ON THE ORTHOGONALITY OF MEASURES INDUCED BY L-PROCESSES(1)

BY MAREK FISZ

1. Introduction and summary. Let $\{X(t), 0 \le t \le 1\}$ be a real, centered stochastic process with independent increments with no fixed points of discontinuity and with X(0) = 0. The random variable X(t) has then, for any $0 \le t \le 1$, an infinitely divisible distribution function F(t,x) with characteristic function $\phi(t,v)$ satisfying Lévy's [9] formula

(1)
$$\log \phi(t,v) = i\gamma(t)v - \frac{1}{2}\sigma^2(t)v^2 + \left[\int_{-\infty}^{0-} + \int_{0+}^{\infty} A(u,v)d_u H(t,u)\right],$$

where $\gamma(t)$ and $\sigma(t) \ge 0$ are continuous functions and $\sigma(t)$ is nondecreasing, $A(u,v) = e^{iuv} - 1 - ivu/(1 + u^2)$, H(t,u) is, for any $t \in [0,1]$, defined and nondecreasing for u < 0 and u > 0, $H(t, -\infty) = H(t, +\infty) = 0$ and, for any finite $\varepsilon > 0$,

$$\left[\int_{-\varepsilon}^{0-} + \int_{0+}^{\varepsilon} u^2 d_u H(t,u)\right] < \infty.$$

For any $t \in [0,1]$ and u < 0 (u > 0), the function H(t,u)(-H(t,u)) is equal to (see Doob [3, VIII, §7]) the expected number of jumps of the process X(t) before time t of size less than u (larger than u).

We remind the reader that an infinitely divisible distribution function F(x) is said to belong to the class L ($F \in L$) if it is a limit, in the sense of weak convergence, of a sequence of distribution functions $F_n(x)$ of the form

$$F_n(x) = P\left(\frac{X_1 + \ldots + X_n}{B_n} - A_n < x\right),$$

where $\{X_j\}$ (j=1,2,3,...) is a sequence of independent random variables, $B_n > 0$ and A_n are some sequences of constants, and X_j/B_n is asymptotically constant.

If $F \in L$, the function H(t, u) assigned to F by formula (1), has for every $t \in [0, 1]$, at any point u < 0 and u > 0 right and left derivatives in u and uH'(t, u) is non-increasing for u < 0 and u > 0, where H'(t, u) denotes either the right or the left

Presented to the Society, April 13, 1962; received by the editors December 4, 1961.

⁽¹⁾ Research supported in part by National Science Foundation Grant NSF-G14146 at Columbia University.

derivative in u. The function H(t,u) satisfies for arbitrary $u_1 < u_2 < 0$ and for arbitrary $0 < u_1 < u_2$ the inequality

(2)
$$H(t, u_2) - H(t, u_1) \ge H\left(t, \frac{u_2}{\alpha}\right) - H\left(t, \frac{u_1}{\alpha}\right)$$

for any $0 < \alpha < 1$. (See Gnedenko and Kolmogorov [5, §30].)

We introduce the following

DEFINITION. The stochastic process $\{X(t), 0 \le t \le 1\}$ with independent increments will be called a *L-process* if, for any $0 \le t \le 1$, the distribution function F(t,x) of X(t) belongs to L.

By Kolmogorov's [7] theorem, any real stochastic process $\{X(t), 0 \le t \le 1\}$ induces in the space $\mathfrak A$ of real functions a probability measure P_X , defined on the minimal Borel field $\mathcal F$ of subsets of $\mathfrak A$, generated by the cylindric sets, i.e., by the sets of all real functions f(t) such that, for $n = 1, 2, 3, \cdots$, and any t_1, \cdots, t_n from the interval [0,1], the vector $\{f(t_1), \ldots, f(t_n)\}$ takes on values from Borel sets in the n-dimensional Euclidean space.

Let now P_1 and P_2 be two measures defined on a Borel field \mathscr{F} from some space \mathfrak{A} . The measure P_2 is said to be absolutely continuous with regard to P_1 ($P_2 \leqslant P_1$) if, for any set $A \in \mathscr{F}$, the equation $P_1(A) = 0$ implies $P_2(A) = 0$. If both $P_1 \leqslant P_2$ and $P_2 \leqslant P_1$, the measures P_1 and P_2 are called equivalent $(P_1 \sim P_2)$. The measures P_1 and P_2 are said to be orthogonal or mutually singular $(P_1 \perp P_2)$ if for some $A \in \mathscr{F}$ both of the equations

$$P_1(A) = 0, \qquad P_2(\mathfrak{A} - A) = 0$$

hold.

The question of equivalence and orthogonality of measures in function spaces has attracted much attention. The pioneering work is due to Kryloff and Bogoliuboff [8]. An important result is due to Kakutani [6] who has shown that if P_i (i=1,2) is a probability measure induced by a sequence of independent random variables X_{ij} ($j=1,2,\cdots$) and for every j the probability measures of X_{1j} and X_{2j} are equivalent, then either $P_1 \sim P_2$ or $P_1 \perp P_2$. The problem of equivalence and orthogonality of measures induced by Gaussian processes has been discussed by Cameron and Martin [2], Prohorov [10], Baxter [1] and Feldman [4]. Necessary and sufficient conditions for the relation $P_2 \ll P_1$ when P_1 and P_2 are probability measures induced by processes with independent increments whose parameter range is finite have been given by Skorohod [11]. It is the purpose of this note to give conditions for $P_{X_1} \perp P_{X_2}$ when P_{X_1} and P_{X_2} are induced by centered L-processes with finite parameter range. It is shown, in particular, that if the L-processes are stable processes with unequal H(t,u) functions, then $P_{X_1} \perp P_{X_2}$.

2. Theorems and proofs. Let $\{X_i(t), 0 \le t \le 1\}$ (i = 1, 2) be L-processes with $H_i(t, u)$ in formula (1). If, for some t and $-\infty < u < 0$ or $0 < u < \infty$, both

 $H_1(t,u)$ and $H_2(t,u)$ are identically 0, we shall agree to say that, on the considered half-line in the plane (t,u), $H_2'(t,u)/H_1'(t,u)=1$. We shall prove the following theorems.

THEOREM 1. Let P_{X_1} and P_{X_2} be probability measures induced in the space of real functions by the centered L-processes $\{X_1(t), 0 \le t \le 1\}$ and $\{X_2(t), 0 \le t \le 1\}$ with no fixed points of discontinuity, with $X_1(0) = X_2(0) = 0$ and with $\gamma_i(t)$, $\sigma_i(t)$ and $H_i(t,u)$ (i=1,2) in formula (1). Let $H_i'(t,u)$ (i=1,2), denote the left-hand and right-hand derivatives in u of H(t,u) for u < 0 and u > 0, respectively. If, for some $t_0 \in (0,1]$, $H_1(t_0,u)$ and $H_2(t_0,u)$ are not identically 0, the limits in (3) and (4), finite or infinite, exist, and at least one of the relations

(3)
$$\rho_{-}(t_0) = \lim_{u \uparrow 0-} \frac{H'_2(t_0, u)}{H'_1(t_0, u)} = 1,$$

(4)
$$\rho_{+}(t_0) = \lim_{u \downarrow 0} \frac{H'_2(t_0, u)}{H'_1(t_0, u)} = 1$$

does not hold, then $P_{X_1} \perp P_{X_2}$.

THEOREM 2. Let P_{X_1} and P_{X_2} have the same meaning as heretofore. If $X_1(t)$ and $X_2(t)$ are centered, stable processes and, for some $t_0 \in (0,1]$, $H_1(t_0,u) \not\equiv H_2(t_0,u)$, then $P_{X_1} \perp P_{X_2}$.

The proof of Theorems 1 and 2 will be preceded by the proof of three lemmas concerning the H function of $F \in L$. For the sake of brevity, we shall write in the formulation of the lemmas and their proofs H(u), without referring to the argument t.

LEMMA 1. Let the distribution function $F \in L$ and let H(u) correspond to F by formula (1). Then for u < 0 (u > 0) the relation

(5)
$$\lim_{u \downarrow 0-} H(u) = \infty \left(\lim_{u \downarrow 0+} H(u) = -\infty \right)$$

holds, unless $H(u) \equiv 0$ for u < 0 (u > 0).

Proof of Lemma 1. Suppose that $H(u) \not\equiv 0$ for u < 0 and that relation (5) does not hold. Since H(u) is nondecreasing,

$$\lim_{u \to 0^{-}} H(u) = a < \infty,$$

and, by the continuity of H(u), it would be possible to find for arbitrary $\varepsilon > 0$ and $\eta > 0$ two numbers $u_1 < u_2 < 0$ such that $|u_1| < \eta$ and $H(u_2) - H(u_1) < \varepsilon$. Since η is arbitrary, it would then follow from formula (2) that the increment of H on an arbitrary large interval $[u_1/\alpha, u_2/\alpha]$ is less than ε . Taking into account that

 $\varepsilon > 0$ may be arbitrarily small, we would get $H(u) \equiv 0$ for u < 0, contrary to the assumption; relation (5), therefore, holds.

The case of u > 0 may be proved in the same way.

LEMMA 2. Let $F \in L$ and let H(u) be the function assigned to F by formula (1). If, at some point $u_0 < 0$ ($u_0 > 0$), $H(u_0) > 0$ ($H(u_0) < 0$), the function H(u) is for all $u_0 \le u < 0$ ($0 < u \le u_0$) strictly increasing.

Proof of Lemma 2. Let $H(u_0) > 0$ at $u_0 < 0$ and suppose that at two points u' and u'' ($u_0 \le u' < u'' < 0$) the equality H(u') = H(u'') holds. Since H(u) is nondecreasing this would imply H(u) = const. for $u' \le u \le u''$.

Now relation (2) implies that for any u_1 , u_2 such that $u_1 < u_2 < u''$ and $u_2 - u_1 = u'' - u'$ the inequality

(7)
$$H(u'') - H(u') \ge H(u_2) - H(u_1)$$

holds. Indeed, suppose for the moment that $u' < u_2$ and take $\alpha = u''/u_2$. We have then by (2)

$$H(u'') - H(u') \ge H(u_2) - H\left(\frac{u'u_2}{u''}\right) \ge H(u_2) - H(u_1).$$

If we drop the assumption $u' < u_2$, we arrive at (7) by repeating the argument a finite number of times.

Take now points $u_1 < u_0 < u_2 < \cdots < u_k < u' < u_{k+1} < u'' < 0$ such that $u_j - u_{j-1} = u'' - u'$ $(j = 2, \dots, k+1)$. Since H(u) is constant for $u' \le u \le u''$, the same will, by relation (7), be true for the interval $[u_1, u'']$. Since we can extend this procedure to any interval [a, u''] with $a < u_0$, the increase of H(u) on an arbitrary large interval (a, u'') would be equal 0, contrary to the assumption that $H(u_0) - H(-\infty) > 0$.

For u > 0 the proof runs along the same lines.

LEMMA 3. Let H(u) be the function assigned to $F \in L$ by formula (1). Then H(u) is an absolutely continuous function on $(-\infty, 0-)$ and on $(0+, \infty)$.

Proof. For the proof it is sufficient to show that H(u) is absolutely continuous on any interval [a,b] with a < b < 0 or 0 < a < b. Let a < b < 0 and $H(b) \neq 0$. For an arbitrary $\varepsilon > 0$ take c < b such that $H(b) - H(c) < \varepsilon$. Put $\delta = b - c$ and consider the disjoint intervals (a_i,b_i) $(i=1,2,\cdots,n)$ with $a \leq a_1 < b_1 < a_2 < b_2 < \cdots < a_n < b_n \leq b$ such that $\sum_{i=1}^n (b_i - a_i) < \delta$ and otherwise arbitrary. By (7) we get

$$\sum_{i=1}^{n} \left[H(b_i) - H(a_i) \right] < \varepsilon.$$

Since n is arbitrary, the absolute continuity of H(u) on [a, b] has been proved. For intervals on the half-line u > 0, the proof is analogous.

Proof of Theorem 1. We remark first of all that, without restricting the generality of our considerations, we may assume that $X_1(t)$ and $X_2(t)$ are separable. Indeed, if they were not separable, we would consider the separable processes $X_1^*(t)$ and $X_2^*(t)$ that are stochastically equivalent to $X_1(t)$ and $X_2(t)$, repectively. (See Doob [3, p. 57].) Since, for i = 1, 2, the finite dimensional distributions of $X_i(t)$ and $X_i^*(t)$ are identical, the probability measure $P_{X_i^*}$ induced in \mathfrak{A} by $X_i^*(t)$ is equal to P_{X_i} for any set A from \mathscr{F} . Therefore, to show that $P_{X_1} \perp P_{X_2}$ it would be enough to show that for some set A from \mathscr{F} both of the equations $P_{X_1^*}(A) = 0$, $P_{X_2^*}(A) = 1$ hold. We therefore assume, in the proofs of Theorems 1 and 2, that $X_1(t)$ and $X_2(t)$ are separable and, in proving orthogonality, we shall use sets $A \in \mathscr{F}$ only.

We remark now that the sample functions of a centered, separable L-process $\{X(t), 0 \le t \le 1\}$ with no fixed points of discontinuity and with $H(t_0, u) \ne 0$ for some $t_0 \in (0, 1]$ are discontinuous, with probability 1. Indeed, let N_n denote the number of jumps before t_0 either of size $\in (-2^{-n}, -2^{-n-1}]$ or of size $\in (2^{-n-1}, 2^{-n}]$. Then the N_n form a sequence of independent Poisson variables with

$$\lambda_n = E(N_n) = H(-2^{-n-1}) - H(-2^{-n}) + H(2^{-n}) - H(2^{-n-1}).$$

By Lemma 1, we have $\sum_{n=1}^{\infty} \lambda_n = \infty$. This implies (see [3, p. 115, Theorem 2.7 (ii)]) that $\sum_{n=1}^{\infty} N_n = \infty$, with probability 1.

Let now $H_1(t_0, u)$ and $H_2(t_0, u)$ not be identically 0. Denote by $N_i(t_0, 0-)$ and $N_i(t_0, 0+)$ (i=1,2) the number of jumps before t_0 of the process $X_i(t)$, of negative and positive size, respectively. If $H_1(t_0, u) \equiv 0$ for u < 0 and $H_2(t_0, u) \equiv 0$ for u > 0, we have $EN_1(t_0, 0-) = EN_2(t_0, 0+) = 0$. Since the sample functions of $X_1(t)$ and $X_2(t)$ are discontinuous, the $X_1(t)$ and $X_2(t)$ processes are entirely concentrated on functions with negative and positive jumps, respectively. Hence $P_{X_1} \perp P_{X_2}$. Denote for i = 1, 2

$$a_i = a_i(t_0) = \inf\{u : u < 0, H_i(t_0, u) > 0\}$$

and suppose now that both $a_1 < 0$ and $a_2 < 0$. Make the unrestrictive assumption that $a_2 \le a_1$. We shall show that for any u_1, u_2 with $a_1 \le u_1 < u_2 \le 0$

(8)
$$\int_{u_1}^{u_2} d_u H_2(t_0, u) = \int_{u_1}^{u_2} \frac{H_2'(t_0, u)}{H_1'(t_0, u)} d_u H_1(t_0, u).$$

To see this, let us notice first that, by Lemma 2, $H'_1(t_0, u) > 0$ for $a_1 < u < 0$. Next, the derivatives of $H_1(t_0, u)$ in u exist everywhere, except possibly at points u belonging to a set of Lebesgue measure 0. By Lemma 3, this exceptional set has H_1 -measure equal to 0_i thus relation (8) holds.

Let us now assume that relation (3) does not hold; hence $\rho_- = \rho_-(t_0) \neq 1$. Suppose $\rho_- < \infty$. For $\varepsilon > 0$ arbitrary, we could then find a c < 0 such that for all u from [c, 0)

(9)
$$\left|\frac{H_2'(t_0,u)}{H_2'(t_0,u)}-\rho_-\right|\leq \varepsilon.$$

Take $\varepsilon = (1/2) | 1 - \rho_- |$ and a number c such that (9) holds. Let us choose a sequence of points u_n from [c,0) such that $H_1(t_0,u_n)-H_1(t_0,c)=n$ $(n=1,2,3,\cdots)$. Denote by $M_i(t_0,c,u_n)$ (i=1,2) the number of jumps of size $\in [c,u_n]$ of the process $X_i(t)$ before t_0 . Then $M_1(t_0,c,u_n)$ is a Poisson variable with parameter equal to n, while $M_2(t_0,c,u_n)$ is a Poisson variable with parameter equal to $H_2(t_0,u_n)-H_2(t_0,c)$.

By the Chebyshev Inequality, we have for any $\delta > 0$

$$(10) P_{X_1}\left(\left|\frac{M_1(t_0,c,u_n)}{n}-1\right| \geq \delta\right) \leq \frac{1}{\delta^2 n^2}.$$

By the Borel-Cantelli Lemma, since $\sum_{n=1}^{\infty} 1/n^2 < \infty$, relation (10) implies

(11)
$$P_{X_1}\left(\lim_{n\to\infty}\frac{M_1(t_0,c,u_n)}{n}=1\right)=1.$$

Write $H_2(t_0, u_n) - H_2(t_0, c) = G(t_0, c, u_n)$. We have, as before, for any $\delta > 0$

(12)
$$P_{X_2}\left(\left| \frac{M_2(t_0, c, u_n)}{G(t_0, c, u_n)} - 1 \right| \ge \delta \right) \le \frac{1}{\delta^2 G^2(t_0, c, u_n)}.$$

By relations (8) and (9), we have

$$(13) (\rho_{-} - \varepsilon)n \leq G(t_{0}, c, u_{n}) \leq (\rho_{-} + \varepsilon)n;$$

hence

(14)
$$\sum_{n=1}^{\infty} \frac{1}{G^2(t_0, c, u_n)} < \infty.$$

Again, by the Borel-Cantelli Lemma

(15)
$$P_{X_2}\left(\lim_{n\to\infty} \frac{M_2(t_0,c,u_n)}{G(t_0,c,u_n)} = 1\right) = 1.$$

Now, if $\rho_- < 1$, $\rho_- + \varepsilon < 1$. Since, by (13),

(16)
$$\frac{M_2(t_0, c, u_n)}{n} \le (\rho_- + \varepsilon) \frac{M_2(t_0, c, u_n)}{G(t_0, c, u_n)},$$

we have by (15)

(17)
$$P_{X_2}\left(\lim_{n\to\infty}\sup\frac{M_2(t_0,c,u_n)}{n}<1\right)=1.$$

Similarly, if $\rho_- > 1$, $\rho_- - \varepsilon > 1$. Since, again by (13),

(18)
$$\frac{M_2(t_0, c, u_n)}{n} \ge (\rho_- - \varepsilon) \frac{M_2(t_0, c, u_n)}{G(t_0, c, u_n)},$$

we have by (15)

(19)
$$P_{X_2}\left(\liminf_{n\to\infty}\frac{M_2(t_0,c_0,u_n)}{n}>1\right)=1.$$

It follows from (11), (17) and (19) that $P_{X_1} \perp P_{X_2}$.

If $\rho_- = \infty$, one gets the same result by interchanging the role of H_2 and H_1 . The proof is analogous if $H_1(t_0, u)$ and $H_2(t_0, u)$ are not identically 0 for u > 0. This remark completes the proof of Theorem 1.

Proof of Theorem 2. Let $X_1(t)$ and $X_2(t)$ be separable, centered stable processes, without fixed discontinuity points, and let, for some $t_0 \in (0,1]$, $H_1(t_0,u) \not\equiv H_2(t_0,u)$. If the exponent, say, α_1 of the process $X_1(t)$ equals 2, $H_1(t_0,u) \equiv 0$, while $H_2(t_0,u) \not\equiv 0$. We have thus $P_{X_1} \perp P_{X_2}$, since the sample functions of $X_1(t)$ are continuous, with probability 1, while those of $X_2(t)$ are almost all (P_{X_2}) discontinuous. Let now $0 < \alpha_i < 2(i = 1, 2)$. If $H_1(t_0,u) = 0$ for all u < 0 while $H_2(t_0,u) = 0$ for all u > 0, then evidently $P_{X_1} \perp P_{X_2}$. If both $H_1(t_0,u)$ and $H_2(t_0,u)$ are not identically equal to 0 for, say, all u < 0, we have

(20)
$$\frac{H'_2(t_0, u)}{H'_1(t_0, u)} = k |u|^{\alpha_1 - \alpha_2},$$

where k is some constant. Since $H_1(t_0, u) \not\equiv H_2(t_0, u)$, we have either $\alpha_1 \neq \alpha_2$, or $k \neq 1$, or both. Consequently, ρ_- equals either 0, or ∞ , or $k \neq 1$. By Theorem 1, it follows $P_{X_1} \perp P_{X_2}$.

REMARK. The following example shows that there exist L-processes $X_1(t)$ and $X_2(t)$ such that P_{X_2} is absolutely continuous with regard to P_{X_1} . Relations (3) and (4) are, of course, then satisfied.

EXAMPLE. Consider stationary, centered L-processes with $\gamma_1 = \gamma_2 = \sigma_1 = \sigma_2 = 0$ and with

$$H_1(u) = \begin{cases} 0 & (u < 0), \\ 2 \log u & (0 < u \le 1/2), \\ 2 \log u/2 & (1/2 \le u \le 2), \\ 0 & (u \ge 2), \end{cases}$$

and

$$H_2(u) = \begin{cases} 0 & (u < 0), \\ 2 \log u & (0 < u \le 1), \\ 0 & (u \ge 1). \end{cases}$$

By using Skorohod's [11] results, it is easy to check that P_{X_2} is absolutely continuous with regard to P_{X_1} .

ACKNOWLEDGEMENT. The author is most grateful to the referee for his stimulating comments.

REFERENCES

- 1. G. Baxter, A strong limit theorem for Gaussian processes, Proc. Amer. Math. Soc. 7 (1956), 522-527.
- 2. R. H. Cameron and T. W. Martin, The behavior of measure and measurability under change of scale in Wiener space, Bull. Amer. Math. Soc. 53 (1947), 130-137.
 - 3. J. L. Doob, Stochastic processes, Wiley, New York, 1953.
- 4. J. Feldman, Equivalence and perpendicularity of Gaussian processes, Pacific J. Math. 8 (1958), 699-708.
- 5. B. V. Gnedenko and A. N. Kolmogorov, Limit distributions for sums of independent random variables, Addison-Wesley, Cambridge, Mass., 1954.
 - 6. S. Kakutani, On equivalence of infinite product measures, Ann. of Math. 49 (1948), 214-224.
 - 7. A. N. Kolmogorov, Grundbegriffe der Wahrscheinlichkeitsrechnung, Springer, Berlin, 1933.
- 8. N. Kryloff and N. Bogoliuboff, La théorie générale de la mesure dans son application à l'étude des systèmes dynamiques de la mécanique non-linéaire, Ann. of Math. 38 (1937), 65-113.
 - 9. P. Lévy, Théorie de l'addition des variables aléatoires, Gauthier-Villars, Paris, 1937.
- 10. Yu. V. Prohorov, Convergence of random processes and limit theorems in probability theory, Teor. Verojatnost. i Primenen. 1 (1956), 177-238. (Russian)
- 11. A. V. Skorohod, On the differentiability of measures corresponding to stochatic processes with independent increments, Teor. Verojatnost. i Primenen. 2 (1957), 417-443. (Russian).

COLUMBIA UNIVERSITY,
NEW YORK, NEW YORK