DIFFERENTIABLE OPEN MAPS ON MANIFOLDS(1)

BY P. T. CHURCH

Introduction. This paper contains a detailed discussion with proofs of results announced in [4].

Let M^n and N^n be n-manifolds without boundary, and let $f: M^n \to N^n$ be continuous. The map f is open if, whenever U is open in M^n , f(U) is open in N^n ; it is light if, for every $y \in N^n$, dim $(f^{-1}(y)) \le 0$. For $n \ge 2$ there is a canonical light open map $F_{n,d}: E^n \to E^n$ given by $F_{n,d}(x_1, x_2, \dots, x_n) = (u_1, u_2, x_3, \dots, x_n)$, where

$$u_1 + iu_2 = (x_1 + ix_2)^d$$
 $(i = \sqrt{-1}; d = 1, 2, \cdots).$

For n=2 it is well known that a nonconstant complex analytic function is open and light. Conversely, Stoilow [12] proved that every light open map is locally topologically equivalent to an analytic map, and thus to some $F_{2,d}$ $(d=1,2,\cdots)$. In fact (1.10), if M^2 is compact and f is C^2 and open, then f has this canonical structure. The main object of this paper is to prove (2.1) that the corresponding conclusion holds for arbitrary n $(n \ge 2)$, if we first remove an exceptional set of dimension at most n-3. Examples are given, especially in §3, showing that the exceptional set and some of the hypotheses used are necessary.

DEFINITION. As in [5] the branch set B_f is the set of points in M^n at which f fails to be a local homeomorphism.

NOTATION. If $f: E^n \to E^p$ is C', then f_i will be the *i*th component real-valued function, and $D_j f_i$ will be the first partial derivative of f_i with respect to its *j*th coordinate. If y is a point in E^n , then y_i will be its *i*th coordinate. The symbols M^n and N^p will refer to manifolds of dimensions n and p, respectively. The statement that $f: M^n \to N^p$ is C^m will imply that the manifolds are also C^m . The set of points in M^n at which the Jacobian matrix of f has rank at most f0 will be denoted by f1.

The closure of a set X is denoted by Cl[X] or X, its interior by int X, and the restriction of f to X by $f \mid X$. A map is a continuous function, the distance between the points x and y is d(x, y), and $S(x, \varepsilon) = \{y : d(x, y) < \varepsilon\}$.

1. General results.

1.1. Lemma. Let $h: E^n \to E^p$, $h \in C^m$ $(m = 1, 2, \dots)$, and let the rank of the Jacobian matrix of h at \bar{x} be at least q $(q = 1, 2, \dots, n-1)$. Then there exist open neighborhoods U of \bar{x} and V of $h(\bar{x})$, and C^m diffeomorphisms (onto)

Received by the editors September 17, 1962.

⁽¹⁾ Research supported in part by National Science Foundation grant G-18049.

- $k^1: E \to U$ and $k^2: V \to E^p$ such that k^2hk^1 , call it g, has the following properties:
- (1) For each (p-q)-plane α given by g_i constant $(i=1,2,\dots,q), g^{-1}(\alpha)$ is a (single) (n-q)-plane given by x_i constant $(j=1,2,\dots,q)$.
- (2) For each x in $g^{-1}(\alpha)$, the rank of the Jacobian matrix of g at x is s if and only if the rank of the Jacobian of $g \mid g^{-1}(\alpha)$ at x is s-q ($s=q,q+1,\cdots$, $\min(n,p)$).

Proof. By reordering the variables, both dependent and independent, we may suppose that the determinant $\det[D_jh_i](\bar{x}) \neq 0$ $(i,j=1,2,\cdots,q)$. Let W be a neighborhood of \bar{x} such that $\det[D_jh_i] \neq 0$ on all of W, and let $h:W \to E^q$ be defined by $h_i = h_i$ $(i=1,2,\cdots,q)$. Since h has maximal rank at every point of W, we may apply the rank theorem [7, pp. 273-274]. Thus, there exists an open n-cell U in W about \bar{x} and C^m diffeomorphisms $k^1:E^n \to U$ and $\bar{k}:h(U) \to E^q$ such that $(\bar{k}hk^1)_i(x_1,x_2,\cdots,x_n)=x_i$ $(i=1,2,\cdots,q)$. Using $V=h(U)\times E^{p-q}$, $k_i^2(x)=\bar{k}_i(x_1,x_2,\cdots,x_q)$ $(i=1,2,\cdots,q)$, and $k_i^2(x)=x_i$ $(i=q+1,q+2,\cdots,p)$, conclusion (1) follows.

Given $x \in E^n$, let s be the rank of the Jacobian matrix of g at x. If α is the (p-q)-coordinate plane containing g(x), then $J=(D_jg_i(x))$ $(i=q+1,q+2,\cdots,p;$ $j=q+1,q+2,\cdots,n)$ is the Jacobian matrix of $g\mid g^{-1}(\alpha)$ (as a map into α) at x. Since (by (1)) $D_jg_i(x)=0$ $(i=1,2,\cdots,q;$ j=q+1, $q+2,\cdots,n)$, and $\det(D_jg_i(x))\neq 0$ $(i,j=1,2,\cdots,q)$, J has rank s-q, yielding (2). (Clearly, the same result holds if we interpret $g\mid g^{-1}(\alpha)$ as a map into E^p .)

REMARK. If p = n and if $f \mid U$ has Jacobian determinant non-negative or nonpositive, then, for each (n - q)-cell γ given by conclusion (1), $f \mid \gamma$ (i.e., $g \mid \gamma$) has Jacobian determinant non-negative or nonpositive (not "respectively," in general). In particular, if q = n - 1, then each map $f \mid \gamma$ is monotone.

1.2. REMARK. If X is a compact set contained in $E^n = E^{n-r} \times E^r$, and if $\dim(X \cap (E^{n-r} \times \{x\})) \leq q - r$ for each x in E^r , then dim $X \leq q$.

Let $g: E^{n-r} \times E^r \to E^r$ be the projection map, and let f be the restriction of g to X. The proof, pointed out to the author by E. Connell, follows from an application of [9, pp. 91-92].

The following result is related to Sard's theorem [11].

- 1.3. PROPOSITION. If $f: M^n \to N^p$, f and the manifolds are C^n , then $\dim(f(R_q)) \leq q$ (where R_q is the set of points of M^n at which the Jacobian matrix of f has rank at most q). In particular, $\dim(f(M^n)) \leq n$. If f is also light then $\dim(R_q) \leq q$.
- **Proof.** Clearly, it is sufficient to prove the theorem for $f: E^n \to E^p$. If X_i is the set of critical points of f_i (the points at which all first partials are zero), then the measure of $f_i(X_i)$ is zero [10, p. 68, (4.3)] $(i = 1, 2, \dots, p)$. Thus, $\dim(\bigcap_{i=1}^p f(X_i)) \leq 0$. Since $R_0 = \bigcap_{i=1}^p X_i$, it follows that $\dim(f(R_0)) \leq 0$.

(In fact, for each u in $f(R_0)$, there exists a coordinate p-cube C containing u such that the sides of C are coordinate (p-1)-planes, $\operatorname{diam}(C) < \varepsilon$, and $f(R_0) \cap \operatorname{bdy} C = \emptyset$.)

The proposition follows for p=1 and all n and q; we proceed by induction on p. Since each R_q is closed, $f(R_q)$ is the countable union of compact sets; thus it is sufficient to prove that $\dim(f(R_q-R_0)) \leq q$, i.e., to prove the result in the case that the rank is at least one at each point. Furthermore, it suffices to prove the conclusion for $f \mid U$, where U is the open set given by (1.1) for f, q=1, and an arbitrary point \bar{x} . For each (n-1)-cell γ given in (1.1) and each point x of $R_q \cap \gamma$, $f \mid \gamma$ (as a map into the corresponding (p-1)-cell) has rank at most q-1 at x. From the inductive hypothesis, $\dim(f(R_q \cap \gamma)) \leq q-1$. Thus $f(R_q \cap U)$ meets each (p-1)-cell of (1.1) in a set of dimension at most q-1. Since $R_q \cap U$ is the countable union of compact sets, it follows from (1.2) that $\dim(f(R_q \cap U)) \leq q$; thus $\dim(f(R_q)) \leq q$.

If f is also light, then by [9, pp. 91-92] dim $(R_q) \le \dim(f(R_q))$. The condition that $f \in C^n$ is necessary [17] in the above result for p = 1.

The following result is, for open maps, an extension of the inverse function theorem.

1.4. THEOREM. Let $f: E^n \to E^n$ be open and C'. If the rank of the Jacobian matrix of f at \bar{x} is at least n-1, then f is locally a homeomorphism at \bar{x} . In other words, $B_f \subset R_{n-2}$.

Proof. For n=1, the openness alone implies that f is a homeomorphism into. For n>1, let U be the neighborhood of \bar{x} given by (1.1) for q=n-1, and let γ be one of the 1-cells. Since $f(\gamma)$ is contained in a 1-cell, and since the restriction $f|\gamma$ is open [20, p. 147, (7.2)], $f|\gamma$ is a homeomorphism (into). Thus, f|U is one-to-one and open, so that $\bar{x} \notin B_f$.

1.5. COROLLARY. If $f: M^n \to N^n$, f open and C^n , then $\dim(f(B_f)) \le n-2$. If f is also light, then $\dim(B_f) \le n-2$.

The proof follows from (1.2) and (1.4).

1.6. COROLLARY. Let $f: M^n \to N^n$, f light and C^n . Then f is open if and only if $B_f \subset R_{n-2}$.

Proof. If $B_f \subset R_{n-2}$, then $\dim(f(B_f)) \le n-2$ by (1.2); thus f is open [5, p.531, (2.4)].

A sufficient condition for openness was given in [14] by Titus and Young. We observe that (for $f \in C^n$) the condition is necessary, and give an independent proof of the sufficiency.

1.7. COROLLARY. Let $f: E^n \to E^n$ be C^n and light. Then f is open if and only if the Jacobian determinant J is non-negative or nonpositive everywhere.

Proof. If f is open, then, by (1.3) and (1.6), $\dim(B_f) \le n-2$; thus J does not change sign.

Suppose that $J \ge 0$ (or $J \le 0$). If the rank of the Jacobian matrix of f at \bar{x} is (at least) n-1, then (from the remark after (1)) $f \mid U$ is one-to-one. For each closed n-cell C in $U, f \mid C$ is a homeomorphism onto its image; thus $f \mid \text{int } C$ is a homeomorphism onto its image, which is open by the theorem on invariance of domain. It follows that $x \notin B_f$. Since $B_f \subset R_{n-2}$, the conclusion follows from (1.6).

1.8. THEOREM. If $f: M^n \to N^n$, M^n compact, f open and C^n , then f is light.

In fact, f is a pseudo-covering map [5, pp. 529 and 531, (2.4)].

Proof. By (1.5) $\dim(f(B_f)) \le n-2$. By the second paragraph of the proof of [5, p.531, (2.4)] the restriction of f to $M^n - f^{-1}(f(B_f))$ is a k-to-1 covering map for some k.

Suppose that for some y in $f(B_f)$, $f^{-1}(y)$ contains at least k+1 distinct points y^i ($i=1, 2, \dots, k+1$). Then there exist disjoint open neighborhoods U^i of these points and $\bigcap_{i=1}^{k+1} f(U^i)$ is an open set; thus it meets $N^n - f(B_f)$, yielding a contradiction.

REMARK. This result contrasts with the examples by R.D. Anderson [1; 2] of monotone open (not C^n) maps. The compactness of the domain is necessary, as we see in (3.6).

- 1.9. COROLLARY. If $f: E^n \to E^n$ is a C^n light open map, then point inverses are isolated. Moreover, if $f: S^n \to S^n$ is C^n open with (Brouwer) degree d, then, for each $p \in S^n$, $f^{-1}(p)$ has at most |d| points and |d| is the least such number.
- **Proof.** The first conclusion follows from (1.3), (1.6), and [5, p. 530, (2.2)]. For the second, since the Jacobian determinant is non-negative or nonpositive [17], $f^{-1}(p)$ has precisely |d| points, for each $p \in S^n f(B_f)$. In fact, f is a |d|-to-1 pseudo-covering map, and the rest of the conclusion follows from the proof of (1.8). The corollary is related to [16, p. 329, Theorem A and p. 335, (6a)].

1.10. Stoilow ([12]; cf. [20, p. 198, (5.1)]) proved that a light open map $f: M^2 \to N^2$ is locally at each point topologically equivalent to the complex analytic map $g(z) = z^d$ $(d = 1, 2, \cdots)$. (Manifolds are assumed to be without boundary.) For completeness we give now an independent proof in the case that $f \in C^2$. In particular, from (1.7) follows the apparently new result that: If $f: M^2 \to N^2$, M^2 compact, f open and C^2 , then f has that local structure.

By $(1.5) \dim(f(B_f)) \le 0$. Given any x in B_f , by restriction [5, p. 529, (1.4) and its proof] there exists a pseudo-covering map g such that its domain V is a compact connected neighborhood of x in E^2 , g(V) is a closed topological disk D, and $(\text{bdy } D) \cap g(B_g) = \emptyset$. We may also suppose [5, p. 530, (2.2), conclusion (1)] that $g^{-1}(g(x)) = x$. Since each component of $f^{-1}(\text{bdy } D)$ (= bdy V) is a simple closed curve, V is a disk-with-holes.

Let U be an open 2-cell about x in int V. Let h be a pseudo-covering map given, as above, for $g \mid U$ and x; call its domain E and its range disk D'. If bdy E $(=f^{-1} \text{ (bdy } D'))$ had two or more components (simple closed curves), then U would contain a disk whose image under g contained D - int(D'), contradicting the fact that $U \subset \text{int } V$. Thus E is a topological closed disk itself.

If B_h contains a point $y \neq x$, let γ be an arc in $D' - h(B_h)$, separating int(D') into two components X and Y such that $h(x) \in X$ and $h(y) \in Y$. Then $h^{-1}(\gamma)$ consists of k mutually disjoint arcs, where k is the degree of h, and thus it separates int E into k+1 components. Precisely one of these components has image X (since $h^{-1}(h(x)) = x$), so that the other k have image Y, contradicting the fact that Y meets $h(B_h)$.

Thus $\{x\} = B_h$, and the conclusion is evident.

- 2. The structure theorem. In this section we give a structure theorem for differentiable open maps defined on compact manifolds, or (more generally) differentiable light open maps defined on arbitrary manifolds, comparing them with the maps $F_{n,d}$ defined in the introduction.
- 2.1. THEOREM. Let $f: M^n \to N^n$ be C^n and open $(n \ge 2)$; let M^n be compact, or let f be light. Then there exists a closed set E, dim $E \le n-3$, such that for each x in M^n-E there exists a neighborhood U of x on which f is topologically equivalent to one of the canonical maps $F_{n,d}(d=1,2,\cdots)$. Moreover, E is nowhere dense in B_f unless f is a local homeomorphism.

Trivial examples show that "topologically equivalent" cannot be replaced by "diffeomorphically equivalent." The hypothesis that f is C^n results from the use of (1.3).

Proof. Since f is light (1.8), $\dim(R_{n-3}) \leq n-3$ (1.3); thus the set E may as well include R_{n-3} . To prove the first part of the theorem we may suppose that $n \geq 3$ and that the rank of the Jacobian matrix is at least n-2 at every point. For each \bar{x} in B_f the restriction $f \mid U$ of f to some neighborhood U of \bar{x} has the structure of (1.1), where q = n-2 and p = n. (We may as well suppose that $f \mid U$ is the g of (1.1).) Thus the domain and range of $f \mid U$ are $E^n = E^{n-2} \times C$, where C is the complex plane; for each $v \in E^{n-2}$ the restriction of f to the plane $\{v\} \times C$ is light and open [20, p. 147, (7.2)]. By (1.6) $B_f \subset R_{n-2}$, and by (1.1) $R_{n-2} \cap (\{v\} \times C)$ is the set of points at which $f \mid (\{v\} \times C)$ has rank 0; thus (1.3)

$$\dim(f(B_{f|(\{v\}\times C)})) \leq 0$$

and $\dim(f(B_f)) \leq n-2$.

The rest of the proof of the first conclusion uses only the topological properties of $f \mid U$ found above, and not the differentiability of $f \mid U$.

Let A be a closed n-cell such that $\bar{x} \in \text{int } A$ and $A \subset U$. Since $\dim(f(B_f)) \leq n-2$, there exists [5, p. 529, (1.4)] a connected open neighborhood V of \bar{x} such that

the restriction of f to V is a pseudo-covering map g, and $V \subset \operatorname{int} A$. Choose $\bar{v} \in E^{n-2}$ so that $f(\bar{x})$ is in the plane $\{\bar{w}\} \times C$ of (1.1). Since $\operatorname{Cl}[g(B_g)] \subset f(B_f \cap A)$, $\operatorname{Cl}[g(B_g)]$ meets $\{\bar{w}\} \times C$ in a compact set of dimension 0. Let G be an open disk with center $g(\bar{x})$,

$$G \subset g(V) \cap (\{w\} \times C).$$

Let L be any straight line in $\{\bar{w}\} \times C$ through $g(\bar{x})$, and [9, p. 22, (D)] let a and b be points on opposite sides of $L \cap G$ from $g(\bar{x})$, a and b disjoint from $(\{w\} \times C) \cap \text{Cl}[g(B_g)]$. It follows from [9, p. 48, Corollary 1] that there exist arcs Γ_i joining a to b, Γ_i disjoint from $(\{\bar{w}\} \times C) \cap \text{Cl}[g(B_g)]$ (i = 1, 2), $\Gamma_1 - \{a, b\}$ contained in one component of G - L, and $\Gamma_2 - \{a, b\}$ in the other.

Then $\Gamma_1 \cup \Gamma_2$ bounds a topological closed disk $D \subset C$ such that $g(\bar{x}) \in \{\bar{w}\} \times (\text{int } D)$, $\{\bar{w}\} \times D \subset g(V)$, and $\{\bar{w}\} \times (\text{bdy } D)$ is disjoint from the 0-dimensional set $(\{\bar{w}\} \times C) \cap \text{Cl}[g(B_g)]$. Thus, for all w sufficiently near \bar{w} , the corresponding-disks $\{w\} \times D$ will also be disjoint from $\text{Cl}[g(B_g)]$. Let T^{n-2} be such a small closed (n-2)-cell in E^{n-2} for which $\bar{w} \in \text{int}(T^{n-2})$ and $T^{n-2} \times D \subset g(V)$. The restriction of g to the component of $g^{-1}(T^{n-2} \times D)$ containing \bar{x} is also a pseudo-covering map; for convenience we now call this map g, and its domain V.

Each set $g^{-1}(\{w\} \times D)$ is the closure of a region in the plane, each boundary component a simple closed curve. Thus, each $g^{-1}(\{w\} \times D)$ is homeomorphic to the same disk-with-holes H, and we will denote $g^{-1}(\{w\} \times D)$ by H^w .

For each w in T^{n-2} , let $g \mid H^w$ be denoted by g^w ; and let its branch set be denoted by $B(g^w)$. Clearly, $\bigcup B(g^w) \subset B_g$. Suppose that $x \in \text{int } H^w$ but $x \notin B(g^w)$. Choose an open neighborhood N of x in int V such that $g^w \mid (N \cap H^w)$ is a homeomorphism. Let h be a pseudo-covering map whose domain contains x and is contained in N. Then the degree of h is one, and h is a homeomorphism; therefore, $x \notin B_g$. As a result, $\bigcup_w B(g^w) = B_g$.

For each w in T^{n-2} , the light open map g^w is topologically equivalent to a simplicial map [20, p. 198, (5.1)], and it follows from [17] that for some fixed natural number K depending only on H, $B(g^w)$ contains at most K points. Let $\alpha(w)$ be the number of branch points in H^w ($1 \le \alpha(w) \le K$). Let Y be any open set in T^{n-2} , and let \bar{y} in Y be a point at which the function α is maximal on Y. Let p^i be the points of $B(g^{\bar{y}})$, and let P^i be mutually disjoint sets open in $H^{\bar{y}}$ such that $P^i \cap g^{-1}(g(p^j)) = \{p^i\}$ $(i,j=1,2,\cdots,\alpha(\bar{y});$ note that p^i may be in $g^{-1}(g(p^j))$ for $i \ne j$). There exists a disk $\{\bar{y}\} \times D^i$ such that $g(p^i) \in \{\bar{y}\} \times (\text{int}(D^i));$ $\{\bar{y}\} \times D^i \subset \{\bar{y}\} \times D;$ and if J^i is the component of $g^{-1}(\{\bar{y}\} \times D^i)$ containing p^i , then $J^i \subset P^i[20, p. 131, (4.41)]$. Since g is a pseudo-covering map, J^i is a topological 2-disk, and $g \mid J^i$ is topologically equivalent to the analytic map $\mu(z) = z^d$ $(d=2,3,\cdots)$.

Since $g(B_g)$ is compact and $\bigcup_{w} B(g^w) = B_g$, there exists a closed (n-2)-cell $W^i \subset Y$, $\bar{y} \in \text{int } (W^i)$, such that $g(B(g^y))$ is disjoint from $\{y\} \times \text{bdy } (D^i)$ for all

 $y \in W^i$. If S^i is the component of $g^{-1}(W^i \times D^i)$ containing p^i , we may suppose that W^i is chosen small enough that $S^i \cap H^w$ is connected for all $w \in W^i$ and that the S^i are mutually disjoint $(i = 1, 2, \dots, \alpha(y))$. If $W = \bigcap_i \operatorname{int}(W^i)$, then $B_q \cap H^w \subset \bigcup_i S^i \ (i = 1, 2, \dots, \alpha(\bar{y}); \ w \in W)$.

Suppose that for some $w \in W^i$, $B(g^w) \cap S^i = \emptyset$; then since $g \mid S^i$ is a pseudocovering map and $\{w\} \times D^i$ is simply connected, $g \mid (H^w \cap S^i)$, and thus $g \mid S^i$, has degree 1 (i.e., is a homeomorphism). Since $p^i \in B_g \cap S^i$, $B(g^w) \cap S^i \neq \emptyset$, for all $w \in W^i$. Because of the choice of \bar{y} and the fact that the S^i are mutually disjoint, each set $B(g^w) \cap S^i (= B_g \cap S^i \cap H^w)$ $(i = 1, 2, \dots, \alpha(\bar{y}))$ is a single point.

Let $\rho^i \colon W^i \times D^i \to W^i$ be the projection map, and let $\beta^i = \rho^i \mid g(B_g \cap S^i)$. Then β^i is continuous, and one-to-one $((\beta^i)^{-1}(w))$ is the single point of $g(B_g \cap S^i) \cap (\{w\} \times D^i)$. Since $g(B_g \cap S^i)$ is compact, β^i is a homeomorphism onto W^i . Let d^i be the distance from $g(B_g \cap S^i)$ to $W^i \times \operatorname{bdy}(D^i)$, and let Δ^i be the closed disk of radius d^i and center 0 in C. Let $\sigma^i \colon W^i \times \Delta^i \to W^i \times D^i$ be the map defined by $\sigma^i(w,x) = (\beta^i)^{-1}(w) + (0,x)$, where + is vector addition, 0 is the origin of E^{n-2} , and $x \in D^i$ (in $C = E^2$). Since σ^i is continuous and one-to-one, $W^i \times \Delta^i$ is compact, σ^i is a homeomorphism (into). Since $\sigma^i(W^i \times \{0\}) = g(B_g \cap S)$, it follows from the theorem on invariance of domain that $g(B_g \cap S^i)$ is a tamely embedded (n-2)-cell. By [5, p. 533, (4.1)] $g \mid S^i$ (i.e., $f \mid S^i$) is topologically equivalent to $F_{n,d}$, for some $d(d=2,3,\cdots)$.

Let $\Omega \cap \operatorname{int}(T^{n-2})$ be the maximal open set (possibly empty) such that $g \mid g^{-1}(\Omega \times D)$ is locally, at each point, topologically equivalent to one of the maps $F_{n,d}$. To review, we have seen that, for every open set Y in $\operatorname{int}(T^{n-2})$, there exists (of course) a point $\bar{y} \in Y$ such that $\alpha(\bar{y}) \ge \alpha(w)$ for all $w \in Y$; moreover, that there is an open neighborhood W of \bar{y} with $W \subset \Omega$. Thus $\Omega \cap Y \ne \emptyset$. Since Y is an arbitrary open set in $\operatorname{int}(T^{n-2})$, Ω is a dense open set in $\operatorname{int}(T^{n-2})$. Therefore [9, p. 44, Theorem IV 3] its complement F in $\operatorname{int}(T^{n-2})$ has dimension at most n-3

Let E be the set of points of B_g in $g^{-1}(\{w\} \times \text{int}D)$ for $w \in F$, and let $\pi: \text{int}V \to \text{int}(T^{n-2})$ (int $V = g^{-1}(\text{int}(T^{n-2}) \times \text{int}D)$) be the projection map. Then $\pi(E) = F$, and, since $\dim(B(g^w)) = 0$, $\dim(\pi^{-1}(w)) = 0$ for all $w \in F$. Since g | intV is a pseudo-covering map, π is a closed map and by [9, pp. 91-92] $\dim E \leq n-3$ This completes the proof of the first conclusion.

For the second conclusion, we will suppose throughout that $B_f \neq \emptyset$. If E is somewhere dense in B_f , then there exists an open set Λ in M^n such that $\Lambda \cap B_f \neq \emptyset$ and $\Lambda \cap B_f \subset E$. By the preceding argument, E is nowhere dense in the set of branch points at which the Jacobian matrix has rank at least n-2. Then $\Lambda \cap B_f \subset R_{n-3}$. Thus, if we still denote $f \mid \Lambda$ by f, it suffices to prove that $B_f \notin R_{n-3}$ (if $B_f \neq \emptyset$).

First suppose that $B_f \subset R_0$. Given $\bar{x} \in B_f$, let g be a pseudo-covering map given by [5, p. 530, (2.2) and p. 529, (1.4)] on a neighborhood V of \bar{x} , $V \subset E^n$, such that $g \mid g^{-1}(g(B_g))$ is a homeomorphism and g(V) = E. Then $g(B_g) \neq g(\bar{x})$ [5, p. 535, (5.6)]. It follows (see the first paragraph of the proof of (1.3)) from A.P. Morse's

theorem [10] that for every point u in $g(B_g) - g(\bar{x})$ (and therefore in $g(R_0)$), there exists a closed n-cube X such that: $q(\bar{x}) \in \text{int } X$, $u \notin X$, its faces are parallel to the coordinate (n-1)-planes, and those faces are disjoint from $g(R_0)$. The restriction of g to each component of $g^{-1}(\text{bdy }X)$ is a covering map onto bdy X, and therefore that map is a homeomorphism. Since $\bar{x} \in B_g$, the degree of g is at least two; since $V \subset E^n$, $g^{-1}(\text{bdy }X)$ separates V into at least three components, each of which maps *onto* one of the components of E^n – bdy X (= g(V) – bdy X). This contradicts the fact that $g \mid g^{-1}(g(B_g))$ is one-to-one, so that $B_f \notin R_0$.

Thus $B_f \notin R_{n-3}$, for n=3. We continue by induction on n. If $n \ge 4$ and $B_f \subset R_{n-3}$, then there exists \bar{x} in B_f at which the Jacobian matrix has rank at least one. We may suppose, by restriction, that the rank is at least one everywhere, and that f is the g of (1.1) for q=1. Let γ be the (n-1)-plane of (1.1) that contains \bar{x} . Let $h=f|\gamma$, and let Q_{n-4} be the set of points in γ at which the Jacobian matrix of h has rank at most n-4; then, by the second conclusion of (1.1), $\gamma \cap R_{n-3} = Q_{n-4}$. Since $B_h \subset \gamma \cap B_f$, $B_h \subset Q_{n-4}$, contradicting the inductive hypothesis. Thus $B_f \notin R_{n-3}$ for $n \ge 3$ (unless $B_f = \emptyset$), yielding the second conclusion.

The following extension of the inverse function theorem was proved in [4]. For n = 2 the analytic function $f(z) = z^2$ is an obvious counterexample.

- 2.2. COROLLARY. Suppose that $f: E^n \to E^n$, $n \ge 3$, $f \in C^n$ and $\dim(R_{n-1}) = 0$ $(R_{n-1}$ is the set of zeros of the Jacobian determinant). Then f is a local homeomorphism.
- 2.3. COROLLARY. If $f: E^n \to E^n$ is light and C^n , then $B_f = \emptyset$, $\dim(B_f) = n 2$, or $\dim(B_f) = n 1$; the last case occurs if and only if f is not open.
- **Proof.** Since $B_f \subset R_{n-1}$, $\dim(f(B_f)) \leq n-1$ (by (1.3)); since f is light, $\dim(B_f) \leq n-1$. If $\dim(f(B_f)) \leq n-2$, then f is open [5, p. 531, (2.4)], so that either $B_f = \emptyset$ or $\dim(B_f) = n-2$ (by (2.1)). Thus, $\dim(f(B_f)) = n-1$ if and only if f is not open [5, p. 531, (2.3)]. If, in this case, $\dim(B_f) < n-1$, then the Jacobian determinant of f would be either non-negative or nonpositive everywhere; thus (1.7) f would be open. As a result, $\dim(B_f) = n-1$ if and only if f is not open.
- 2.4. COROLLARY. There exists a light open map $f: E^5 \to E^5$ which is not topologically equivalent to any C^5 map.

The map is that given by [6, p. 620, (4.3)], so that B_f is not a 3-manifold at any point. If f were equivalent to a C^5 map, then at a dense set of its points B_f would be locally a 3-manifold (2.1).

2.5. REMARKS. Given a C' map $f: E^n \to E^n$, its directional derivative at x in the direction of the nonzero vector (a_1, a_2, \dots, a_n) is the length of the vector whose jth component is $\sum_{i=1}^n a_i D_i f_j(x)$. If f is a homeomorphism, it is called quasi-

conformal if (*) there exists B > 0 such that, for every point x in E^n and pair of vectors (directions) at x, the ratio of the directional derivatives is less than B. (This definition is equivalent to that given in [8].) A nonconstant complex analytic function f satisfies condition (*) (for B = 1) except on B_f , which consists of isolated points. Thus, it would be natural to call quasi-conformal (or quasi-analytic) light maps in E^n (n > 2) which satisfy condition (*), except at those points at which all directional derivatives are zero, i.e., R_0 . We now observe that the only such C^n maps are local homeomorphisms (for n > 2).

Suppose that f is C^n , light, and not a local homeomorphism. If $R_{n-1} \subset R_0$, then $\dim(R_{n-1}) \leq 0$ (by (1.3)). Thus f is a local homeomorphism (2.2), contradicting the supposition. If $R_{n-1} \neq R_0$, then there exists x at which the rank of Jacobian matrix is k, where 0 < k < n. It follows from the definition of rank that there exist two vectors at x for which one directional derivative is positive, and the other is zero. Thus f does not satisfy condition (*).

We also remark that, except for local homeomorphisms, no C^n light open map is generic in the sense of Thom [14].

- 3. Some examples. Examples are given now to show that the exceptional set of dimension n-3 in (2.1) and the compactness hypothesis in (1.8) are necessary.
- 3.1. Lemma. Given $\delta_q > 0$ $(q = 1, 2, \dots)$, there exists a C^{∞} map $\psi: E^1 \to E^1$ with the following properties:
 - (1) ψ is an even function.
 - (2) $\psi(r) = 0$ if and only if r = 0,
 - (3) $\psi'(r) > 0$ for r > 0, and
 - (4) the ith derivative $\psi^{(i)}(r) \leq \delta_q (0 \leq r \leq 1/q; i = 0, 1, \dots, q; \text{ where } \psi^{(0)} = \psi).$

The proof is omitted.

- 3.2. Lemma. Given $\varepsilon_q > 0$ $(q = 1, 2, \dots)$, there exists a C^{∞} homeomorphism $h: E^n \to E^n$ such that on each set S(0, 1/q) (where 0 is the origin) all h_i and all partial derivatives of order at most q are bounded by ε_q .
- **Proof.** Consider the class \mathfrak{H} of all functions $h: E^n \to E^n$ such that $h_i(x) = \psi(r) \cdot x_i$, where $r = x_1^2 + x_2^2 + \cdots + x_n^2$ and $\psi: E^1 \to E^1$ is any C^{∞} function. On each set S(0, 1/q) there exists constants $\lambda_j > 0$ such that each h_i in \mathfrak{H} and all its partials of order at most q are bounded by $\sum_{j=0}^q \lambda_j |\psi^{(j)}(r(x))|$. Let $\delta_q < \varepsilon_q / \sum_{j=0}^q \lambda_j (q=1,2,\cdots)$, and let ψ_0 be given by (3.1) for $\{\delta_q\}$. Let $h_i(x) = \psi_0(r) \cdot x_i$. That h is a homeomorphism follows from conclusions (2) and (3) of (3.1).
- 3.3. Lemma. Let U and L be, respectively, open and closed subsets of E^n . Let $f: U \to E^n$ be continuous, C^{∞} on U L, and constant on $U \cap L$; let V be a bounded open subset of U such that $\overline{V} \subset U$. Then there exists a homeomorphism $h: E^n \to E^n$ such that the restriction $hf \mid V \in C^{\infty}$.

Proof. Throughout, symbols such as \bar{V} refer to closure in E^n . Suppose that f(L) = 0. Let $X_q = V \cap f^{-1}(S(0, 1/q))$, let $A_q = (X_q \cap V) - X_{q+1}$, and choose α_q $(0 < \alpha_q \le 1)$ less than the distance $d(\bar{A}_q, L)$ $(q = 1, 2, \cdots)$. We will define h so that the partial derivatives (of all orders) of $hf \mid V$, call it F, are zero on $L \cap V$; h will be given by (3.2), where we need now specify the ε_q $(q = 1, 2, \cdots)$.

The component functions (e.g., F_i) will be considered partials of order zero. Suppose h is given by (3.2) for $\varepsilon_q = \varepsilon_{q,0} = 1/q$. For $x \in A_q$, $f(x) \in S(0, 1/q)$, so that $|F_i(x)| < 1/q$ $(i = 1, 2, \dots, n)$.

Now suppose that numbers $\varepsilon_{q,m} > 0$ $(q = 1, 2, \dots; m = 0, 1, \dots, k; k \text{ fixed})$ have been defined so that

- (1) any homeomorphism given by (3.2) for $\{\varepsilon_{q,k}\}$ will satisfy (a) |P(x)| < 1/q, for all $x \in A_q$ and all partials P of F with order m at most the minimum of k and q, and (b) $P(x^0) = 0$, for $x^0 \in L$;
 - (2) $\varepsilon_{a,m'} < \varepsilon_{a,m}$, whenever m < m'; and
 - (3) $\varepsilon_{q,m} = \varepsilon_{q,q}$, whenever m > q.

Let this property of the sequence $\{\varepsilon_{q,m}\}$ $(m=0,1,\cdots,k)$ be called $\mathfrak{P}_k(k=0,1,\cdots)$; we have seen that there exists $\{\varepsilon_{q,0}\}$ satisfying \mathfrak{P}_0 . We proceed by induction. Assuming a sequence $\{\varepsilon_{q,m}\}$ $(m=0,1,\cdots,k)$ satisfying \mathfrak{P}_k , we will find numbers $\varepsilon_{q,k+1}$ $(q=1,2,\cdots)$ such that $\{\varepsilon_{q,m}\}$ $(m=1,2,\cdots,k+1)$ satisfies \mathfrak{P}_{k+1} .

Given any partial P of F with order k, a natural number j $(j = 1, 2, \dots, n)$, and $x^0 \in L$,

$$D_{j}P(x^{0}) = \lim_{x_{j} \to x_{j}^{0}} \frac{P(x) - 0}{x_{i} - x_{i}^{0}}$$

(since $P(x^0) = 0$, by $\mathfrak{P}_k(1)$). Given x in A_q ,

$$\frac{\left|P(x)\right|}{\left|x_{i}-!x_{i}^{0}\right|} \leq \frac{\left|P(x)\right|}{\alpha_{q}}.$$

Now each such P is on $\overline{V}-L$ a sum of products of partials of f and of h, all of orders at most k, each term having at least one partial of h as a factor. Since \overline{A} is compact and $\overline{A}_q \cap L = \emptyset$, there is a uniform bound on the partials of f of order at most k. For $q \leq k$, let $\varepsilon_{q,k+1} = \varepsilon_{q,q}$; for q > k, let $\varepsilon_{q,k+1}$ be chosen small enough so that $\varepsilon_{q,k+1} \leq \varepsilon_{q,k}$ and, for any h given by (3.2) for $\varepsilon_{q,k+1}$, $|P(x)|/\alpha_q < 1/q$ (for all $x \in A_q$ and for all partials P of order at most k, a finite number of choices required for each q). Since $L \cup \bigcup_{q=1}^{\infty} A_q$ is a neighborhood of L, and since P|L=0, all the partials of F of order at most k+1 are 0 on L, for h given by $\{\varepsilon_{q,k+1}\}$. It follows that $\{\varepsilon_{q,m}\}$ $(m=1,2,\cdots,k+1)$ satisfies \mathfrak{P}_{k+1} .

Positive numbers $\varepsilon_{q,m}$ $(q, m = 1, 2, \cdots)$ are defined, and the desired h is the one given by (3.2) for $\varepsilon_q = \varepsilon_{q,q}$; all its partials are zero on L.

To prove that $F \in C^{\infty}$, it is sufficient to prove that each partial P is continuous

on L; let k be the order of P. By $\mathfrak{P}_k(1)$, |P(x)| < 1/q $(x \in A_q; q = k, k + 1, \dots)$, so that $P(x) \to 0$ as $x \to x^0$, $x^0 \in L$.

3.4. COROLLARY. There exists $f: E^3 \to E^3$, $f \subset C^\infty$, light and open, such that B_f has a point component.

The map given in [6, p. 614, (3.3)] is topologically equivalent to a map simplicial except at the origin 0, and thus it is equivalent to a map C^{∞} except at 0. From (3.3) we have the desired result.

Although B_f need not be locally connected, it follows from (2.1) that for $f: E^3 \to E^3$, $f C^3$, light and open, each component K of B_f is locally connected. (Suppose that K is not locally connected; then it contains [20, p. 19, (12.3)] a subcontinuum H such that K is not locally connected at any point of H. At each point X of H - E, where E is the exceptional set of (2.1), there exists a neighborhood U such that the restriction $f \mid U$ is a canonical map $F_{n,d}$. Since $H \cap U$ is a tame arc, we have a contradiction.)

The example whose branch set has a Cantor set of point components [6, p. 614] is also equivalent to a C^{∞} map. (Appropriate modifications of (3.2) and (3.3) are required.)

For another example of a C^{∞} (3-to-1) open map, let z be a complex variable, t real, and let $f: E^3 \to E^3$ be defined by

$$f(z,t) = (z^3 - 3ze^{-2t^{-2}}\sin^2 t^{-1}, t).$$

Then (with z = x + iy) B_f is the union of the curves $x = \pm e^{-t^{-2}} \sin t^{-1}$ in the (x - t)-plane. Still another example is given in (2.4).

The following remark answers in the negative question II of [13, p.266].

3.5. Remark. There exists a C^{∞} 3-to-1 open map $f: E^3 \to E^3$ which is not topologically equivalent to any real analytic map.

We use the map above for which B_f has a Cantor set X of point components, or one with a sequence of point components converging to a point. It follows from (1.1) (see the proof of (2.1)) that $X \subset R_0$. Suppose that f is real analytic. Then R_0 is an analytic set (the zeros of $\sum_{i,j}(D_jf_i)^2$), and thus [3, p. 141] is locally connected. Since $\dim(R_0) = 0$ (1.3), we have a contradiction.

3.6. THEOREM. There exists a C^{∞} open map $f: E^2 \to E^2$ which is not light.

Proof. The domain of f will actually be the square S given by |x| < 1 and |y| < 1; let L be the intersection of the y-axis with S. Let r^j $(j = 1, 2, \cdots)$ be any countable dense subset of $L - \{0\}$, and let $h: S \to S$ be given by h(x, y) = (x, xy).

If $X_{j,k}$ $(j, k = 1, 2, \dots)$ are the subsets of h(S) defined by

$$2^{-2^{j-1}(2k-1)} \le x \le \left(\frac{3}{2}\right) \cdot 2^{-2^{j-1}(2k-1)},$$

then their closures are mutually disjoint and each

$$X_{j,k} \subset S(0, 3 \cdot 2^{-2^{j-1}(2k-1)}).$$

Let $g: h(S) \to E^2$ be a map such that

- (1) $g | (h(S) \{0\})$ is a C^{∞} local homeomorphism,
- (2) $g | (h(S) \bigcup_{j,k} X_{j,k})$ is the identity map,
- (3) $g(X_{j,k}) \subset S(0, 3 \cdot 2^{-2^{j-1}(2k-1)})$, and
- (4) there exists a point $p^{j,k}$ common to $h^{-1}(X_{j,k})$ and the line $y = r^j$ such that $g(h(p^{j,k})) = 0$ $(j,k = 1,2,\cdots)$.
 - (By (1) and (3) g is continuous at 0.)

Given any neighborhood U of r^j , there exists $p^{j,k} \in U$; since $g(h(r^j)) = 0$, it it follows from conditions (1) and (4) that $tgh(r^j) \in int(gh(U))$. Since the r^j are dense in L, and since gh|(S-L) is a (C^{∞}) local homeomorphism, gh is open.

The result follows from (3.3).

REMARK. Given any three natural numbers j, k, and n such that (1) $0 \le j \le \min(k-1, n-2)$, (2) $1 \le k \le n-1$, and (3) $n \ge 2$, modifications of the above argument yield a nonlight C^{∞} open map $f: E^n \to E^n$ for which $\dim(f(B_f)) = j$ and $\dim(B_f) = k$.

- 3.7. REMARK. If $f: E^n \to E^n$ is C^n open, but not light, then for every k $(k = 1, 2, \cdots)$ there exists x such that $f^{-1}(x)$ consists of isolated points, at least k in number. The proof is similar to that of (1.8).
- 4. A counterexample to a statement of Stoilow. In [13] S. Stoilow states that, if $f: E^3 \to E^3$ is light open, then $\dim(B_f) \le 1$. His proof employs the following lemma [13, pp. 263-264]: Let $x \in E^3$, and let B_ρ be the geometric ball of radius ρ and center f(x). Then there exists r > 0 and a compact neighborhood D of x such that $f \mid D$ is open and $f(D) = B_r$. There exist positive numbers ε_1 and ε_2 such that the number of components of $f^{-1}(B_\rho)$ is the same for all ρ with $0 < \varepsilon_1 < \rho < \varepsilon_2$. Moreover, for any such set of numbers $\varepsilon_1, \varepsilon_2$, and ρ , each component of $f^{-1}(\text{bdy}(B_\rho))$ is a 2-manifold. The last statement is false in general.

It appears that a modification of the proof of (2.1) using this statement would yield (2.1) for n=3 and f light open but not necessarily differentiable. For this reason it seems worthwhile to give a counterexample here.

We write E^3 as $E^1 \times C$, where C is the complex plane, and let X_m be the set of (t,z) such that either $|t| \le 2^{-m}$ and $|z| \le 2^{-m}$, or $2^{-m} \le t \le 3 \cdot 2^{-m-1}$ and $|z-2^{-m-1}| \le 2^{-m-1}$ $(m=1,2,\cdots)$. Then $X_{m+1} \subset \operatorname{int}(X_m)$, and there exists a homeomorphism $h: E^3 \to E^3$ such that $K_m = h(\operatorname{bdy}(X_m))$ is a geometric 2-sphere about the origin 0. The map $hF_{3,2}$ is the desired counterexample f, since $f^{-1}(K_m)$ ($=F_{3,2}^{-1}$ ($\operatorname{bdy}(X_m)$) is not a 2-manifold while $f^{-1}(h(X_m))$ is connected $(m=1,2,\cdots)$.

Stoilow uses a characterization of compact 2-manifolds in E^3 due to Wilder [18, Theorem 21], and the sets $f^{-1}(K_m)$ fail to satisfy the first conclusion of that theorem. With a suitable modification of the sets X_m , the sets $f^{-1}(K_m)$ also fail to satisfy the second conclusion.

Added in Proof. J. Väisälä has kindly pointed out to the author the following simple example of a C^{∞} map $f: E^2 \to E^2$ which is open but not light (cf. 3.6). For z = x + iy and $x \neq 0$, $f(z) = \exp(-z/x^3)$; f(iy) = 0. Except on the imaginary axis f is a local homeomorphism.

In Images of critical sets, Ann. of Math. (2) **68** (1958), 247–259, Arthur Sard considers maps f of $U \cdots E^n$ into E^p . He proves under very general differentiability hypotheses that if R_k is the countable union of sets of finite Hausdorff (k+1)-measure, then the (k+1)-measure of $f(R_k)$ is 0. It follows [9, p. 104] that $\dim(f(R_k)) \leq k$. Thus, in this case (1.3) is the consequence of a more general result. In general, however, R_k need not be the countable union of sets of finite (k+1)-measure.

The author is grateful to Professor Sard for bringing this paper to his attention.

REFERENCES

- 1. R. D. Anderson, On monotone interior mappings in the plane, Trans. Amer. Math. Soc. 73 (1952), 211-222.
- 2. ——, Open mappings of compact continua, Proc. Nat. Acad. Sci. U.S.A. 42 (1956), 347-349.
- 3. F. Bruhat and H. Whitney, Quelques propriétés fondamentals des ensembles analytiquesréels, Comment. Math. Helv. 33 (1959), 132-160.
 - 4. P. T. Church, Differentiable open maps, Bull. Amer. Math. Soc. 68 (1962), 468-469.
- 5. P. T. Church and E. Hemmingsen, Light open maps on n-manifolds, Duke Math. J. 27 (1960), 527-536.
 - 6. ——, Light open maps on n-manifolds. II, Duke Math. J. 28 (1961), 607-624.
 - 7. J. Dieudonné, Foundations of modern analysis, Academic Press, New York, 1960.
- 8. F. W. Gehring, Rings and quasiconformal mappings in space, Proc. Nat. Acad. Sci. U.S.A. 47 (1961), 98-105.
- 9. W. Hurewicz and H. Wallman, *Dimension theory*, Princeton Univ. Press, Princeton, N. J., 1941.
- 10. A. P. Morse, The behavior of a function on its critical set of points, Ann. of Math (2) 40 (1939), 62-70.
- 11. A. Sard, The measure of the critical values of differentiable maps, Bull. Amer. Math. Soc. 48 (1942), 883-890.
- 12. S. Stoilow, Sur les transformations continues et la topologie des fonctions analytiques, Ann. Sci. École Norm. Sup. III 45 (1928), 347-382.
- 13. ——, Sur les transformations intérieures des variétés à trois dimensions, Comptes Rendus du Premier Congrès des Mathématiciens Hongrois (1950), p.p. 263-266 Akadémiai Kiadó, Budapest, 1952.
- 14. R. Thom, Les singularités des applications différentiables, Ann. Inst. Fourier (Grenoble) 5 (1955-1956), 43-87.
- 15. C. J. Titus and G. S. Young, A Jacobian condition for interiority, Michigan Math. J. 1 (1952), 89-94.
- 16. —, The extension of interiority, with some applications, Trans. Amer. Math. Soc. 103 (1962), 329-340.
 - 17. A. W. Tucker, Branched and folded coverings, Bull. Amer. Math. Soc. 42 (1936), 859-862.

- 18. R. L. Wilder, On the properties of domains and their boundaries in E^n , Math. Ann. 109 (1934), 273-306.
- 19. H. Whitney, A function not constant on a connected set of critical points, Duke Math. J. 1 (1935), 514-517.
- 20. G. T. Whyburn, *Analytic topology*, Amer. Math. Soc. Colloq. Publ. Vol. 28, Amer. Math. Soc., Providence, R. I., 1942.

Institute for Defense Analyses, Princeton, New Jersey Syracuse University, Syracuse, New York