-1}) = \exp_{f(x)} \sum y_i v_i(f(x))$$

is a homeomorphism. Let I = [0, 1] and let

$$h: S^p \times E^{m-p-1} \times I \rightarrow M_1$$

be given by

$$h(x, y, t) = (\bar{h}(x, y), t).$$

Roughly speaking, attaching $E^{p+1} \times E^{m-p-1}$ to M_1 as a handle consists in pasting $S^p \times E^{m-p-1} \subset E^{p+1} \times E^{m-p-1}$ to N_1 via \bar{h} . This is more or less what we do except that we enlarge $S^p \times E^{m-p-1}$ a little in order to smooth out corners and keep track of the mapping cylinder structure. To do this we first paste $\tilde{E}^{p+1} \times E^{m-p-1}$ to $S^p \times E^{m-p-1} \times I$ and then paste the result to M_1 via h. This first step we do for p=1 and m=2 and then obtain the construction for arbitrary p and m by rotating everything in sight. The whole construction can be understood if one draws a careful picture for p=1 and m=2 (see Figure 1).

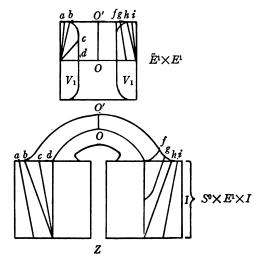


FIGURE 1

Let $\alpha, \beta, \gamma: R \to R$ be C^{∞} functions with the following properties: α is even, increasing on $t \ge 0$, $\alpha(0) = 1/2$ and $\alpha(t) = t$ for $t \ge 3/4$. β is odd, increasing on $|t| \le 3/4$, $\beta'(0) = 1$ and $\beta(t) = 1$ for $t \ge 3/4$. γ is odd, increasing on $t \ge 3/4$, $\gamma(1) = 1$ and $\gamma(t) = 0$ for $|t| \le 3/4$. Consider the curve $c: R \to R \times R$ defined by $c(t) = (\alpha(t), \beta(t))$. c is a " \subset " shaped curve with arms $x \ge 3/4$, $y = \pm 1$ and passing through (1/2; 0). Let $V_1 \subset \tilde{E}^1 \times E^1$ be all points p of the form:

$$p = s((-1)^i, 0) + (1 - s)((-1)^i \alpha(t), \beta(t))$$

where $i=0, 1, 0 \le s < 1$ and |t| < 1. V_1 is the intersection of $\tilde{E}^1 \times E^1$ and the "inside" of c together with reflection of this set through the y axis. Let $\mu_1: V_1 \rightarrow S^0 \times E^1 \times I$ be defined as follows:

$$\mu_1(p) = ((-1)^i, s\gamma(t) + (1-s)t, s)$$

where p is given as above.

The following observation may be helpful in understanding the formulas to follow. Let $Z = (S^0 \times E^1 \times I) \cup (\tilde{E}^1 \times E^1)$ with $\mu_1(x, y)$ and (x, y) identified for each $(x, y) \in V_1$. Then the following line segments define a mapping cylinder structure on Z.

$$(1 - t)(x, \pm 1) + t(\beta(x), 0) \in \tilde{E}^1 \times E^1, \qquad 0 \le t \le 1, x \in \tilde{E}^1,$$

$$(\pm 1, \pm 1, t) \in S^0 \times E^1 \times I, \qquad 0 \le t \le 1.$$

In Figure 1 we indicate how $\tilde{E}^1 \times E^1$ is pasted to $S^0 \times E^1 \times I$ to form Z. The lines on the left indicate how μ_1 maps V_1 into $S^0 \times E^1 \times I$, namely the lines above go into the lines below linearly. The curves on the right indicate the mapping cylinder structure.

Let

$$V = \{(x, y) \in \tilde{E}^{p+1} \times E^{m-p-1} | (|x|, |y|) \in V_1\}.$$

Let $\mu: V \rightarrow S^p \times E^{m-p-1} \times I$ be defined as follows:

$$\mu(x,y) = \left(\frac{x}{\mid x \mid}, \ u \frac{y}{\mid y \mid}, \ t\right)$$

where $\mu_1(|x|, |y|) = (1, u, t)$. If y = 0, take uy/|y| to be 0.

Let $M_2 = \mathfrak{M}(M_1, f, v_1, v_2, \dots, v_{m-p-1})$ be the identification space formed from $M_1 \cup \tilde{E}^{p+1} \times E^{m-p-1}$ by identifying (x, y) and $h\mu(x, y)$ for each $(x, y) \in V$. M_2 is easily seen to be a C^{∞} manifold with boundary N_2 where

$$N_2 = (N_1 - \bar{h}(S^p \times \tilde{E}^{m-p-1})) \cup \tilde{E}^{p+1} \times S^{m-p-2}$$

The only questionable behavior goes on around K_1 and here we already know it is locally Euclidean. Let $K_2 = K_1 \cup E^{p+1}$ with x and Ff(x) identified for each $x \in S^p$. Embed E^{p+1} in $E^{p+1} \times E^{m-p-1}$ by identifying x and (x, 0). This embedding together with the embedding of K_1 in M_1 embeds K_2 in M_2 . Let $F_2: N_2 \to K_2$ be defined as follows:

$$F_{2}(u) = F_{1}(u), \quad u \in N_{1} - \bar{h}(S^{p} \times \tilde{E}^{m-p-1}),$$

$$F_{2}(x, y) = \begin{cases} \beta(|x|) \frac{x}{|x|}, & |x| \leq 3/4, \\ h\left(\frac{x}{|x|}, & \gamma(|x|)y, 1\right) 3/4 \leq |x| < 1; \end{cases} (x, y) \in \tilde{E}^{p+1} \times S^{m-p-2}.$$

Finally let $g: C_{F_2} \rightarrow M_2$ be defined as follows:

$$g(u, t) = (u, t)$$
 $0 \le t \le 1$ $u \in N_1 - \bar{h}(S^p \times \tilde{E}^{m-p-1})$

$$g(x, y, t) = \begin{cases} (1 - t)(x, y) + t \left(\frac{x}{|x|}, \gamma(|x|)y\right), & t < 1, \\ F_2(x, y), & t = 1; \end{cases} (x, y) \in \tilde{E}^{p+1} \times S^{m-p-2}.$$

Although somewhat tedious, it is fairly easy to check that F_2 and g are well defined, g is a homeomorphism, $g \mid N_2 \times [0, 1)$ is C^{∞} and the inclusion map of \tilde{E}^{p+1} in M_2 is a C^{∞} embedding. Hence we have:

LEMMA 2.1. $M_2 = \mathfrak{M}(M_1, f, v_1, v_2, \dots, v_{m-p-1})$ is a tubular neighborhood of K_2 .

We next show how the tangent bundle of M_2 can be controlled by the choice of the v_i . Suppose K_i , M_i , f and ν are as above.

LEMMA 2.2. If η is a real m-plane bundle over K_2 , $\eta \mid K_1$ and $\tau(M_1) \mid K_1$ are equivalent and 2 dim $K_2 \leq m$, then ν is trivial and $v_1, v_2, \dots, v_{m-p-1}$ can be chosen so that η and $\tau(M_2) \mid K_2$ are equivalent.

Proof. Let GL(n) be the group of $n \times n$ nonsingular, real matrices. Let $\lambda: GL(n) \rightarrow GL(n+k)$ be given by

$$\lambda(A) = \begin{pmatrix} I_k & 0 \\ 0 & A \end{pmatrix}$$

where I_k is the $k \times k$ identity matrix and 0 is the appropriate zero matrix. It is well known [4] that

$$\lambda_*: \pi_i(GL(n)) \to \pi_iGL(n+k)$$

is 1-1 for i < n-1 and onto for $i \le n-1$.

Let

$$\overline{E}^p = \{ x \in E^p | |x| \le 1/2 \},$$

$$\overline{S}^{p-1} = \{ x \in E^p | |x| = 1/2 \}.$$

Let $K' = K_2 - \operatorname{Int} \overline{E}^p$. We embed K' in M_1 by identifying x and $(f(x/|x|), 2|x|-1) \in C_{F_1}$ for each $x \in E^{p+1} - \operatorname{Int} \overline{E}^{p+1}$. Note that under this identification $\overline{S}^p = f(S^p)$ and hence ν is the normal bundle of \overline{S}^p in N_1 . Since K_1 is a deformation retract of K' and $\tau(M_1)|K_1$ and $\eta|K_1$ are equivalent by assumption, there is a bundle equivalence $\psi: \tau(M)|K' \to \eta|K'$. Therefore $\tau(M_1)|\overline{S}^p$ and $\eta|\overline{S}^p$ are equivalent. But $\eta|\overline{S}^p$ is trivial since η lies over K_2 and hence $\tau(M_1)|\overline{S}^p$ is trivial.

$$\tau(M_1) \mid \overline{S}^p = \tau(\overline{S}^p) + \xi + \nu$$

where ξ is the trivial line bundle consisting of the vectors in $\tau(M_1) | \overline{S}^p$ normal

to N_1 . As is well known, $\tau(S^p)$ plus a trivial line bundle is trivial. Let $a \in \pi_{p-1}(GL(m))$ and $b \in \pi_{p-1}(GL(m-p-1))$ represent the characteristic functions of $\tau(M_1) \mid \overline{S}^p$ and ν , respectively [4]. Then $\lambda_* b = a$. Since p-1 < m-p-2, λ_* is 1-1. a=0 and hence b=0. Therefore ν is trivial.

Recall $V \subset \tilde{E}^{p+1} \times E^{m-p-1}$ and $h\mu \colon V \to M_1$ is the map used to paste $\tilde{E}^{p+1} \times E^{m-p-1}$ to M_1 to form M_2 . Let $d(h\mu) \colon \tau(V) \to \tau(M_1)$ denote the differential of $h\mu$. Identify $x \in E^{p+1}$ and $(x, 0) \in E^{p+1} \times E^{m-p-1}$ so that $E^{p+1} \subset E^{m-p-1}$. Note that $\tau(M_2) \mid K_2$ may be viewed as the union of $\tau(M_1) \mid K'$ and $\tau(E^{p+1} \times E^{m-p-1}) \mid \overline{E}^{p+1}$ with $v \in \tau(E^{p+1} \times E^{m-p-1}) \mid \overline{S}^p$ and $d(h\mu)(v) \in \tau(M_1) \mid \overline{S}^p$ identified. Let X_i and Y_i be the vector fields on $\tilde{E}^{p+1} \times E^{m-p-1}$ given as follows:

$$X_i = \frac{\partial}{\partial x_i},$$
 $1 \le i \le p+1,$ $Y_i = \frac{\partial}{\partial y_i},$ $1 \le i \le m-p-1,$

where $(x_1, x_2, \cdots, x_{p+1}, y_1, y_2, \cdots, y_{m-p-1})$ are the cartesian coordinates. Under the embedding of K' in M_1 , $h\mu \mid (\tilde{E}^{p+1}-\operatorname{Int} \overline{E}^{p+1})$ is simply the inclusion map. Hence $\{d(h\mu)X_i \mid \overline{S}^p\}$ is independent of the choice of the v_i 's and also provides linearly independent cross-sections of $v+\xi$. Let $Z_i=d(h\mu)X_i \mid \overline{S}^p$. $\{Z_i, v_j\}$ are then linearly independent cross-sections of $\tau(M_1) \mid \overline{S}^p$. One may also check that

$$(2.3) d(h\mu) Y_i | \overline{S}^p = v_i.$$

Thus varying the choice of the v_i 's varies the way in which $\tau(\tilde{E}^{p+1}\times E^{m-p-1})\big|\,\overline{E}^p$ is pasted to $\tau(M_1)\big|\,K'$. On the other hand, up to equivalence, any extension of $\tau(M_1)\big|\,K'$ to a bundle over K_2 may be obtained by pasting $\tau(\tilde{E}^{p+1}\times E^{m-p-1})\big|\,\overline{E}^{p+1}$ to $\tau(M_1)\big|\,K'$ via a bundle map of $\tau(\tilde{E}^{p+1}\times E^{m-p-1})\big|\,\overline{S}^p$ onto $\tau(M_1)\big|\,\overline{S}^p$. Hence we must show that up to bundle equivalence, these two ways of pasting are equivalent. Let \bar{v}_i , $1\leq i\leq m-p-1$ be linearly independent cross-sections of ν . Let \bar{w}_i , $1\leq i\leq m$ be linearly independent cross-sections of $\eta\,|\,\overline{E}^{p+1}$ which exist since \overline{E}^{p+1} is contractible. $\bar{w}_i\,|\,\overline{S}^p$ and $\{\psi Z_i,\,\psi\bar{v}_i\}$ both give linearly independent cross-sections of $\eta\,|\,\overline{S}^p$. Therefore there is a map $B\colon \overline{S}^p\to GL(m)$ such that

$$\bar{w}_i(x) = \sum_{j=1}^{p+1} B_{ij}(x) \psi Z_i(x) + \sum_{j=p+2}^m B_{ij}(x) \psi \bar{v}_{j-p+1}(x)$$

for $x \in \overline{S}^p$. $\lambda_*: \pi_p(GL(m-p-1)) \to \pi_p(GL(m))$ is onto since p < m-p-1. Therefore there is a map $C: \overline{S}^p \to GL(m-p-1)$ and a map $D: \overline{E}^{p+1} \to GL(m)$ such that

$$D(x) = (\lambda C(x))B(x)^{-1}, \qquad x \in \overline{S}^{p}.$$

Let

$$w_i(x) = \sum_j \epsilon D_{ij}(x) \bar{w}_j(x),$$

$$v_i(x) = \sum_j \epsilon C_{ij}(x) \bar{v}_j(x),$$

where $\epsilon > 0$ is chosen so that $h \mid S^p \times E^{m-p-1}$ is a homeomorphism. Then

(2.4)
$$w_i \mid \overline{S}^p = \psi Z_i, \qquad 1 \leq i \leq p+1, \\ = \psi v_{i-p-1}, \qquad p+2 \leq i \leq m.$$

Let $\phi: \tau(M_2) \mid K_2 \rightarrow \eta$ be the bundle map defined as follows:

$$\phi(v) = \psi(v),$$
 $v \in \text{total space of } \tau(M_2) \mid K',$
 $\phi(X_i(x)) = w_i(x),$ $1 \le i \le p+1, x \in \overline{E}^p,$
 $\phi(Y_i(x)) = w_{i+p+1}(x),$ $1 \le i \le m-p-1, x \in \overline{E}^p.$

By (2.3) and (2.4) ϕ is well defined. Therefore $\tau(M_2) \mid K_2$ and η are equivalent. **Proof of Theorem II.** Let K be a finite, n-dimensional CW complex and let $\tau(K)$ be the number of cells in K of positive dimension. We prove by induction on r, if η is real m-plane bundle over K and $2n \leq m$, then there is a finite, n-dimensional CW complex K' and a homotopy equivalence $g: K' \to K$ such that $\tau(K') = \tau(K)$ and K' has a tubular neighborhood M for which $\tau(M) \mid K'$ and $g*\eta$ are equivalent.

If r=0, let K'=K, g= identity and $M=C_F$ where $F: S^{m-1} \times K \to K$ is the projection. M is then a disjoint union of closed m-cells and η and $\tau(M) \mid K$ are both trivial.

Suppose r(K) > 0. Then $K = L \cup \tilde{E}^{p+1}$ where r(L) = r(K) - 1, $2 \dim L \le m$ and $2(p+1) \le m$. By inductive hypothesis there is a finite CW complex L', a homotopy equivalence $k: L' \to L$ and a tubular neighborhood N of L' such that dim $L' = \dim L$, r(L') = r(L) and $\tau(N) \mid L'$ and $k^*(\eta \mid L)$ are equivalent. Let $f': S^p \to L$ be the map by which E^{p+1} is attached to L to form K. Let \bar{k} be a homotopy inverse of k. By a simple variation of 11A [5] one may show that because dim L + p < n, $\bar{k}f'$ is homotopic in N to a map $f'': S^p \to N$ such that $f''(S^p) \cap L' = 0$. Since $N = C_F$ where $F: \partial N \to L'$, f'' is homotopic in N to a map $f'': S^p \to \partial N$. Since $2p+1 \le \dim \partial N$, f''' is homotopic to a C^∞ embedding $f: S^p \to \partial N$ [6]. Let $K' = L' \cup \tilde{E}^{p+1}$ with \tilde{E}^{p+1} attached by $Ff: S^p \to L'$. f and $\bar{k}f'$ are homotopic in N and N are homotopic in N be defined as follows:

$$g(t) = k(t),$$

$$t \in L',$$

$$g(x) = H\left(\frac{x}{|x|}, 2|x| - 1\right),$$

$$= 2x,$$

$$1/2 \le |x|, x \in E^{p+1},$$

$$|x| \le 1/2, x \in E^{p+1}.$$

One may easily check that g is a homotopy equivalence. $(g*\eta) | L' = k*(\eta | L)$ which in turn is equivalent to $\tau(N) | L'$. Therefore, by Lemma 2.2, $M = \mathfrak{M}(N, f, v_1, v_2, \cdots, v_{m-p-1})$, for some v_i , is a tubular neighborhood of K' such that $\tau(M) | K'$ and $g*\eta$ are equivalent.

3. **Proof of Theorem I.** Let BO_m be the classifying space of the orthogonal group O_m and let ξ be the canonical m-plane bundle over BO_m . Let K be the $\lfloor m/2 \rfloor$ skeleton of BO_m with respect to the usual cell decomposition of BO_m [3] and let $\eta = \xi \mid K$. According to Theorem II there is a CW complex K', a homotopy equivalence $g: K' \to K$ and a tubular neighborhood M of K' such that $\tau(M) \mid K'$ and $g^*\eta$ are equivalent. Let $i: K \to BO_m$ and $j: K' \to M$ be the inclusion maps and let $f: M \to BO_m$ be the classifying map of $\tau(M)$. Since $(ig)^*\xi = g^*\eta$ and $(fj)^*\xi = \tau(M) \mid K'$ are equivalent, ig and fj are homotopic. Consider the commutative diagram:

$$H^{q}(BO_{m}; Z_{2}) \xrightarrow{i^{*}} H^{q}(K; Z_{2})$$

$$\downarrow f^{*} \qquad \downarrow g^{*}$$

$$H^{q}(M; Z_{2}) \xrightarrow{j^{*}} H^{q}(K'; Z_{2}).$$

 g^* and j^* are isomorphisms because g and j are homotopy equivalences. i^* is an injection for $2q \leq m$ by the way K was constructed. Therefore f^* is an injection for $2q \leq m$. But $H^*(BO_m, Z_2)$ is a polynomial algebra generated by w_1, w_2, \cdots, w_m , the Whitney classes of ξ [1]. Furthermore, $f^*(w_i) = W_i$, the *i*th Stiefel Whitney class of M. Hence M has the desired properties.

To obtain a manifold without boundary let V be M doubled, that is, two copies of M pasted together along their boundaries. Let $k: M \to V$ be the homeomorphism taking M onto one of its copies. Then $k^*\tau(V) = \tau(M)$. Consider the diagram:

$$W_{m,q} \xrightarrow{\psi_V} H^q(V, Z_2)$$
 $\psi_M \searrow \qquad \downarrow k^*$
 $H^q(M, Z_2).$

This diagram is commutative because $k^*W_i(V) = W_i(M)$. Therefore ψ_V is an injection for $2q \le m$ since ψ_M is an injection in this range and $k^*\psi_V = \psi_M$.

BIBLIOGRAPHY

- 1. Armand Borel, La cohomologie de certains espaces homogènes, Comment. Math. Helv. 27 (1953), 165-197.
- 2. Albrecht Dold, Vollständigkeit der Wuschen relationen zwischen den Stiefel-Whitneyschen zahlen differenzierbarer Mannigfaltigkeiten, Math. Z. 65 (1956), 200-206.
- 3. Charles Ehresmann, Sur la topologie de certains espaces homogènes, Ann. of Math. (2) 35 (1934), 396-443.

- 4. Norman Steenrod, Topology of fibre bundles, Princeton Univ. Press, Princeton, N. J., 1951.
- 5. Hassler Whitney, On singularities of mappings in Euclidean space, Ann. of Math. (2) 62 (1955), 374-410.
 - 6. —, Differential manifolds, Ann. of Math. (2) 37 (1936), 645-680.

Brandeis University,

WALTHAM, MASSACHUSETTS