SUMMABILITY OF FOURIER SERIES IN L^{p} ($d\mu$)

BY MARVIN ROSENBLUM(1)

1. Introduction. Let μ be a non-negative finite Borel measure on the unit circle C such that $\mu(C) > 0$. For each p, $1 \le p < \infty$, let $L^p(d\mu)$ be the Banach space of μ -measurable complex-valued functions $f(e^{i\phi})$ such that

$$||f||_p = \left[\int |f(e^{i\phi})|^p d\mu(\phi)\right]^{1/p}$$

 $<\infty$. σ shall be normalized Lebesgue measure on C. $\mathscr P$ and $\mathscr P_0$ are the classes of trigonometric polynomials of the form $\sum_n c_n e^{in\phi}$ and $\sum_{n\geq 0} c_n e^{in\phi}$ respectively. $P_r(e^{i\phi})$ shall be the Poisson kernel and * the symbol of Fourier convolution. Thus if $f(e^{i\phi}) = \sum c_n e^{in\phi} \in \mathscr P$, then $(P_r * f)(e^{i\phi}) = \sum c_n r^{|n|} e^{in\phi} \in \mathscr P$. δ_1 , δ_2 , ... shall be fixed positive numbers and K_1, K_2, \ldots absolute constants. We omit writing subscripts or use the same subscript in different contexts when we believe that no confusion can arise.

Our main concern shall be the following problems:

Problems A, B. Characterize the classes \mathcal{Q}_p and \mathcal{B}_p of measures μ such that (1.1) $\sup \{ \|P_r * f\|_p : \delta < r < 1 \} \le K \|f\|_p$

for all $f \in \mathcal{P}_0$ and \mathcal{P} respectively.

We shall also be concerned with variations of problem B, where Abel summability is replaced by Fejér and several other types of summability. These problems follow a line of investigations in harmonic analysis with non-translation-invariant measures that dates back to Hardy and Littlewood [8]. Subsequent work was done by Babenko [1], Hirschman [10], Gapoškin [6], Edwards [4], Chen [3] and Helson and Szegö [9]. Our work follows up certain consequences of Helson and Szegö's results. These authors classify the class \mathcal{D}_2 of measures μ for which

(1.2)
$$\sup \|D_n * f\|_2 \le \sum K \|f\|_2$$

for all $f \in \mathcal{P}$. D_n is the Dirichlet kernel. They prove that $\mu \in \mathcal{D}_2$ if and only if (1.3) (i) μ is absolutely continuous, $d\mu = wd\sigma$, and

(1.3) (ii) $w = \exp(u + \tilde{v})$, where u and v are σ -essentially bounded real functions such that σ -ess sup $|v| < \pi/2$. $v \to \tilde{v}$ is the Fourier conjugation operator.

From (1.3) one can deduce that if $f \in L^2(d\mu)$, $\mu \in \mathcal{D}_2$, then the Fourier coefficients of f are well-defined and the Fourier series of f converges in $L^2(d\mu)$ norm to f. Given this, it seems reasonable to ask when the Fourier series of any $f \in L^p(d\mu)$

Received by the editors October 9, 1961.

⁽¹⁾ This research was supported by a National Science Foundation grant.

is Abel summable to f in $L^p(d\mu)$ norm. This, in turn, leads us to problem B. Suppose $\mu \in \mathcal{B}_p$. Then the densely defined linear functionals $l_n(f)$ = $\int f(e^{i\phi})e^{-in\phi} d\sigma(\phi)$, $n=0,\pm 1,\pm 2,\ldots$ can be shown to be bounded on \mathscr{P} and thus have unique continuous extensions to all of $L^p(d\mu)$. Thus the Fourier coefficients of any $f \in L^p(d\mu)$ are well-defined. Similarly the densely defined operators $f \to P_r * f, r$ fixed, $\delta < r < 1$, are bounded on \mathscr{P} and thus one can speak meaningfully of the Abel means of the Fourier series of any $f \in L^p(d\mu)$. Finally (still under the assumption that $\mu \in \mathcal{B}_n$) one can deduce from (1.1) that these Abel means converge in $L^{p}(d\mu)$ norm to f.

Problem A leads to a generalization of Hardy spaces. Let $H^p(d\mu)$ be the class of functions f(z), $z = re^{i\phi}$, holomorphic in $0 \le r < 1$ and such that

(1.4)
$$|||f|||_p = \sup \{ \left[\int |f(re^{i\phi})|^p d\mu(\phi) \right]^{1/p} : 0 \le r < 1 \}$$

is finite. Let $L_0^p(d\mu)$ be the closure of \mathcal{P}_0 in $L^p(d\mu)$. A classical theorem [11, p. 284] states that $H^p(d\sigma)$ is vector space isomorphic and isometric to $L^p_0(d\sigma)$ under the operator $T: f(z) \to f(e^{i\phi})$. Our generalization is as follows: If $\mu \in \mathcal{Q}_n$ then the operator T is a vector space isomorphism mapping $H^p(d\mu)$ onto $L_0^p(d\mu)$ such that T and T^{-1} are bounded. If T is an isometry then μ is a multiple of Lebesgue measure.

Solution of problem B. Let $d\mu(\phi) = w(e^{i\phi})d\sigma(\phi) + d\mu_s(\phi)$ be the Lebesgue decomposition of μ . We shall first show that if $\mu \in \mathcal{Q}_p$, then $\mu_s = 0$ and \log $w \in L^1(d\sigma)$. These properties are incidentally shared by any $\mu \in \mathcal{D}_2$.

LEMMA 1. (i)
$$\mathcal{Q}_p = \mathcal{Q}_2$$
 for all $p, 1 \leq p < \infty$.
(ii) If $\mu \in \mathcal{Q}_p$, then $\log w \in L^1(d\sigma)$.

Proof. (i) is an easy consequence of the Blaschke factorization of any $f \in \mathcal{P}_0$. We shall prove (ii) by contradicting the assumption that $\log w \notin L^1(d\sigma)$, while assuming that $\mu \in \mathcal{Q}_2$. By [7, p. 50], $\{e^{in\phi}\}_0^{\infty}$ is total in $L^2(d\mu)$, so for each positive integer n there is a sequence $\{h_{n,j}\}_{j=0}^{\infty} \subset \mathcal{P}_0$ such that $(*) \|h_{n,j}(e^{i\phi}) - e^{-in\phi}\|_2 \to 0$. Now fix r, $\delta < r < 1$. From (*) and (1.1) it follows that there exists $k_n \in L^2(d\mu)$ such that $||h_{n,j}(re^{i\phi}) - k_n(e^{i\phi})|| \to 0$ as $j \to \infty$. But

$$\lim_{j \to \infty} \| r^n e^{i\phi n} h_{n,j}(re^{i\phi}) - 1 \| \le \lim_{j \to \infty} K \| e^{i\phi n} h_{n,j}(e^{i\phi}) - 1 \| = 0,$$

so $k_n(e^{i\phi}) = r^{-n} e^{-i\phi n}$ in $L^2(d\mu)$ norm. Thus

$$r^{-n} \| 1 \| = \| k_n \| = \lim_{i \to \infty} \| h_{n,j}(re^{i\phi}) \| \le \lim_{i \to \infty} K \| h_{n,j} \| = K \| 1 \|.$$

 $r^{-n} \| 1 \| = \| k_n \| = \lim_{j \to \infty} \| h_{n,j}(re^{i\phi}) \| \le \lim_{j \to \infty} K \| h_{n,j} \| = K \| 1 \|.$ Take $n \to \infty$ to obtain a contradiction of $\| 1 \| > 0$. Thus the proof of (ii) is complete.

LEMMA 2. Suppose $\mu \in \mathcal{Q}_p$. Then $d\mu(\phi) = |g(e^{i\phi})| d\sigma(\phi)$, where $g \in H^1(d\sigma)$ is an outer function.

Proof. Any non-negative function w such that w and $\log w \in L^1(d\sigma)$ has a representation of the form $w(e^{i\phi}) = |g(e^{i\phi})|$, where g is as above (see [2]). Hence we have only to prove that $\mu_s = 0$. Let E be σ -null set such that the mass of μ_s is concentrated on E. Now, by [11, p. 276], there exists a bounded outer function b such that b(0) > 0 and $\lim_{s \to 1} b(se^{i\phi}) = 0$ for all $\phi \in E$. By Lemma 1 we may assume $\mu \in \mathcal{Q}_2$. Let 0 < r, s < 1. Then for all $f \in \mathcal{P}_0$

$$||f(re^{i\phi})b(sre^{i\phi})||_2^2 \le K^2 ||f(e^{i\phi})b(se^{i\phi})||_2^2$$

Take s to 1 and obtain

$$||f(re^{i\phi})b(re^{i\phi})||^2 \le K^2 ||f \cdot b||^2 = K^2 \int |f \cdot h|^2 d\sigma,$$

where $h = b \cdot g^{1/2}$ is an outer function. Next let $z = te^{i\psi}$ be any complex number with |z| < 1. Then, since h is outer, there exists $\{f_n\} \subset \mathscr{P}_0$ with $f_n(e^{i\phi}) h(e^{i\phi}) \to (1 - te^{i(\phi - \psi)})^{-1} g^{1/2}(e^{i\phi})$ in $L^2(d\sigma)$ norm. Thus

$$\int \left|1 - tre^{i(\phi - \psi)}\right|^{-2} d\mu(\phi) \leq K^2 \int \left|1 - te^{i(\phi - \psi)}\right|^{-2} w(e^{i\phi}) d\sigma(\phi).$$

Let $r \rightarrow 1$, so

$$\int P_{i}(e^{\mathbf{i}(\phi-\psi)}) d\mu(\phi) \leq K^{2} \int P_{i}(e^{\mathbf{i}(\phi-\psi)}) w(e^{\mathbf{i}\phi}) d\sigma(\phi)$$

for all t, $0 \le t < 1$ and all real ψ . Thus $P_t*(K^2wd\sigma - d\mu)$ is a positive harmonic function in |z| < 1 and consequently $K^2wd\sigma - d\mu$ is a positive measure. Thus μ is absolutely continuous. Our solution of problem A is contained in

THEOREM 1. $\mu \in \mathcal{Q}_p$ if and only if

(i) μ is absolutely continuous, $d\mu = wd\sigma$, where w = |g|, $g \in H^1(d\sigma)$ is an outer function and

$$(2.1) \ (ii) \quad \int P_r(e^{i(\phi-\psi)}) \left| \ g(e^{i\phi})/g(re^{i\phi}) \right| d\sigma(\phi) \leq K_2 \ for \ all \ r, \ 0 \leq r < 1 \ and \ real \ \psi.$$

Proof. Suppose $\mu \in \mathcal{Q}_p$. Then Lemmas 1 and 2 prove that (i) is true. We shall show that necessarily (ii) holds. First of all we note that for each r, $\delta < r < 1$, and real ψ , $(1 - re^{i(\phi - \psi)})^{-1}g^{-1/2}(e^{i\phi})$ is in the closed linear span of $\{e^{in\phi}\}_0^{\infty}$ in $L^2(d\mu)$. This is a simple consequence of the fact that $\{e^{in\phi}g^{1/2}(e^{i\phi})\}_0^{\infty}$ is total in $H^2(d\sigma)$. Hence by (1.1)

$$\int \left| (1 - r^2 e^{i(\phi - \psi)})^{-1} g^{-1/2} (r e^{i\phi}) \right|^2 w(e^{i\phi}) d\sigma(\phi)$$

$$\leq K \int \left| 1 - r e^{i(\phi - \psi)} \right|^{-2} d\sigma(\phi)$$

$$= K (1 - r^2)^{-1}.$$

From this and the elementary inequality $4(1-r^2)|1-r^2e^{i\phi}|^{-2} \ge Pr(e^{i\phi})$ we deduce that (ii) holds for $\delta < r < 1$. Then it clearly holds for all r, $0 \le r < 1$.

Conversely suppose that (i) and (ii) hold. As indicated in Lemma 1 it is sufficient to derive (1.1) for those $f \in \mathcal{P}_0$ that are the boundary functions of functions zerofree and holomorphic in |z| < 1, and thus we may restrict our proof to the case p = 1.

$$\begin{split} &\int \left| f(re^{i\phi}) \right| w(e^{i\phi}) \, d\sigma(\phi) \\ &= \int \left| f(re^{i\phi}) g(re^{i\phi}) \right| \, \left| \, g(e^{i\phi}) / g(re^{i\phi}) \, \right| \, d\sigma(\phi) \\ &\leq \int \left[\, \int \left| f(e^{i\psi}) g(e^{i\psi}) \, \right| P_r(e^{i(\phi-\psi)}) d\sigma(\psi) \, \right] \left| \, g(e^{i\phi}) / g(re^{i\phi}) \, \right| \, d\sigma(\phi), \end{split}$$

which by the Fubini theorem and (ii) is

$$\leq K_2 \int |f(e^{i\psi})| w(e^{i\psi}) d\sigma(\psi).$$

Thus (1.1) is true for $0 \le r < 1$, and the proof is complete.

3. Approximate identities. We shall set about stating some problems equivalent to problem B.

DEFINITION 1. By an approx id (approximate identity) $\{k_{\lambda}\}$ $\lambda \in A$ we mean a sequence or generalized sequence of non-negative functions k_{λ} such that

- (i) $\int k_{\lambda}(e^{i\phi}) d\sigma(\phi) = 1$ for all $\lambda \in A$, and
- (ii) $\lim_{\lambda} k_{\lambda} * f = f$ for all $f \in \mathscr{P}$.

DEFINITION 2. Let $k = \{k_{\lambda}\}_{\lambda \in \mathscr{A}}$ and $k' = \{k'_{\lambda}\}_{\lambda \in \mathscr{B}}$ be approx ids. k is weaker than k' (with respect to $L^p(d\mu)$) if whenever

$$\sup_{1} \|k_{\lambda} * f\|_{p} \leq K_{1} \|f\|_{p} \text{ for all } f \in \mathscr{P},$$

then there exists K_2 such that

$$\sup_{\lambda} \| k_{\lambda}' * f \|_{p} \leq K_{2} \| f \|_{p} \text{ for all } f \in \mathscr{P}.$$

If k is weaker than k' and k' is weaker than k, then k and k' are said to be equisummable (with respect to $L^p(d\mu)$).

The approx ids we shall consider are the

- (i) Abel $\{P_r : \delta < r < 1\}$;
- (ii) generalized Abel $\{P_{\alpha,r}: \delta < r < 1\}$, where

(3.1)
$$P_{\alpha,r}(e^{i\phi}) = k_{\alpha,r}(1-r)^{2\alpha-1} \left| 1 - re^{i\phi} \right|^{-2\alpha};$$

 $\alpha > 1/2$ and $k_{\alpha,r}$ is chosen so $\int P_{\alpha,r} d\sigma = 1$;

- (iii) moving average $\{Q_h: 0 < h < \delta \le \pi\}$, where $Q_h(e^{i\phi}) = \pi/h$ if $|\phi| \le h$ and 0 if $\pi \ge |\phi| > h$; and
- (iv) Fejér $\{F_n : n = N, N + 1, N + 2, ...\}$, where

$$F_n(e^{i\phi}) = \frac{1}{n+1} \frac{\sin^2 [1/2(n+1)\phi]}{\sin^2 (\phi/2)},$$
 and

N is a fixed non-negative integer.

We shall list some pertinent properties of the less familiar $P_{\alpha,r}$ later. Now it will be expedient to introduce the approx id $\{Q_{h_j}\}$, where $h_j = \pi(j+1)^{-1}$ with j ranging over all sufficiently large positive integers.

LEMMA 3. The first four approx ids listed above are all weaker than $\{Q_{h_i}\}$.

Proof. This is a sequence of the inequalities

$$(3.3) P_{\alpha,r} \ge K_3 Q_{1-r} for fixed \alpha,$$

and $F_j \ge K_4 Q_{h_j}$. This second inequality is easily deduced from the elementary inequalities $|\sin \psi| \le |\psi|$ and $\sin \phi \ge 2/\pi \phi$ for $\phi \in [0, \pi/2]$. (3.3) will be proved later.

LEMMA 4. Suppose h is a fixed number in $(0,\pi]$, and $\|Q_h *f\|_p \le K_1 \|f\|_p$ for all $f \in \mathcal{P}$. Then

- (i) $||1*f||_p \leq K_2 ||f||_p$ for all $f \in \mathcal{P}$ and
- (ii) the linear functionals

$$l_n(f) = \int f(e^{i\phi}) e^{-in\phi} d\sigma(\phi), f \in \mathcal{P}, are L^p(d\mu) continuous.$$

Proof. Let A be the operator on $\mathscr{P} \subset L^p(du)$ that maps any f into $Q_h * f$. For some sufficiently large n there exists $\varepsilon > 0$ such that $A^n f \ge \varepsilon \int f d\sigma$ for all non-negative $f \in \mathscr{P}$. Thus under the assumptions of the lemma

$$\varepsilon \int |f| d\sigma \left(\int du \right)^{1/p} \le \|A^n f\|_p \le K_i^n \|f\|_p ,$$

so (i) is true. (ii) is an immediate consequence of (i).

LEMMA 5. $\{Q_{h_j}: j \geq M\}$ is a weaker approx id than $\{Q_h\}_{0 < h \leq \pi}$.

Proof. Assume $\sup_j \|Q_{h_j} * f\|_p \le K \|f\|_p$ for all $f \in \mathscr{P}$. First suppose that $0 < h \le h_M$, so there exists an integer $n \ge M$ such that $h_{n+1} < h \le h_n$. Clearly $h_n \le 2h$, so $Q_h \le Q_{h_n+1} + 2Q_{h_n}$ and $\|f * Q_h\| \le 3K \|f\|$ for all $f \in \mathscr{P}$.

If $\pi \ge h > h_M$, then Lemma 4(i) guarantees that

$$||f * Q_h|| \le K_2 ||f||$$
 for all $f \in \mathscr{P}$.

Lemma 6. Suppose $k(e^{i\phi})$ is an even σ -absolutely continuous function and put $k_1(e^{i\phi}) = (d/d\phi) k(e^{i\phi})$. Suppose further that

(i) $|k(e^{i\pi})| \leq K_1$, $\int |\phi k_1(e^{i\phi})| d\sigma(\phi) \leq K_2$, and

(ii) $\sup\{\|Q_h*f\|_p:0< h\leq \pi\}\leq K_3\|f\|_p \text{ for all } f\in\mathscr{P}.$ Then

$$||k*f||_p \le (K_1K_3 + 2K_2K_3) ||f||_p \text{ for all } f \in \mathcal{P}.$$

Proof. Assume (i), (ii) and let $0 < \psi \le \pi$. Then

$$k(e^{i\psi}) - k(e^{i\pi}) = -2\pi \int_{\psi}^{\pi} k_1(e^{i\phi}) d\sigma(\phi) = -2 \int_{0}^{\pi} Q_{\phi}(e^{i\psi}) \phi k_1(e^{i\phi}) d\sigma(\phi),$$

so

$$\| (k - k(e^{i\pi})) * f \|_{p} \le 2 \int_{0}^{\pi} \| Q_{\phi} * f \|_{p} | \phi k_{1}(e^{i\phi}) | d\sigma(\phi) \le 2K_{3}K_{2} \| f \|_{p}.$$

Finally

$$\begin{aligned} \| k * f \|_{p} & \le \| (k - k(e^{i\pi})) * f \|_{p} + | k(e^{i\pi}) | \| 1 * f \|_{p} \\ & \le (2 K_{2} K_{3} + K_{1} K_{3}) \| f \|_{p} \text{ for all } f \in \mathscr{P}. \end{aligned}$$

THEOREM 2. The Abel, generalized Abel, Fejér and moving average approximate identities are equisummable with respect to $L^p(d\mu)$.

Proof. In view of Lemmas 3 and 5 we have only to show that $\{Q_h\}_{0 \le h < \pi}$ is weaker than the generalized Abel and Fejér approx ids. The argument in [11, p. 155] shows $P_{\alpha,r}$ satisfies the hypotheses of Lemma 6, as does a dominant of the Fejér kernel.

4. Generalized Abel approximate identities. We list here some properties of the functions $P_{\alpha,r}$ defined in (3.1). From [5, p. 81] we have

$$F(\alpha,\alpha,1,r^2) = \int \left|1-re^{i\phi}\right|^{-2\alpha}d\sigma(\phi), \ \alpha > \frac{1}{2},$$

where F is the hypergeometric function. Since

(4.1)
$$\lim_{r\to 1} (1-r)^{2\alpha-1} F(\alpha,\alpha,1,r^2) = \frac{\Gamma(2\alpha-1)}{(\Gamma(\alpha))^2}$$

[12, p. 299] it follows that for fixed α , $\infty > \alpha > 1/2$, $\{k_{\alpha,r}: 0 \le r < 1\}$ is bounded away from 0 and ∞ .

Now we prove (3.3). If $|\phi| \le 1 - r \le 1$, then

$$P_{\alpha,r}(e^{i\phi}) = k_{\alpha,r}(1-r)^{2\alpha-1} \left[(1-r)^2 + 4r \sin^2 \phi/2 \right]^{-\alpha}$$

$$\geq k_{\alpha,r}(1-r)^{2\alpha-1} \left[(1-r)^2 + \phi^2 \right]^{-\alpha}$$

$$\geq K Q_{1-r}(e^{i\phi}).$$

The inequalities

(4.2)
$$K |1 - re^{i\phi}|^{-1} \ge |1 - r^2 e^{i\phi}|^{-1}$$

and

(4.3)
$$K \left| 1 - r^3 e^{i\phi} \right|^{-1} \ge \left| 1 - r^2 e^{i\phi} \right|^{-1} \ge K_2 \left| 1 - r e^{i\phi} \right|^{-1}$$

are also easily demonstrated.

Of course $P_r = P_{1,r}$. A paraphrase of the proof of (2.1) of Theorem 1 shows that the condition

(4.4)
$$\int P_{\alpha,r}(e^{i(\phi-\psi)}) \left| g(e^{i\phi}) / g(re^{i\phi}) \right| d\sigma(\phi) \leq K$$

is necessary for $\mu \in \mathcal{Q}_2$ if α (fixed) is > 1/2. We shall use (4.4) later.

5. Solution of problem B. We introduce the notation f_h for $Q_h * f$, so $f_h(e^{i\phi}) = (\pi/h) \int_{-h}^{h} w(e^{i(\phi + \psi)}) d\sigma(\psi)$. We first treat problem B for the easy case p = 1.

LEMMA 7. $\mu \in \mathcal{B}_1$ if and only if

- (i) $d\mu = w d\sigma$ and
- (5.1) (ii) $w_h \le K w$ a.e. for each h, $0 < h \le \pi$ In fact, for fixed h, $0 < h \le \pi$ $\sup \{ \| Q_h * f \|_1 : \| f \|_1 = 1, f \in \mathcal{P} \} = \sigma$ -ess $\sup (w_h/w)$.

Proof. $\mathcal{B}_1 \subset \mathcal{Q}_1$ so (i) is certainly necessary. In fact $\log w \in L^1(d\sigma)$ so w vanishes on no set of positive measure. The following statements are equivalent to the statement $\mu \in \mathcal{B}_1$:

- (a) $L_1(f) = \int f w_h d\sigma$ is a bounded linear functional on $L^1(d\mu)$;
- (b) $L_2(f) = \int f(w_h/w) d\sigma$ is a bounded linear functional on $L^1(d\sigma)$;
- (c) $||L_2|| = \sigma$ -ess sup (w_h/w) .

This set of equivalences proves the lemma.

For any p > 1 we define q by $p^{-1} + q^{-1} = 1$. By considering the adjoint operator of $A: f \to Q_h * f$ we will prove the following duality result.

THEOREM 3. Let p > 1. $\mu \in \mathcal{B}_p$ if and only if

- (i) $d\mu = w d\sigma$, with
- (ii) $w^{1-q} \in L^1(d\sigma)$, and
- (iii) $\sup \left\{ \int |Q_h * f|^q w^{1-q} d\sigma : 0 < h \le \pi \right\} \le K \int |f|^q w^{1-q} d\sigma \text{ for all } f \in \mathcal{P}.$

Proof. Suppose $\mu \in \mathcal{B}_p$. Then $\mu \in \mathcal{Q}_p$, so (i) holds and $\log w \in L^1(d\sigma)$. We see from Lemma 4 that $l: f \to \int f d\sigma$ is an element of the adjoint space $L^{p*}(d\mu)$ of $L^p(d\mu)$. Thus there exists $h \in L^q(d\mu)$ with $\int f d\sigma = \int f h w d\sigma$ for all $f \in \mathcal{P}$. Necessarily h w = 1, so $\infty > \int |h|^q w d\sigma = \int w^{1-q} d\sigma$, which proves (ii). To show that (iii) holds we consider the adjoint operator A^* of A. Since $||A^*|| = ||A||$ we have

$$\int \left| w^{-1} \left[Q_h * (hw) \right] \right|^q w d\sigma \le \left\| A \right\|^q \int \left| h \right|^q w d\sigma$$

for all $h \in \mathcal{P}$. Put f = hw to obtain (iii).

Conversely suppose (i), (ii), (iii) hold. Then one can interchange the roles of p and q to derive (1.1).

It should be noted that the moving average approx identity in (iii) may be replaced by any of the approx ids of Theorem 2 without affecting the validity of the proof.

Our solution of problem B is stated in

THEOREM 4. $\mu \in \mathcal{B}_p$ if and only if

- (i) μ is absolutely continuous, $d\mu = wd\sigma$,
- (ii) $w^{1-q} \in L^1(d\sigma)$ if p > 1, and
- (iii)
- (5.2) $Q_h * (w_h/w)^{q-1} \le K$ for all $h, 0 < h \le \pi$, if p > 1, or (5.1) holds if p = 1.

Proof. Lemma 7 takes care of the case when p = 1, so assume that p > 1. Then (i), (ii) follow from Theorem 3. We shall defer the rather involved proof of the necessity of (iii) until later.

Conversely, suppose (i), (ii), (iii) hold and let $f \in \mathcal{P}$, $0 < h \le \pi$. Then

$$\int |Q_h * f|^q w^{1-q} d\sigma = \int |Q_h * (f w^{-1/p} w^{1/p})|^q w^{1-q} d\sigma,$$

which by the Hölder inequality is $\leq \int [Q_h * (|f|^q \cdot w^{1-q})] \cdot [w_h/w]^{q-1} d\sigma$. By the Fubini theorem and (iii) this is $\leq K \int |f|^q w^{1-q} d\sigma$. Thus Theorem 3 guarantees that $\mu \in \mathcal{B}_n$.

We note in passing that due to the duality Theorem 3 we can replace (iii) by the condition

(iii')
$$Q_h * \lceil (w^{1-q})_h / w^{1-q} \rceil^{p-1} \le K$$
.

Our task now is to prove that (iii) is a necessary condition for $\mu \in \mathcal{B}_p$. We thus assume that $\mu \in \mathcal{B}_p$, p > 1, so $d\mu = |g| d\sigma$ as in Theorem 1.

LEMMA 8. If $0 \le r < 1$,

$$\int P_r(e^{i(\phi-\psi)})(1-r^2e^{i(\xi-\psi)})^{-1}g^{-1/p}(e^{i\psi})d\sigma(\psi)=J_1(e^{i\phi})+J_2(e^{i\phi}),$$

where

$$J_1(e^{i\phi}) = (1 - re^{i(\xi - \phi)})^{-1} g^{-1/p} (re^{i\phi})$$

and

$$J_2(e^{i\phi}) = -r(1-r^2)e^{i(\xi-\phi)}(1-re^{i(\xi-\phi)})^{-1}(1-r^3e^{i(\xi-\phi)})^{-1}g^{-1/p}(r^2e^{i\xi}).$$

Proof. Use the partial fraction expansion of P_r . If $z = re^{i\phi}$, $z^* = re^{-i\phi}$, $\zeta = r^2e^{i\xi}$, then

$$P_{r}(e^{i(\phi-\psi)})(1-\zeta e^{-i\psi})^{-1} = \left[(1-ze^{-i\psi})^{-1} - (1-\zeta e^{-i\psi})^{-1} \right] e^{i\psi} \cdot (z-\zeta)^{-1} + z^{*}e^{i\psi}(1-z^{*}e^{i\psi})^{-1}(1-\zeta e^{-i\psi})^{-1}.$$

Since (1.1) holds, necessarily

$$(1-r^2)^{p-1} \int \left| J_1 + J_2 \right|^p w d\sigma \le K_1 (1-r^2)^{p-1} \int \left| 1 - r^2 e^{i(\xi - \psi)} \right|^{-p} d\sigma(\psi),$$

which is $\leq K_2$ by (4.1). In addition, (4.4) guarantees that $(1-r^2)^{p-1} \int |J_1|^p w d\sigma \leq K_3$, so by the Minkowski inequality $(1-r^2)^{p-1} \int |J_2|^p w d\sigma \leq K_4$. But this implies that

$$r^{p}(1-r^{2})^{2p-1}\int \left|1-re^{i(\xi-\phi)}\right|(1-r^{3}e^{i(\xi-\phi)})^{-p}w(\phi)d\sigma(\phi) \leq K_{4}\left|g(r^{2}e^{i\xi})\right|.$$

By invoking (4.2), (4.3) and replacing r^2 by r we obtain

LEMMA 9. Suppose $\mu \in \mathcal{B}_p$, p > 1. Then $d\mu = wd\sigma$ and

(5.3)
$$\int P_{p,r}(e^{i(\xi-\phi)}) w(\phi) d\sigma(\phi) \leq K_5 \left| g\left(re^{i\xi}\right) \right|$$

for all $r, \frac{1}{2} \le r < 1$.

It is an open question whether Lemma 9 is valid if " $P_{p,r}$ " is replaced by " P_r ". Our preoccupation with the generalized Abel approx ids is, of course, in anticipation of inequality (5.3). With (5.3) we can wrap up the proof of Theorem 4. For, if $r \ge \frac{1}{2}$

(*)
$$P_{p,r} * [(P_{p,r} * w)/w]^{q-1} \le K_5 P_{p,r} * |(P_r * g)/w|^{q-1}$$

$$= K_5 P_{p,r} * \left| g^{1-q} / (P_r * g^{1-q}) \right|.$$

By Theorem 3 we know that

$$\sup_{r} \int |P_{r} * f|^{q} w^{1-q} d\sigma \leq K \int |f|^{q} w^{1-q} d\sigma$$

for all $f \in \mathcal{P}$, thus this relation is true for all $f \in \mathcal{P}_0$. Thus from (4.4) with g replaced by g^{1-q} we deduce that (**) is $\leq K_6$. An application of (3.3) to (*) derives (5.2) for all h with $|h| \leq 1/2$. The inequality (5.2) is obviously true for $h \leq \pi$ bounded away from 0, so the proof of Theorem 4 is complete.

6. Examples and concluding remarks. It is an easy matter to show that $\mathcal{D}_p \subset \mathcal{B}_p$. Let $f \in \mathcal{P}$. Then

$$P_r * f = (1 - r) \sum_{n=0}^{\infty} (D_n * f) r^n,$$

so, if $\mu \in \mathcal{D}_p$

$$\begin{aligned} \|P_r * f\| &\leq (1 - r) \sum_{0}^{\infty} \|D_n * f\| r^n \\ &\leq K (1 - r) \sum_{0}^{\infty} \|f\| r^n = K \|f\|, \end{aligned}$$

and thus $\mu \in \mathcal{B}_{p}$.

Babenko [1] has shown that the measures $w_{\alpha}(e^{i\phi}) d\sigma(\phi) = |\phi|^{\alpha} d\sigma$, $-\pi < \phi \le \pi$, $-1 < \alpha < p-1 > 0$ are in \mathcal{D}_p . Thus they are also in \mathcal{B}_p .

The following theorem indicates how certain types of local conditions on w are sufficient to guarantee that $\mu \in \mathcal{B}_n$.

THEOREM 5. Let $w \in L^1(d\sigma)$ and suppose that for each point $\phi_0 \in C$ there exists some measure $v(e^{i\phi})d\sigma(\phi) \in \mathcal{B}_p$ and constants δ_1 , δ_2 such that

$$0 < \delta_1 v(e^{i\phi}) \le w(e^{i\phi}) \le \delta_2 v(e^{i\phi})$$

for all ϕ in a neighborhood of ϕ_0 . Then $wd\sigma \in \mathcal{B}_p$.

Proof. This follows from Theorem 4 and the Borel-Lebesgue theorem. It is clear that if (5.2) holds for all sufficiently small h > 0, and since $w^{1-q} \in L^1(d\sigma)$, necessarily (5.2) holds for all h, $0 < h \le \pi$.

When applying Theorem 5 the functions w_{α} of above or any positive constant function are eligible v's.

It should be noted that if $f \in L^2(d\mu)$ where $\mu \in \mathcal{B}_p$, then

$$\int |f| d\sigma = \int |f| w^{1/p} w^{-1/p} d\sigma$$

$$\leq ||f||_p \cdot (\int w^{1-q} d\sigma)^{1/q} < \infty,$$

so $f \in L^1(d\sigma)$. Thus the Fourier coefficients and Abel means which are obtained by completion as described in the introduction coincide with the Fourier coefficients and Abel means for $L^1(d\sigma)$ functions. The story is different for $\mu \in \mathcal{Q}_p$. Any $f \in H^p(d\mu)$, $\mu \in \mathcal{Q}_p$, is holomorphic in |z| < 1, in fact $f \cdot g^{1/p} \in H^p(d\sigma)$. Thus f is of Nevanlinna class [11, p. 271]. Thus the Fourier coefficients and Abel means are those of Fourier power series. Furthermore f need not be in $L^1(d\sigma)$.

THEOREM 6. The functions $w_{\alpha}(e^{i\phi}) = |\phi|^{\alpha}$, $-\pi < \phi \leq \pi$, $\alpha > -1$ are such that $w_{\alpha} d\sigma \in \mathcal{Q}_{p}$.

Proof. If
$$-1 < \alpha < n-1 > 0$$
, $w_{\alpha} \in \mathcal{B}_n \subset \mathcal{Q}_n = \mathcal{Q}_p$.

Local conditions similar to those of Theorem 5 can be imposed on w that are sufficient to guarantee that $\mu \in \mathcal{Q}_p$.

As observed in the introduction T is bounded and has a bounded inverse. This is so because $|||f|||_p$ and $||f||_p$ can be viewed as being equivalent norms for $L_0^p(d\mu)$. We next show that if T is an isometry then necessarily μ is a multiple of Lebesgue measure. This is a consequence of the following

THEOREM 7. Let p > 0. Suppose that for some $r, 0 \le r < 1$

for all $f \in \mathcal{P}_0$. Then μ is a multiple of Lebesgue measure.

Proof. Normalize μ so $\int d\mu = 1$. Assume (6.1) holds for some p > 0. Then it holds for all p > 0 and upon letting $p \to 0$ we obtain

$$\exp \int \log \left| f(re^{i\phi}) \right| d\mu(\phi) \le \exp \int \log \left| f \right| d\mu(\phi)$$

so

$$\int (\log |f|) \cdot (P_r * d\mu) d\sigma \leq \int \log |f| d\mu(\phi)$$

for all $f \in \mathcal{P}_0$. By putting $f(z) = \exp \pm (1 + se^{-i\alpha}z)/(1 - se^{-i\alpha}z)$, $0 \le s < 1$ we see that

$$P_s * (P_r * d\mu) = P_s * d\mu,$$

$$P_{rs} * d\mu = P_s * d\mu,$$

so

and by comparing Fourier expansions we see that $\mu = \sigma$.

In closing we suggest that the following problems merit further study:

(i) Find representation theorems for the elements of \mathcal{Q}_p and \mathcal{B}_p ;

- (ii) Solve problems A and B for wider classes of approximate identities;
- (iii) Characterize the measures μ for which $f \to \sup_{r} |P_r * f|$ is a bounded operation.
 - (iv) Extend the results to several variables and more general groups.

REFERENCES

- 1. K. I. Babenko, On conjugate functions, Dokl. Akad. Nauk SSSR (N.S.) 62 (1948), 157-160. (Russian)
- 2. A. Beurling, On two problems concerning linear transformations in Hilbert space, Acta Math. 81 (1949), 239-255.
 - 3. Y. Chen, Theorems of asymptotic approximation, Math. Ann. 140 (1960), 360-407.
- 4. R. E. Edwards, The stability of weighted Lebesgue spaces, Trans. Amer. Math. Soc. 93 (1959), 369-394.
 - 5. Erdélyi et al., Higher transcendental functions, Vol. I, McGraw-Hill, New York, 1953.
- 6. V. F. Gapoškin, A generalization of a theorem of M. Riesz on conjugate functions, Mat. Sb. 46 (88) (1958), 359-372. (Russian)
- 7. V. Grenander and G. Szegö, *Toeplitz forms and their applications*, Univ. of Calif. Press, Berkeley and Los Angeles, 1958.
- 8. G. H. Hardy and J. E. Littlewood, Some more theorems concerning Fourier series and Fourier power series, Duke Math. J. 2 (1936), 354-382.
- 9. H. Helson and G. Szegö, A problem in prediction theory, Ann. Mat. Pura Appl. (IV) 51 (1960), 107-138.
- 10. I. I. Hirschman, The decomposition of Walsh and Fourier series, Mem. Amer. Math. Soc. No. 15 (1955).
 - 11. A. Zygmund, Trigonometric series. I, Cambridge, 1959.
 - 12. E. T. Whittaker and G. N. Watson, A course of modern analysis, Cambridge, 1952.

University of Virginia,

CHARLOTTESVILLE, VIRGINIA