SOME SUBGROUP THEOREMS FOR FREE v-GROUPS (1)

BY GILBERT BAUMSLAG

1. Introduction.

- 1.1. This paper is concerned with some analogues of the theorem which asserts that every subgroup of a free group is free (Nielsen [1], Schreier [2], Levi [3]). These analogues arise naturally if one considers certain nonempty classes $\mathfrak v$ of groups which are closed with respect to the formation of factor groups, subgroups and cartesian products. Such classes of groups are called *varieties*. Now a group G is said to be a free $\mathfrak v$ -group if
 - (i) G is a v-group, i.e., G is in v, and
- (ii) there is a set X of generators of G such that for every \mathfrak{v} -group H and every mapping μ of X into H there is a homomorphism η of G into H which coincides with μ on X. It is with the subgroups of certain free \mathfrak{v} -groups that our interests lie.
- 1.2. Following P. Hall [4] let us call a set X of generators of a free \mathfrak{v} -group which satisfies (ii) (above) a canonical set of generators. The main theorem of this paper deals with a free \mathfrak{v} -group G which is residually a finite p-group for an infinite set of primes $p(^2)$. It is easy to prove that G/G' is free abelian, where here G' denotes the commutator subgroup of G. If one considers a subset Y of G which freely generates, modulo G', a free abelian group, then it turns out that the group H generated by Y is a free \mathfrak{v} -group; moreover Y is a canonical set of generators of H. This is the main theorem cited above it will be proved in §2 as Theorem 1.
- 1.3. Finitely generated torsion-free nilpotent groups are residually finite p-groups for every prime p (Gruenberg [5]). It follows that a torsion-free nilpotent free \mathfrak{p} -group G is residually a finite p-group for every prime p and so Theorem 1 applies to such groups G. This fact constitutes a far reaching generalisation of the corresponding theorem for free nilpotent groups (cf. e.g. Gruenberg [5] for the relevant definition) proved by Malcev [14] and generalised by Gol'dina [6]. It is perhaps worth noting that Malcev's theorem follows easily from the representation of a free nilpotent group in a free nilpotent ring (cf. e.g. M. Hall [7]) about which much is known.

Another source of free v-groups which satisfy the requirements of Theorem 1

Received by the editors August 2, 1962.

⁽¹⁾ Supported by Grant G 19674 from the National Science Foundation.

⁽²⁾ If \mathscr{P} is a property pertaining to groups, then P. Hall [4] defines a group G to be residually \mathscr{P} if to each x in $G(x \neq 1)$ there corresponds a normal subgroup N_x of G, which does not contain x, such that G/N_x is \mathscr{P} .

are the free polynilpotent groups of Gruenberg [5] (cf. [5] for an explanation of the terms used here). In particular, Theorem 1 applies to free soluble groups; indeed we shall completely determine all the free soluble subgroups of a free soluble group by employing a theorem of Malcev [8] and Theorem 1. To be precise, we show that H is a free soluble subgroup of the free soluble group G if and only if we can find a set Y of generators of H which generate freely, modulo some term of the derived series of G, a free abelian group. This will be proved in §3 as Theorem 2. We hope to return to some generalisations of this theorem at a later date.

It is perhaps worth explaining a way of getting a new supply of free \mathfrak{v} -groups which are residually finite p-groups for infinitely many primes p. This is connected with the product variety $\mathfrak{u}\mathfrak{w}$ of two varieties \mathfrak{u} and \mathfrak{w} , introduced by Hanna Neumann [9]. We recall that if G denotes a group, then

$$\mathfrak{uw} = \{G \mid \text{there exists } N \triangleleft G \text{ with } G/N \in \mathfrak{w} \text{ and } N \in \mathfrak{u}\}.$$

In a forthcoming work (Baumslag [15]) we shall show, by refining some important new work of B. H. Neumann, Hanna Neumann and Peter M. Neumann [10], that if the free groups in $\mathfrak u$ and the free groups in $\mathfrak v$ are residually finite p-groups for the same prime p, then so also are the free groups in $\mathfrak w$ (notice that this theorem includes the theorem of Gruenberg on free polynilpotent groups). So Theorem 1 applies also here.

Finally we turn our attention to varieties wx, where w is any variety and x is such that the free x-groups are residually finite p-groups for an infinite set of primes p. We shall prove, Theorem 3 in §4, that if G is a free wx-group with a set X of canonical generators, then the subgroup H generated by

$$Y = \{x^{r_x} \mid x \in X, r_x \text{ a nonzero integer}\}\$$

is a free mx-group; moreover Y is a canonical set of generators of H. It is interesting to notice that here Y is a special set of elements which freely generates, modulo G', a free abelian group. The natural extension is presumably true; however the method adopted here is of no use in this more general situation.

It is a pleasure to acknowledge that this work has benefited from a correspondence with K. W. Gruenberg.

2. The proof of Theorem 1.

2.1. We begin by recalling the following fact.

LEMMA 1. Let v be a variety of groups and let G be a free v-group. Further, let Y be a subset of G and let H be the subgroup generated by Y. Then H is a free v-group and Y is a canonical set of generators of H if and only if every finite subset of Y generates a free v-group and is a canonical set of generators of the group it generates.

The proof of Lemma 1 is straightforward and is omitted.

2.2. Next we prove the useful

LEMMA 2. Let v be a variety of groups and let G be a free v-group. If G is residually a p-group for infinitely many primes p, then G/G' is a free abelian group. Moreover if X is any canonical set of generators of G, then X freely generates, modulo G', the free abelian group G/G'.

Proof. Let $a \in X$. If the prime q divides the order of a, then every normal subgroup N of G with a p-group G/N as factor group $(p \neq q)$ will contain $a^{n/q}$, where n is the order of a, contradicting the hypothesis. So every element of X is of infinite order. Hence \mathfrak{v} contains \mathfrak{a} , the variety of all abelian groups. Therefore G/G' is free abelian and X has the required property.

2.3. Before proceeding to the proof of Theorem 1, it is perhaps worth while to state it explicitly here.

THEOREM 1. Let $\mathfrak v$ be a variety of groups. Let G be a free $\mathfrak v$ -group and let Y be a subset of G which freely generates, modulo G', a free abelian group. Further, let H be the subgroup generated by Y. If G is residually a finite p-group for an infinite set of primes p, then H is a free $\mathfrak v$ -group; in addition, Y is a canonical set of generators of H.

Proof. By Lemma 1 we may suppose G is finitely generated. Thus suppose

$$a_1, a_2, \cdots, a_m$$

is a canonical set of generators of G. Then, by Lemma 2, a_1, a_2, \dots, a_m freely generate, modulo G', the free abelian group G/G'. Consequently, on invoking the basis theorem for free abelian groups (cf. e.g. Kurosh [11, Vol. 1, p. 149]), we find that we can choose m elements

$$b_1, b_2, \dots, b_m$$

of G such that, first,

(1)
$$b_1, b_2, \dots, b_m$$
 generate G modulo G'

and, second,

(2) HG'/G' is a subgroup of finite index, say j, in $gp(b_1, b_2, \dots, b_k)G'/G'$.

Notice that (2) implies |Y| = k; thus $Y = \{c_1, c_2, \dots, c_k\}$, say. We now enlarge Y slightly to

(3)
$$\tilde{Y} = \{c_1, c_2, \dots, c_k, c_{k+1} = b_{k+1}, \dots, c_m = b_m\}.$$

Now let η be the endomorphism of G defined by

(4)
$$a_1 \eta = c_1, \ a_2 \eta = c_2, \ \cdots, \ a_m \eta = c_m.$$

We shall show that η is a monomorphism.

For suppose the contrary. Then there is an element $u \in G$ such that

$$u\eta = 1 (u \neq 1).$$

Now G is residually a finite p-group for infinitely many primes p. Hence we can choose a prime q and a normal subgroup N of G such that

(6)
$$u \notin N, |G/N| = q^1 \text{ and } (q, j) = 1.$$

By virtue of the fact that finite q-groups are nilpotent, G/N is nilpotent, of class c, say.

We now put

$$L=G_c\cdot G^{q^l}$$

where here G^{q^l} is the subgroup generated by q^l th powers of elements of G and G_c is the cth term of the lower central series of G. It follows (cf. (6)) that

$$L \leq N$$
.

Therefore, by (6),

$$(7) u \notin L.$$

We consider now

$$G^* = G/L$$
;

we denote the natural homomorphism of G onto G^* by ν . Then we see by (7) that

$$(8) uv \neq 1.$$

However since $u\eta = 1$ we have

$$(9) u\eta v = 1.$$

We notice, in addition, that G^* is a finite q-group and it is nilpotent of class c. Clearly

$$a_1v$$
, a_2v , ..., a_mv

generate G^* . Moreover c_1v, c_2v, \dots, c_mv generate, modulo $(G^*)'$, a subgroup of G^* , which is simultaneously of index dividing j and q^{l} (cf. (1), (2), (3), (6)). Since (q, j) = 1 (by (6)), it follows that c_1v, c_2v, \dots, c_mv generate G^* modulo $(G^*)'$. So c_1v, c_2v, \dots, c_mv generate G^* itself. But G^* may be thought of as a free u-group, where u is the variety of nilpotent groups in v of exponent dividing q^{l} and class at most c. Clearly, then, a_1v, a_2v, \dots, a_mv are a canonical set of generators of G^* . Hence the mapping

$$\eta^*: a_i v \to c_i v \qquad (i = 1, 2, \dots, m)$$

defines an endomorphism of G^* . But G^* is finite and the $c_{i\nu}$ generate G^* ; so η^* is in fact an *automorphism* of G^* and hence η^* is certainly one-to-one. In particular, then (cf.(8)),

$$(10) uv\eta^* \neq 1.$$

However it is easy to see that the diagram

$$\begin{array}{ccc}
G & \xrightarrow{\eta} & G \\
v \downarrow & & \downarrow v \\
G^* & \xrightarrow{n^*} & G^*
\end{array}$$

is commutative. Therefore

$$u\eta v = uv\eta^*$$
.

But (9) and (10) now stand in direct contradiction. Thus our initial assumption concerning η is invalid, i.e., η is a monomorphism. This ensures that c_1, c_2, \dots, c_m generate a free \mathfrak{v} -group (cf.(4)) and that c_1, c_2, \dots, c_m are a canonical set of generators of this group. But this yields immediately that H is a free \mathfrak{v} -group and that Y is a canonical set of generators of H (cf. (3)).

3. Some applications of Theorem 1.

3.1. The proof of the following lemma is straightforward — it depends only on the fact that a subgroup of a free group is free, and on the relation

$$(G/N)' = G'N/N$$
,

for a group G with normal subgroup N. Consequently the details are left to the reader.

LEMMA 3. Let G be a free soluble group. Then every member of the derived series of G is again a free soluble group.

Besides Lemma 3 we need another preparatory lemma.

LEMMA 4. Let G be a free soluble group. Then every noncyclic abelian subgroup of G is contained in the last nontrivial term of the derived series of G,

Lemma 4 is a direct consequence of a theorem of Malcev [8] (cf. Auslander and Lyndon [12]).

3.2. The following proposition is a straightforward application of Lemma 4.

PROPOSITION 1. Let G be a free soluble group of derived length d and let H be a free soluble subgroup of G of derived length e. If e > 1 and $G^{(s)}$ denotes the sth term of the derived series of G, then

$$(1) H \leq G^{(s)}, \quad s = d - e$$

and

(2)
$$H^{i} = H \cap G^{(s+i)} \qquad (i = 1, 2, \dots, e).$$

Proof. We are assured by Lemma 4, of the inequality

(3)
$$H \cap G^{(d-1)} \leq H^{(e-1)}$$
.

On the other hand, by Lemma 4,

$$H^{(e-1)} \leq G^{(d-1)}.$$

Therefore,

(4)
$$H \cap G^{(d-1)} \ge H \cap H^{(e-1)} = H^{(e-1)}.$$

Putting (3) and (4) together yields

(5)
$$H \cap G^{(d-1)} = H^{(e-1)}.$$

After utilising Lemma 3 and induction, we find that

$$HG^{(d-1)} \leq G^{(s)}.$$

Therefore,

$$H \leq G^{(s)}$$

and we have proved (1).

Again, by Lemma 3, we may apply induction, yielding

$$HG^{(d-1)} \cap G^{(s+i)} \le H^{(i)} G^{(d-1)}$$
 $(i = 1, 2, \dots, e-1).$

Hence

(6)
$$H \cap G^{(s+i)} \leq H \cap H^{(i)} G^{(d-1)} \qquad (i = 1, 2, \dots, e-1).$$

But, for $i = 1, 2, \dots, e - 1,$

(7)
$$H \cap H^{(i)} G^{(d-1)} = H^{(i)}.$$

To see this suppose $u \in H \cap H^{(i)}G^{(d-1)}$. Then

$$u = hg$$
 $(h \in H^{(i)}, g \in G^{(d-1)}).$

Since $u \in H$, we find (cf. (5))

$$g \in G^{(d-1)} \cap H = H^{(e-1)}$$
.

So $u \in H^{(i)}$ which establishes (7). But this yields, via (6),

(8)
$$H \cap G^{(s+i)} \le H^{(i)}$$
 $(i = 1, 2, \dots, e-1).$

On the other hand, $H \leq G^{(s)}$ (by (1)): therefore $H^{(i)} \leq G^{(s+i)}$. Hence

(9)
$$H \cap G^{(s+i)} \ge H \cap H^{(i)} = H^{(i)}$$
 $(i = 1, 2, \dots, e-1).$

Putting (8) and (9) together we have the remaining part required to complete the proof of Proposition 1.

3.3. We come now to the proof of

THEOREM 2. A subgroup H of a free soluble group G is itself a free soluble

group if and only if there exists a set Y of generators of H which freely generates, modulo some term of the derived series of G, a free abelian group.

Proof. This has been made easy by the preceding lemmas. For on the one hand if H is a subgroup of a free soluble group G with a set Y of generators such that Y freely generates a free abelian group modulo some term, say $G^{(s+1)}$, of the derived series of G, then it follows from Lemma 4 and Lemma 3 that Y is contained in $G^{(s)}$. On applying Lemma 3 and Theorem 1 we can deduce that H is a free soluble group and Y is a canonical set of generators of H. On the other hand if H is a free soluble subgroup of G, then the existence of a set Y of canonical generators for H with the required property follows immediately from Proposition 1. This then completes the proof of Theorem 2.

4. The proof of Theorem 3.

4.1. We shall need some of the usual commutator-calculus notation. Thus we put

$$[x, x_2] = x_1^{-1} x_2^{-1} x_1 x_2,$$

and define inductively

$$[x_1, x_2, \dots, x_n] = [[x_1, x_2, \dots, x_{n-1}], x_n]$$
 $(n > 2);$

here x_1, x_2, \dots, x_n are, of course, elements from some group.

The following lemma is the key to the proof of Theorem 3.

LEMMA 5. Let R be a free group of finite rank k which is freely generated by x_1, x_2, \dots, x_k and let S be the subgroup of R generated by

$$x_1^{n_1}, x_2^{n_2}, \dots, x_k^{n_k},$$

where the n_i $(i = 1, 2, \dots, k)$ are nonzero integers. Then S' is a free factor of R', i.e., R' is a free product of the form

$$R' = S' * T$$

for some subgroup T of R'.

Proof. We observe that if Y is a free group freely generated by y_1, y_2, \dots, y_s then Y' is freely generated by the commutators

$$[y_{i_1}^{u_1}, y_{i_2}^{u_2}, \cdots, y_{i_t}^{u_t}]$$

where (i) u_1, u_2, \dots, u_t are nonzero integers, (ii) i_1, i_2, \dots, i_t are all distinct and (iii) $i_1 > i_2, i_2 < i_3 < \dots < i_t$ and $i_1, i_2, \dots, i_t \le s$ (Gruenberg [5]).

It follows immediately that we can find a set of free generators of R' and a set of free generators of S' so that the second is a subset of the first. Lemma 5 follows immediately from this observation.

4.2. Let R be a group and let u be a variety of groups. Then we denote by $\mathfrak{u}(R)$ the intersection of all normal subgroups N of R whose quotient R/N lies in u. Clearly then $R/\mathfrak{u}(R)$ is in u and indeed $R/\mathfrak{u}(R)$ is a free u-group whenever R is itself an ordinary free group.

We remind the reader that a finitely generated residually finite group is hopfian (Malcev [13]), i.e., it has no proper isomorphic quotient groups. This fact will be useful in the proof of

LEMMA 6. Let x be a variety of groups. Let R be a free group freely generated by x_1, x_2, \dots, x_k and let

$$S = gp(x_1^{n_1}, x_2^{n_2}, \dots, x_k^{n_k}) \qquad (n_i \neq 0, i = 1, 2, \dots, k).$$

If $R/\mathfrak{X}(R)$ is residually a finite p-group for infinitely many primes p, then

$$S \cap \mathfrak{x}(R) = \mathfrak{x}(S)$$
.

Proof. The group $R/\mathfrak{x}(R)$ is a free \mathfrak{x} -group; moreover Theorem 1 applies. Thus

(1)
$$Sx(R)/x(R) \cong R/x(R).$$

We have also

(2)
$$S_{\mathfrak{X}}(R)/\mathfrak{X}(R) \cong S/\mathfrak{X}(R) \cap S.$$

Now S is a free group freely generated by $x_1^{n_1}, x_2^{n_2}, \dots, x_k^{n_k}$; therefore (cf. (1),(2))

$$(3) S/\mathfrak{x}(S)(\cong R/\mathfrak{x}(R)) \cong S/\mathfrak{x}(R) \cap S.$$

It is clear that

$$\mathfrak{x}(R) \cap S \geq \mathfrak{x}(S)$$
.

In view of (3) and the hopficity of $S/\mathfrak{x}(S)$ it follows that this inequality is of necessity an equality. This completes the proof of Lemma 6.

The following consequence of Lemma 6 seems worth stating as a proposition; here we assume the notation and assumptions of Lemma 6.

PROPOSITION 2. If x is nontrivial, then x(S) is a free factor of x(R).

Proof. Suppose F is a free group. Then $F/\mathfrak{x}(F)$ is a free \mathfrak{x} -group. By Lemma 2 it follows that

$$F/F' \cong (F/\mathfrak{x}(F))/(F/\mathfrak{x}(F))' \cong F/F'\mathfrak{x}(F).$$

Therefore,

$$\mathfrak{x}(F) \leq F'.$$

It follows from (1) that $\mathfrak{x}(S)$ is a subgroup of S'. Now S' is a free factor of R' (Lemma 5). Hence, by the Kurosh subgroup theorem for free products (cf. Kurosh

[11, Vol. 2, p. 17]), $S' \cap \mathfrak{x}(R)$ is a free factor of $\mathfrak{x}(R)$, since $\mathfrak{x}(R)$ is a subgroup of of R' by (1). But

$$S' \cap \mathfrak{x}(R) = S' \cap (S \cap \mathfrak{x}(R)) = S' \cap \mathfrak{x}(S) = \mathfrak{x}(S)$$

by Lemma 6 and (1). In other words $\mathfrak{x}(S)$ is a free factor of $\mathfrak{x}(R)$.

4.3. We need only one further lemma before we are ready to prove Theorem 3.

LEMMA 7. Let F be a free product of its subgroups U and V:

$$F = U*V.$$

Then, if w is any variety of groups,

$$U \cap \mathfrak{w}(F) = \mathfrak{w}(U)$$
.

Proof. Let μ be the natural mapping of F onto $U/\mathfrak{w}(U)$. If

$$u \in U \cap \mathfrak{w}(F)$$
,

then as the kernel of μ clearly contains $\mathfrak{w}(F)$,

$$u\mu = 1$$
.

But since $u \in U$,

$$u\mu = u\mathfrak{w}(U)$$
.

Therefore $u \in \mathfrak{w}(U)$ and we have proved

$$U \cap \mathfrak{w}(F) \leq \mathfrak{w}(U)$$
.

The reverse inequality is obvious and so the proof of Lemma 7 is complete.

4.4. We come now to the proof of Theorem 3.

THEOREM 3. Let $\mathfrak w$ and $\mathfrak x$ be varieties of groups. Suppose $\mathfrak x$ is nontrivial and that the free $\mathfrak x$ -groups are residually finite p-groups for an infinite set of primes p. Suppose also that X is a canonical set of generators of G, a free $\mathfrak w \mathfrak x$ -group, and that $\{r_x\}$ is a set of nonzero integers in one-to-one correspondence with the elements $x \in X$. If H is the group generated by

$$Y = \{x^{r_x} | x \in X\},$$

then H is a free wx-group and Y is a canonical set of generators for H.

Proof. It is enough, by Lemma 1, to prove Theorem 3 for finitely generated groups G. But this means we can find a finitely generated free group R, say, such that

$$R/\mathfrak{wx}(R) \cong G$$
.

Consequently we may focus our attention on R. Thus we have to prove that if R is freely generated by x_1, x_2, \dots, x_k , if n_1, \dots, n_k are nonzero integers and if S is the subgroup generated by $x_1^{n_1}, x_2^{n_2}, \dots, x_k^{n_k}$, then

$Swx(R)/wx(R) \cong R/wx(R)$.

But we have essentially accomplished this through Proposition 2, Lemma 6 and Lemma 7. This completes the proof of Theorem 3.

Added in proof. Siegfried Moran has pointed out to me that (although there is no duplication of results) there is a connection between this paper and the following:

- 1. S. Moran, A subgroup theorem for the free nilpotent groups, Trans. Amer. Math. Soc. 103 (1962), 495-515.
 - 2. A. W. Mostowski, Nilpotent free groups, Fund. Math. 49 (1961), 259-269.
- 3. ——, On automorphisms of relatively free groups, Fund. Math. 50 (1962), 403-411.

REFERENCES

- 1. J. Nielsen, Om Regning med ikke-kommutative Faktorer og dens Anvendelse i Gruppeteorien, Mat. Tiddskrift B, (1921), 77-94.
- 2. O. Schreier, *Die Untergruppen der freier Gruppen*, Abh. Math. Sem. Univ. Hamburg 5 (1927), 161-183.
 - 3. F. W. Levi, Über die Untergruppen freier Gruppen, Math. Z. 32 (1930), 315-318.
- 4. P. Hall, The splitting properties of relatively free groups, Proc. London Math. Soc. (3) 4 (1954), 343-356.
- 5. K. W. Gruenberg, Residual properties of infinite soluble groups, Proc. London Math. Soc. (3) 7 (1957), 29-62.
 - 6. N. P. Gol'dina, Free nilpotent groups, Dokl. Akad. Nauk SSSR 111 (1956), 528-530.
 - 7. M. Hall, The theory of groups, Macmillan, New York, 1959.
 - 8. A. I. Malcev, On free soluble groups, Soviet Math. Dokl. 1 (1960), 65-68.
- 9. Hanna Neumann, On varieties of groups and their associated near-rings, Math. Z. 65 (1956), 36-39.
- 10. B. H. Neumann, Hanna Neumann and Peter M. Neumann, Wreath products and varieties of groups, Math. Z. 80 (1962), 44-62.
- 11. A. G. Kurosh, *The theory of groups*, Translated by K. A. Hirsch, Vols. 1 and 2, Chelsea, New York, 1955.
- 12. M. Auslander and R. C. Lyndon, Commutator subgroups of free groups, Amer. J. Math. 77 (1955), 929-931.
- 13. A. I. Malcev, On isomorphic representations of infinite groups by matrices, Mat. Sb. (N.S.) 8 (50) (1940), 405-422.
 - 14. ——, Two remarks on nilpotent groups, Mat. Sb. (N. S.) 37 (79) (1955), 567-572.
 - 15. Gilbert Baumslag, Wreath products and extension theory, Math. Z. 81 (1963), 286-299.

New York University, New York, New York