NODAL NONCOMMUTATIVE JORDAN ALGEBRAS

BY ROBERT H. OEHMKE

1. A finite-dimensional power-associative algebra $\mathfrak A$ is said to be nodal [6] if every element of $\mathfrak A$ can be written as $\alpha 1 + z$ where $\alpha \in \mathfrak F$, 1 is the unity element of $\mathfrak A$ and z is nilpotent and if the set of all nilpotent elements is not a subalgebra of $\mathfrak A$.

In [3; 4], Kokoris has shown that every simple nodal noncommutative Jordan algebra of characteristic $p \neq 2$ has the form $\mathfrak{A} = \mathfrak{F}1 + \mathfrak{N}$ with $\mathfrak{N}^+ = \mathfrak{F}[x_1, \dots, x_n]$ for some n where the generators are all nilpotent of index p and the multiplication is associative. If f and g are two elements of \mathfrak{A} then the multiplication table of \mathfrak{A} is given by

$$fg = f \circ g + \frac{1}{2} \sum_{i,j} \frac{\partial f}{\partial x_i} \circ \frac{\partial g}{\partial x_j} \circ c_{ij}$$

where the circle product is the product in \mathfrak{A}^+ and

$$c_{ij} = x_i x_j - x_j x_i.$$

In [7] Schafer considers nodal noncommutative Jordan algebras defined by a skew-symmetric bilinear form (i.e., $c_{ij} \in \mathfrak{F}$) and those with two generators. All of these algebras are Lie-admissible (i.e., \mathfrak{A}^- is a Lie algebra). Schafer obtained the derivation algebras of these algebras defined by a skew-symmetric bilinear form.

Here, we examine all simple nodal noncommutative Jordan algebras that are Lie-admissible over a field $\mathfrak F$ of characteristic $p \neq 2$. First a set of generators is obtained having properties suitable for further study. This set of generators is then used to find the algebras $D(\mathfrak A)$ of derivatives of $\mathfrak A$ and the algebras adj $\mathfrak A^-$ and (adj $\mathfrak A^-$)'. Schafer has shown that all of the simple Lie algebras defined by Block [1] can be realized as (adj $\mathfrak A^-$)' for some $\mathfrak A$ that is simple, nodal noncommutative Jordan and Lie-admissible. Hence we have obtained a somewhat different formulation of these algebras. The question remains whether all of these algebras, (adj $\mathfrak A^-$)', are in the class defined by Block. It is our intention to investigate this question in a subsequent paper.

2. We define the mapping $D_y = D(y)$ by

$$xD_y = xy - yx$$
.

Then $D_y = R_y - L_y$ where R_y and L_y are the right and left multiplications by y on \mathfrak{A} . A derivation of an algebra \mathfrak{B} is a linear transformation T on \mathfrak{B} into \mathfrak{B} such that for $x, y \in \mathfrak{B}$

$$(xy)T = (xT)y + x(yT).$$

Since \mathfrak{A}^- is a Lie algebra D_y is the right multiplication by y of \mathfrak{A}^- and is a derivation of \mathfrak{A}^- . By expanding

$$2(x \circ y)D_z - 2(xD_z) \circ y - 2x \circ (yD_z)$$

in terms of the multiplication of A and using the flexible law

$$(xy)z + (zy)x = x(yz) + z(yx)$$

we see that D_z is also a derivation of \mathfrak{A}^+ and hence of \mathfrak{A} .

It is well known [2, p. 108] that any set of n elements of \mathfrak{N} whose cosets form a basis of the n-dimensional space $\mathfrak{N} - \mathfrak{N} \circ \mathfrak{N}$ can serve as a set of generators of \mathfrak{A}^+ . This result shall be our chief tool in the proof of the following theorem.

THEOREM 1. Let $\mathfrak A$ be a simple, Lie-admissible, nodal noncommutative Jordan algebra over a base field $\mathfrak F$ of characteristic $p \neq 2$. If $\mathfrak A^+$ has an even number of generators then a set of generators x_1, \dots, x_{2r} can be chosen for $\mathfrak A^+$ so that

(1)
$$x_{i}D(x_{i+r}) = 1 + \alpha_{i}x_{i}^{p-1} \circ x_{i+r}^{p-1}, \quad i = 1, \dots, r, \\ x_{i}D(x_{i}) = 0, \qquad j \neq i+r,$$

with $\alpha_i \in \mathcal{F}$. If \mathfrak{A}^+ has an odd number of generators then a set of generators x_1, \dots, x_{2r+1} can be chosen for \mathfrak{A}^+ so that (1) is satisfied and

(2)
$$x_{2r+1}D(x_j) = 0, j = 1, \dots, 2r - 2,$$

$$x_{2r+1}D(x_{2r}) = x_{2r-1}^{p-1} \circ (1 + \beta x_{2r+1}^{p-1}),$$

$$x_{2r+1}D(x_{2r-1}) = x_{2r}^{p-1} \circ \alpha(1 + \beta x_{2r+1}^{p-1}),$$

with α and β in \mathcal{F} .

Proof. Since \mathfrak{A} is simple \mathfrak{N} can not be an ideal of \mathfrak{A}^- . For if \mathfrak{N} is an ideal of \mathfrak{A}^- then since it is an ideal of \mathfrak{A}^+ it would be closed under both the operations $R_y - L_y$ and $R_y + L_y$ for $y \in \mathfrak{A}$. Therefore it would be also an ideal of \mathfrak{A} . Hence there must be a pair of generators x and y such that yD_x is nonsingular. Since y can be replaced by αy for any α in \mathfrak{F} we assume

(3)
$$yD_x = 1 + m \circ y^k = b^{-1}.$$

We also assume y has been chosen so that k is a maximum. If k < p-1 then letting $q = (y-1/(k+1))y^{k+1} \circ m \circ b$ we have

$$qD_x = 1 - \frac{1}{k+1} y^{k+1} \circ (m \circ b) D_x$$
$$= 1 + q^{k+1} \circ m'$$

which contradicts the choice of k. Hence we can assume in (3) that k = p - 1. We now write (3) as

$$yD_x = 1 + y^{p-1} \circ x^t \circ m' = b^{-1}$$

and assume that y and x have been chosen so that t is a maximum. If t < p-1 then, as above, we can replace x by $x-1/(t+1) \circ x^{t+1} \circ m' \circ y^{p-1} \circ b$ to obtain a contradiction to our choice of t. Hence we can assume x and y have been chosen so that

(4)
$$yD_{x} = 1 + m_{v} \circ y^{p-1} \circ x^{p-1}.$$

If z is a third generator, in the same way that we altered the generator y, we can add an element q of $y \circ \mathfrak{A}$ to z to obtain the property

$$(z+q)D_x \in y^{p-1} \circ \mathfrak{A}.$$

Hence we assume that all generators z different from x and y have been chosen so that

$$zD_x = y^{p-1} \circ m_z.$$

Since for any q in $\mathfrak A$ we have D_a a derivation of both $\mathfrak A$ and $\mathfrak A^-$ then

$$(6) zD_{\nu}D_{x} = zD_{x}D_{\nu} - yD_{x}D_{z}.$$

If (4) and (5) are substituted in (6) we have

(7)
$$zD_{y}D_{x} = y^{p-1} \circ m_{z}D_{y} + y^{p-2} \circ x^{p-1} \circ m_{y} \circ yD_{z} - y^{p-1} \circ x^{p-1} \circ m_{y}D_{z}.$$

But the right-hand side of (7) is in $y^{p-2} \circ \mathfrak{A}$; so also is the left-hand side. From (4) and (5) the only possible way for this to happen is to have

$$zD_y = n_0 + y^{p-1} \circ n_1$$

in which n_i is independent of y. (i.e., n_i is a polynomial in which y does not appear.) In (7) this implies

$$n_0 D_x - y^{p-2} \circ n_1 = y^{p-1} \circ m_z D_y - y^{p-2} \circ x^{p-1} \circ m_y \circ n_0$$
$$- y^{p-1} \circ x^{p-1} \circ m_y D_z$$

and

$$(8) n_1 = x^{p-1} \circ m_y \circ n_0.$$

Write $n_0 = x^k \circ t$. If $k we can replace the generator z by the generator <math>z + 1/(k+1) \circ x^{k+1} \circ t = z'$ to get

$$z'D_{y} = n_{0} + y^{p-1} \circ m_{y} \circ n_{0} \circ x^{p-1} + x^{k} \circ t \circ xD_{y} + \frac{1}{k+1}x^{k+1} \circ tD_{y}$$

$$= y^{p-1} \circ x^{p-1} \circ m_{y} \circ n_{0} + \frac{1}{k+1}x^{k+1} \circ tD_{y}$$

$$= n'_{0} + y^{p-1} \circ x^{k+1} \circ m_{y} \circ n'_{1};$$

in which n'_i is again independent of y. Note that if (5) holds and z is replaced by a generator z + q in which q is independent of y then (5) will be retained.

Again arguing on the maximum value of k that can be obtained in the expression $n_0 = x^k \circ t$ we can conclude that k = p - 1, $n_1 = 0$ and

(9)
$$zD_{y} = x^{p-1} \circ n_{z},$$

$$zD_{x} = y^{p-1} \circ m_{z}$$

in which n_z is independent of y.

Identity (7) can now be reduced to

(10)
$$x^{p-1} \circ n_z D_x = y^{p-1} \circ m_z D_y - y^{p-1} \circ x^{p-1} \circ m_y D_z.$$

For a particular choice of a set of generators including x and y satisfying (4) assume there are two distinct generators w and z (both satisfying (9)). Write

$$(11) m_z = \sum x^i \circ m_i, \quad m_0 = \sum w^i \circ n_i.$$

(When obvious, we shall omit index and range of the summation.) Then

$$m_z D_v = -\sum_i x^{i-1} \circ m_i + \sum_i x^i \circ m_i D_v - m_0 \circ y^{p-1} \circ x^{p-1}.$$

But from (10) $y^{p-1} \circ m_z D_y \in x \circ \mathfrak{A}$. Therefore

$$-y^{p-1} \circ m_1 + y^{p-1} \circ m_0 D_y \in x \circ \mathfrak{A},$$

$$-y^{p-1} \circ m_1 + y^{p-1} \circ \sum i w^{i-1} \circ n_i \circ w D_y + \sum w^i \circ n_i D_y \in x \circ \mathfrak{A}.$$
(12)

If w is replaced as a generator by w' = w - x then (9) still holds for z and hence so do the corresponding relationships (12). Note that if P(w) is a polynomial in w then $P(w) - P(w + x) \in x \circ \mathfrak{A}$ and $wD_y - (w + x)D_y - 1 \in x \circ \mathfrak{A}$. If we write q' for q = q(w) with w replaced by w + x then $w'D_x = y^{p-1} \circ m'_z$; $m'_z = \sum x^i \circ m'_i$; $m'_0 = \sum w^i \circ n'_i$ and from (11) we have

$$0 \equiv -y^{p-1} \circ m'_1 + y^{p-1} \circ \sum i w'^{i-1} \circ n'_i \circ w' D_y + \sum w'^i \circ n'_i D_y$$

$$\equiv -y^{p-1} \circ m_1 + y^{p-1} \circ \sum i w^{i-1} \circ n_i \circ w' D_y + \sum w^i \circ n_i D_y$$

$$\equiv -y^{p-1} \circ m_1 + y^{p-1} \circ \sum i w^{i-1} \circ n_i \circ (w D_y - 1) + \sum w^i \circ n_i D_y$$

modulo $x \circ \mathfrak{A}$.

But this implies $y^{p-1} \circ \sum i w^{l-1} \circ n_i \in x \circ \mathfrak{A}$. Therefore $y^{p-1} \circ n_i \in x \circ \mathfrak{A}$ for i > 0.

Now assume that in (11) we have chosen the m_i to be independent of x. Then since m_z is independent of y and m_0 is independent of x we have $n_i = 0$ for i > 0. Hence m_0 is independent of w. Since w was arbitrary we must have m_0 a polynomial in the single generator z. But then $y^{p-1} \circ m_0 D_y \in x \circ \mathfrak{A}$ by (9) and $y^{p-1} \circ m_1 \in x \circ \mathfrak{A}$ by (12). However m_1 is independent of x and y. Hence $m_1 = 0$.

Once again looking at (12) we have

$$y^{p-1} \circ m_z D_y \equiv -y^{p-1} \circ \sum i x^{i-1} \circ m_i + y^{p-1} \circ \sum x^i \circ m_i D_y \equiv 0$$

modulo $x^{p-1} \circ \mathfrak{A}$. With $m_0 D_y$ in $x^{p-1} \circ \mathfrak{A}$ and $m_1 = 0$ we see that $m_2 = \cdots = m_{p-1} = 0$ and $m_z = m_0$ is a polynomial in z with coefficients in \mathfrak{F} . Similarly we obtain n_z as a polynomial in z with coefficients in \mathfrak{F} . Therefore if the number of generators is greater than or equal to 4 and they have been picked so that (4) and (9) hold then m_z and n_z in (9) are polynomials in the single generator z.

However if z and w are two generators distinct from x and y then z can be replaced as a generator by z + w. Indentity (9) still holds, i.e.,

$$(z+w)D_x = y^{p-1} \circ m_{z+w},$$

$$(z+w)D_y = x^{p-1} \circ n_{z+w}$$

in which m_{z+w} and n_{z+w} are polynomials in the single generator (z+w). But $m_{z+w}=m_z+m_w$ and $n_{z+w}=n_z+n_w$. For these sums to be polynomials in (z+w), m_z and n_z must be of degree at most 1. If z is replaced by $z+z^2$ then (9) still holds for the generator $(z+z^2)$. In particular $m_z+2z\circ m_z$ is of degree at most 1 in $(z+z^2)$. Write m_z as $\alpha+\beta z$ and $m_z+2m_z\circ m_z$ as $\gamma+\delta(z+z^2)$. Then $\beta=2\alpha$. Since z was arbitrary we must also have $\delta=2\gamma$. But the same relationships that gave us $\beta=2\alpha$ also give us $\delta=4\gamma$, i.e., $\delta=\gamma=\alpha=\beta=0$. Hence $m_z=0$ and in the same manner $n_z=0$.

We still assume we have at least two generators z and w distinct from x and y. We also assume that they have been chosen so that

$$zD_x = zD_y = wD_x = wD_y = 0.$$

We must have

$$wD_zD_x = wD_xD_z - zD_xD_w$$

and therefore $(wD_z)D_x = 0$. This implies that wD_z is independent of y. Similarly $(wD_z)D_y = 0$ and wD_z is independent of x. Then if we assume that all the generators distinct from x and y have been chosen so that their product in \mathfrak{A}^- by either x or y is 0, we can assume that the polynomials over \mathfrak{F} in these generators is an ideal \mathfrak{I} of \mathfrak{A}^- . But then $\mathfrak{I} \circ \mathfrak{A}$ is an ideal in both \mathfrak{A}^- and \mathfrak{A}^+ and hence in \mathfrak{A} . Therefore \mathfrak{I} must contain a nonsingular element. This means that there are two generators w and z, distinct from x and y, such that wD_z is nonsingular.

At this point we reconsider the polynomial m_y obtained in (4). If the generators x, y, z, w have been chosen so that (4) and (13) hold and z and w are such that wD_z is nonsingular then (7) reduces to

$$y^{p-1} \circ x^{p-1} \circ m_v D_z = 0.$$

Therefore $m_y D_z$ is 0 since it is independent of both x and y. But this implies that m_y is independent of w and by symmetry m_y is independent of z. If t is a fifth generator then either tD_z or $(w+t)D_z$ is nonsingular. In either case we see that m_y is also independent of t. Hence $m_y \in \mathcal{F}$.

We can now proceed in \Im (defined above) with the same argument as above to obtain the result of the theorem for the even-dimensional case.

In the odd dimensional case we can proceed with the above argument until we are presented with an \Im which is the set of polynomials over \Im in three generators, say x, y and z. Again by the previous arguments we can assume that x, y and z have been chosen so that

$$yD_x = 1 + y^{p-1} \circ x^{p-1} \circ m_y,$$

$$zD_x = y^{p-1} \circ m_z,$$

$$zD_y = x^{p-1} \circ n_z.$$

Consider (7). We have

(14)
$$x^{p-1} \circ n_z D_x = y^{p-1} \circ m_z D_y - y^{p-1} \circ x^{p-1} \circ m_y D_z.$$

Since m_y is a polynomial in x, y and z then $y^{p-1} \circ x^{p-1} \circ m_y D_z = 0$. Also since m_z is independent of y and by (9) $m_z D_y$ is independent of y we must have $m_z D_y \in x^{p-1} \circ \mathfrak{A}$. This implies that m_z is independent of x. Hence $y^{p-1} \circ m_z D_y = \partial m_z / \partial z \circ x^{p-1} \circ y^{p-1}$ and $x^{p-1} \circ m_z D_x = \partial n_z / \partial z \circ x^{p-1} \circ y^{p-1}$. From (14) we have

$$\frac{\partial n_z}{\partial z} = \frac{\partial m_z}{\partial z} .$$

If both n_z and m_z are singular then zD_x and zD_y are in $z \circ \mathfrak{A}$. Hence $z \circ \mathfrak{A}$ is an ideal of \mathfrak{A}^- and \mathfrak{A}^+ . Since this denies the simplicity of \mathfrak{A} we must have either m_z or n_z nonsingular. Assume $m_z = 1 + q$ in which $q \in \mathfrak{N}$. Then if l is a polynomial in z over \mathfrak{F} we have

$$(z+l)D_x = y^{p-1} \circ (1+q) + y^{p-1} \circ \frac{\partial l}{\partial z} \circ (1+q).$$

Clearly, l can be chosen so that $\partial l/\partial z \circ (1+q) \equiv w$ modulo $z^{p-1} \circ \mathfrak{A}$. Hence we can assume

(16)
$$zD_{x} = y^{p-1} + \beta y^{p-1} \circ z^{p-1},$$

in which $\beta \in \mathcal{F}$. Now since m_z is nonsingular the solutions of (15) are of the form $n_z = \alpha m_z$. Hence

(17)
$$zD_{\nu} = \alpha x^{p-1} \circ (1 + \beta z^{p-1}).$$

Again, let l be a polynomial in z over \mathfrak{F} . Then

$$(y+x^{p-1}\circ l)D_x=1+y^{p-1}\circ x^{p-1}\circ \left[m_y+\frac{\partial l}{\partial z}\circ (1+\beta z^{p-1})\right].$$

Write $m_y = \gamma + z \circ t$ and $l = \delta z + z^2 \circ l'$ in which

$$\frac{\partial (z^2 \circ l')}{\partial z} + z \circ t$$

is a multiple of z^{p-1} . Then

$$\frac{\partial (z^2 \circ l')}{\partial z} \circ (1 + \beta z^{p-1}) + z \circ t$$

is also a multiple of z^{p-1} . Now choose δ so that

$$\delta(1+\beta_z^{p-1})+\frac{\partial(z^2\circ l')}{\partial z}\circ(1+\beta z^{p-1})+z\circ t$$

is a constant. We now have

$$(y + x^{p-1} \circ l)D_x = 1 + \gamma \circ x^{p-1} \circ y^{p-1}.$$

Since $(y + x^{p-1} \circ l)^{p-1} \circ x^{p-1} = y^{p-1} \circ x^{p-1}$ we can assume the generator y can be chosen so that

$$yD_{x} = 1 + \gamma x^{p-1} \circ y^{p-1}$$

We can now repeat the construction of the z in (9) to obtain

$$zD_x=y^{p-1}\circ m_z,$$

$$zD_y=x^{p-1}\circ n_z.$$

From these we can obtain (16) and (17). Hence we have concluded the proof of the theorem.

3. Let $\mathfrak A$ and $\mathfrak A^*$ be two simple nodal algebras that are equal as vector spaces and have the same + algebras. Let there be an even number of generators x_1, \dots, x_{2r} with the multiplication in $\mathfrak A$ given by the $c_{ij} = x_i D(x_j)$ obtained in Theorem 1 and the multiplication in $\mathfrak A^*$ given by

$$c'_{ii+r}=2,$$

$$c'_{ij} = 0$$

for $i = 1, \dots, r$ and $j \neq i + r$. The algebra \mathfrak{A}^* then falls into the class of simple

nodal algebras defined by a skew-symmetric bilinear form and studied by Schafer [7].

Every derivation of \mathfrak{A} must be a derivation of \mathfrak{A}^+ . The derivations of \mathfrak{A}^+ have been given by Jacobson [2, p. 107] as

$$f \to \sum_{1}^{2r} \frac{\partial f}{\partial x_{k}} \circ a_{k}.$$

We shall denote this derivation by (a_1, \dots, a_{2r}) . Assume (a_1, \dots, a_{2r}) is a derivation of \mathfrak{A} and consider the possibility that (b_1, \dots, b_{2r}) is a derivation of \mathfrak{A}^* in which

$$(19) b_i = c_{is}^{-1} \circ c_{is}' \circ a_i$$

and s is i + r if $i \le r$ and is i - r if i > r. In the same way we choose t so t = j + r or j - r and $t \le 2r$.

Consider the expression

(20)
$$\sum_{k=1}^{2r} \left(\frac{\partial c'_{ij}}{\partial x_k} \circ b_k + \frac{\partial b_i}{\partial x_k} \circ c'_{jk} + \frac{\partial b_j}{\partial x_k} \circ c'_{ki} \right)$$

obtained from Schafer's criteria [7, p. 312] that (b_1, \dots, b_{2r}) be a derivative of \mathfrak{A}^* . We want to show that for all i and j (20) is 0. By the choice of the c'_{ij} 's (20) can be reduced to

$$\frac{\partial b_i}{\partial x_t} \circ c'_{jt} + \frac{\partial b_j}{\partial x_s} \circ c'_{si}$$

and by substituting the expressions (19) we have

$$c'_{jt} \circ c'_{is} \circ \left(\frac{\partial a_i}{\partial x_t} \circ c_{is}^{-1} - \frac{\partial a_j}{\partial x_s} \circ c_{jt}^{-1}\right) \\ + c'_{jt} \circ c'_{is} \circ \left(\frac{\partial c_{is}^{-1}}{\partial x_t} \circ a_i - \frac{\partial c_{jt}^{-1}}{\partial x_s} \circ a_j\right).$$

For our purposes we can drop the factor $c'_{jt} \circ c'_{is}$, use the fact that if $q \in N$ then $(1 + q^{p-1})^{-1} = 1 - q^{p-1}$, and

$$c_{is} \circ c_{jt} \circ \frac{\partial c_{jt}}{\partial x_s} = c_{is} \circ c_{jt} \circ \frac{\partial c_{is}}{\partial x_t} = 0$$

to further reduce (20) to

(21)
$$\frac{\partial a_i}{\partial x_t} \circ c_{jt} - \frac{\partial a_j}{\partial x_s} \circ c_{is} + \frac{\partial c_{jt}}{\partial x_s} \circ a_j - \frac{\partial c_{is}}{\partial x_t} \circ a_i.$$

But the criteria that must be satisfied for (a_1, \dots, a_{2r}) to be a derivation of \mathfrak{A} is that (21) be zero. Hence (b_1, \dots, b_{2r}) is a derivation of \mathfrak{A}^* . From identities (14) of Schafer [7] we can now conclude that there is a g such that

$$b_i = \left(\frac{\partial g}{\partial x_s} + \sigma_i \circ x_s^{p-1}\right) \circ c_{is}'$$

in which σ_i is in \mathfrak{F} . Therefore

(22)
$$a_i = \left(\frac{\partial g}{\partial x_s} + \sigma_i \circ x_s^{p-1}\right) \circ c_{is}.$$

Schafer has already proved [7, Theorem 8] that if the a's are defined as in (22) then they define a derivation.

We summarize as follows.

THEOREM 2. If $\mathfrak A$ is a simple, nodal, Lie-admissible noncommutative Jordan algebra of characteristic $p \neq 2$ such that $\mathfrak A^+$ has an even number n of generators then the derivation algebra $\mathfrak D(\mathfrak A)$ of $\mathfrak A$ is the set of all mappings

$$f \to \sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}} \circ a_{i}$$

in which the a_i are defined as in (22). The dimension of $\mathfrak{D}(\mathfrak{A})$ is $p^n + n - 1$.

We now investigate the algebras adj \mathfrak{A}^- , (adj \mathfrak{A}^-)' and (adj \mathfrak{A}^-)".

Using Schafer's result [7, Theorem 7] we have $\mathfrak{A}^-/\mathfrak{F}1\cong\operatorname{adj}\,\mathfrak{A}^-$ is of dimension $p^{2r}-1$.

Since $D_n D_m - D_m D_n = D(nD_m)$ we can consider (adj \mathfrak{A}^-)' as the set of all $D_x, x \in \mathfrak{A}^-$ such that there are y and z in \mathfrak{A}^- with $x \equiv yD_z$ modulo §1. Also $x_i^2 D(x_{i+r}) = 2x_i$ implies $D(x_i) \in (\text{adj } \mathfrak{A})'$.

Before examining the dimension of (adj \mathfrak{A}^-)' we consider a slightly more general situation.

Let $\mathfrak J$ be an ideal of $\mathfrak A^-$ containing all of the generators x_1, \dots, x_{2r} . Let m be a monomial of $\mathfrak A^-$ that is not in $\mathfrak F1$, and in which the exponent of x_1 is i and $0 \le i < p-1$. Write $m = x_1^i \circ n$. Then

(23)
$$\left(\frac{1}{i+1}x_1^{i+1} \circ n\right) D(x_{1+r}) = x_1^i \circ n \circ c_{11+r}.$$

If i > 0, $c_{11+r} \in \mathfrak{F}$, or x_{1+r} appears in m with nonzero exponent then $x_1^i \circ n \circ c_{11+r} = x_1^i \circ n = m \in \mathfrak{I}$. Arguing on the arbitrariness of the choice of x_1 we see that all terms of degree greater than 0 are in \mathfrak{I} except possibly those in which:

- (1) every generator appears to either the 0 or p-1 power,
- (2) x_i has exponent p-1 if and only if x_{i+r} has exponent p-1 for $i=1,\dots,r$ and
- (3) x_i and x_{i+} , have exponent p-1 if $c_{ii+} \in \mathfrak{F}$. However, assume such a term is m, and assume x_1 has exponent 0 in m and $c_{11+r} \notin \mathfrak{F}$. Then from (23) we see that $m \equiv -\alpha_1 m \circ x_1^{p-1} \circ x_{1+r}^{p-1}$ modulo \mathfrak{F} .

This leaves us with at most two residue classes modulo \Im ; the class containing 1 and the class containing $x_{i_1}^{p-1} \circ x_{i_1+r}^{p-1} \circ \cdots \circ x_{i_t}^{p-1} \circ x_{i_t+r}^{p-1}$ in which $\mathfrak{S} = \{i_1, \dots, i_t\}$ is the set of all $i \leq r$ such that $c_{i_1+r} \in \mathfrak{F}$. If \mathfrak{S} is empty then since

$$x_i D(x_{i+r}) = 1 + \alpha_i x_i^{p-1} \circ x_{i+r}^{p-1}$$

and $\alpha_i \neq 0$ there is at most one residue class, that one containing 1.

We now let \Im be the ideal in \mathfrak{A}^- such that $\Im \cong (\operatorname{adj} \mathfrak{A}^-)'$. If $\mathfrak{S} = \emptyset$ by the above result we have $\Im = \mathfrak{A}^-$ and $(\operatorname{adj} \mathfrak{A}^-)' = \operatorname{adj} \mathfrak{A}$.

In case $\mathfrak{S} \neq \emptyset$ we first note that we have shown that \mathfrak{I} contains all monomials and binomials of the form

$$(24) n \circ c_{ii+r},$$

 $i=1,\cdots,r$, and n is a monomial without the factor $x_i^{p-1}\circ x_{i+r}^{p-1}$. To show that these are the only terms in $\mathfrak S$ we consider two monomials $n=x\circ x_i^{u}\circ x_{i+r}^{p}$ and $m=y\circ x_i^{k}\circ x_{i+r}^{j}$ in which x and y are independent of x_i and x_{i+r} . Every element of $\mathfrak S$ is a sum of terms of the form nD_m and every nD_m is a sum of terms of the form

(25)
$$(x_{i}^{u} \circ x_{i+r}^{v}) D(x_{i}^{k} \circ x_{i+r}^{j}) \circ y \circ x$$

$$= y \circ x \circ x_{i}^{u+k-1} \circ x_{i+r}^{v+j-1} \circ (vk - uj) \circ c_{ii+r}.$$

If u + k - 1 = v + j - 1 = p - 1 then vk - uj = 0. Hence every element of \Im is a sum of terms of the form (24).

Now let q be the product of all x_i^{p-1} such that $i \in \mathfrak{S}$. If q is in \mathfrak{I} then it must be a sum of terms of the form (24). In fact we must have

$$q = \sum q \circ n_i \circ c_{ii+r}$$

in which $i \notin \mathfrak{S}$, n_i is a polynomial independent of any of the generators in q. But this is a polynomial identity that holds in any scalar extension of \mathfrak{F} . Hence we can substitute field elements δ_i , δ_{i+r} of some scalar extension \mathfrak{R} of \mathfrak{F} for x_i and x_{i+r} , $i \notin \mathfrak{S}$, so that $1 + \alpha_i \delta_i^{p-1} \circ \delta_{i+r}^{p-1} = 0$. But then the polynomial identity q = 0 holds over \mathfrak{R} . Hence $q \notin \mathfrak{F}$.

We now show that (adj \mathfrak{U}^-)' is simple. Let \mathfrak{I} be an ideal of (adj \mathfrak{U}^-)'. To simplify the notation we will again actually work with an ideal in \mathfrak{U}^- and assume everything is reduced modulo $\mathfrak{F}1$.

Let \mathfrak{T} be the set of all polynomials in \mathfrak{T} with a minimal number of terms in them. If the generator x_1 appears in any of these polynomials in \mathfrak{T} choose one such polynomial m in which x_1 appears to the minimal positive degree. Consider $mD(x_{1+r}^2)$ which is in \mathfrak{T} and has fewer terms than m unless x_1 appears with positive exponent in every term of m. Also, if any term is of degree greater than 1 in x_1 then we have a contradiction to our choice of m to be of minimal degree in x_1 . Hence we can assume $m = x_1 \circ n$ in which n is independent of x_1 . By choosing n

to be of minimal positive degree in some second generator and avoiding the use of derivations D_y for which x_{1+r} , appear in y we can repeat the above argument finally obtaining a monomial m in $\mathfrak I$ which is the product of distinct generators. If both x_i and x_{i+r} are in m we can replace m by mD_{x_i} . Hence we can assume in addition that the subscripts i of the generator in m satisfy $i \le r$. Write

$$m = x_{i_1} \circ x_{i_2} \circ \cdots \circ x_{i_r}$$

and apply successively the derivations

$$D(x_{i_1+r}), D(x_{i_2+r} \circ c_{i_1i_1+r}^{-1}), \dots, D(x_{i_r+r}^2 \circ c_{i_{r-1}i_{r-1}+r}^{-1})$$

obtaining $x_{i_i+r} \in \mathfrak{I}$ and $x_{i_i+r}D(x_i^2) = 2x_{i_i} \in \mathfrak{I}$. Hence we can conclude that any generator that appears in a monomial of \mathfrak{I} is in \mathfrak{I} . If x_i is one such generator then for $i \neq j$, $x_iD(x_{i+r}^2 \circ x_j) = 2x_{i+2} \circ x_j$ is in \mathfrak{I} and $x_j \in \mathfrak{I}$. Therefore \mathfrak{I} contains all generators. By the results above \mathfrak{I} must be all of (adj \mathfrak{U}^-)' and (adj \mathfrak{U}^-)' is simple. We summarize in the following theorem.

THEOREM 3. If $\mathfrak A$ is a simple, Lie-admissible nodal noncommutative Jordan algebra of characteristic $p \neq 2$ with 2r generators then (adj $\mathfrak A^-$)' is a simple Lie algebra of dimension either $p^{2r}-1$ or $p^{2r}-2$ in the cases $\mathfrak S=\varnothing$ or $\mathfrak S\neq\varnothing$ respectively.

4. Let \mathfrak{A} and \mathfrak{A}^* be two nodal algebras that are equal as vector spaces and have the same + algebra. Let there be an odd number n=2r+1, of generators x_1, \dots, x_n with the multiplication in \mathfrak{A} given by $c'_{ii+r}=2$ for $i=1, \dots, r$ and all other $c_{ij}=0$.

Let (a_1, \dots, a_n) be a derivation of \mathfrak{A} . Just as in the previous section we can show $(b_1, \dots, b_{2r-2}, 0, 0, 0, 0)$ is a derivation of \mathfrak{A}^* if

$$b_i = c_{is}^{-1} \circ c_{is}' \circ a_i$$

for $i = 1, \dots, r - 2$. Therefore we must have

$$a_i = \left(\frac{\partial g}{\partial x_s} + \sigma_i \circ x_s^{p-1}\right) \circ c_{is}$$

for $i=1,\cdots,r-1$. Here though, σ_i can apparently be any polynomial in $\mathfrak{F}[x_{2r-1},x_{2r},x_{2r+1}]$. To obtain further restrictions on the σ_i we examine derivations of the form

$$(\sigma_1 \circ x_{1+r}^{p-1} \circ c_{11+r}, \cdots, \sigma_{2r-2} \circ x_{r-1}^{p-1} \circ c_{2r-2r-2}, a_{2r-1}, a_{2r}, a_{2r+1}).$$

We now use identity (5) of Schafer [7] with $i \le r - 2$ and $j \ge 2r - 1$ to obtain

(26)
$$\sum_{2r=1}^{n} \frac{\partial \sigma_{i}}{\partial x_{k}} \circ x_{i+r}^{p-1} \circ c_{jk} + \frac{\partial a_{j}}{\partial x_{i+r}} \circ c_{i+ri} = 0.$$

Since c_{i+r} is nonsingular and $\partial a_j/\partial x_{i+r}$ is of degree at most p-2 in x_{i+r} we

must have $\partial a_j/\partial x_{i+r} = 0$ and a_j independent of x_{i+r} . Interchanging i and i+r in (26) we see a_j is also independent of x_i . Hence a_j is a polynomial in $\mathfrak{F}[x_{2r-1}, x_{2r}, x_{2r+1}]$.

We now select j in (26) to be 2r. Then

$$\frac{\partial \sigma_i}{\partial x_{2r-1}} \ x_{i+r}^{p-1} \ c_{2r2r-1} + \frac{\partial \sigma_i}{\partial x_{2r+1}} \circ x_{i+r}^{p-1} \circ c_{2r2r+1} = 0.$$

Since x_{2r}^{p-1} is a factor of c_{2r}^{2r+1} and σ_i is independent of x_{i+r} we must have

(27)
$$\frac{\partial \sigma_i}{\partial x_{2r+1}} \circ c_{2r\,2r+1} = 0,$$

$$\frac{\partial \sigma_i}{\partial x_{2r-1}} = 0.$$

Hence σ_i is independent of x_{2r-1} . In the same way we see that σ_i is independent of x_{2r} . Now by the first relationship in (27) we have σ_i independent of x_{2r+1} and $\sigma_i \in \mathcal{F}$.

We can now confine our attention to finding the derivations of an algebra \mathfrak{A} with three generators x, y, z in which multiplication is defined by

$$yD_x = 1 + \gamma x^{p-1} \circ y^{p-1} = d_{12},$$

$$zD_x = y^{p-1} \circ (1 + \beta z^{p-1}) = d_{13},$$

$$zD_y = \alpha x^{p-1} \circ (1 + \beta z^{p-1}) = d_{23}.$$

Let (a, a_2, a_3) be a derivation of \mathfrak{A} . Since there are derivations of the form

$$b_{i} = \frac{\partial \mathbf{g}}{\partial x} \circ d_{i1} + \frac{\partial \mathbf{g}}{\partial y} \circ d_{i2} + \frac{\partial \mathbf{g}}{\partial z} \circ d_{i3}$$

[7, Theorem 8] and $a_1 \circ d_{12}^{-1} = \partial g/\partial y$ can be solved to within a multiple o y^{p-1} [7, Lemma 1], we can subtract off the derivation induced by g and assume $a_1 = \delta \circ y^{p-1}$ in which δ is a polynomial in x and z. Using the same lemma we can solve $-\mu^{-1} \circ \delta = \partial g/\partial z$ to within a multiple of z^{p-1} and such that g is in $\mathfrak{F}[x,z]$. Subtracting off the derivation corresponding to this y leaves us with $a_1 = \delta_0 \circ z^{p-1} \circ y^{p-1}$ in which δ_0 is a polynomial in x.

The three conditions [7] that (a_1, a_2, a_3) be a derivation can be written in the form

$$(28) \qquad -\frac{\partial(d_{12}^{-1}a_2)}{\partial y}\circ d_{12}^2+\frac{\partial a_1}{\partial x}\circ d_{21}+\frac{\partial a_2}{\partial z}\circ d_{31}+\frac{\partial a_1}{\partial z}\circ d_{23}=0,$$

$$(29) - y^{p-1} \circ \frac{\partial (\mu^{-1}a_3)}{\partial z} \circ \mu^2 + \frac{\partial d_{13}}{\partial y} \circ a_2 + \frac{\partial a_1}{\partial y} \circ d_{32} + \frac{\partial a_3}{\partial y} \circ d_{21} = 0,$$

(30)
$$-\alpha x^{p-1} \circ \frac{\partial (\mu^{-1}a_3)}{\partial z} \circ \mu^2 + \frac{\partial d_{23}}{\partial x} \circ a_1 + \frac{\partial a_2}{\partial y} \circ d_{32} + \frac{\partial a_2}{\partial x} \circ d_{31} + \frac{\partial a_3}{\partial x} \circ d_{12} = 0$$

in which $\mu = 1 + \beta z^{p-1}$.

The last three terms of (28) are in $y^{p-1} \circ \mathfrak{A}$ since a_1 , and d_{31} are. Hence both $-d_{12}^2 \circ \partial (d_{12}^{-1} \circ a_2)/\partial y$ and $\partial (d_{12}^{-1} \circ a_2)/\partial y$ are in $y^{p-1} \circ \mathfrak{A}$. But the second polynomial is of degree at most p-2 in y and hence is 0. Therefore there is a polynomial δ_1 independent of y and such that $a_2 = \delta_1 \circ d_{12}$.

Identity (28) now reduces to

(31)
$$\mu^{-1} \circ \frac{\partial \delta_0}{\partial x} \circ y^{p-1} \circ z^{p-1} + \frac{\partial \delta_1}{\partial z} \circ y^{p-1} - \alpha y^{p-1} \circ x^{p-1} \circ \frac{\partial (\delta_0 z^{p-1})}{\partial z} = 0.$$

Arguing on the degree of z in each term of (31) we can conclude $\partial \delta_0 / \partial x = 0$ and δ_0 is independent of x. But $\partial z^{p-1} \circ y^{p-1} = \partial z^{p-1} \circ d_{13}$ and

$$(\delta z^{p-1} \circ d_{13}, \delta z^{p-1} \circ d_{23}, 0)$$

is a derivation of A. Subtracting off this derivation we can assume $a_1 = \delta_0 = 0$. From (31), since δ_1 is independent of y, we also get δ_1 independent of z, i.e., δ_1 is a polynomial in $\mathfrak{F}[x]$. Therefore we can find a polynomial g in $\mathfrak{F}[x]$ that is a solution of $\delta_1 \circ d_{12} = d_{21} \circ \partial g / \partial x$ to within a constant multiple of x^{p-1} , say ηx^{p-1} .

Subtracting off the derivation

$$\left(0,d_{21}\circ\frac{\partial g}{\partial x}-\eta x^{p-1}\circ d_{21},d_{31}\circ\frac{\partial g}{\partial x}-\eta x^{p-1}\circ d_{31}\right)$$

we can assume $a_1 = a_2 = 0$. Equations (29) and (30) now reduce to

$$(32) - y^{p-1} \circ \frac{\partial (\mu^{-1} \circ a_3)}{\partial z} \circ \mu^2 + \frac{\partial a_3}{\partial y} \circ d_{21} = 0,$$
$$- \alpha x^{p-1} \circ \frac{\partial (\mu^{-1} \circ a_3)}{\partial z} \circ \mu^2 + \frac{\partial a_3}{\partial x} \circ d_{12} = 0.$$

Since d_{21} is nonsingular we can argue on the degree of y to get $\partial a_3/\partial y=0$ and a_3 is independent of y. In the same manner a_3 is independent of x. But then $\mu^{-1}a_3$ is independent of z. Hence $a_3=\eta\mu$ for $\eta\in\mathfrak{F}$.

By direct substitution in (32) it can be seen that $(0,0,\eta\mu)$ is a derivation of \mathfrak{A} . We investigate to see if it is of the form (a_1,a_2,a_3) in which

$$a_{1} = \left(\frac{\partial \mathbf{g}}{\partial y} + \alpha_{2} y^{p-1}\right) \circ d_{12} + \left(\frac{\partial \mathbf{g}}{\partial z} + \alpha_{3} z^{p-1}\right) \circ d_{13},$$

$$a_{2} = \left(\frac{\partial \mathbf{g}}{\partial x} + \alpha x^{p-1}\right) \circ d_{21} + \left(\frac{\partial \mathbf{g}}{\partial z} + \alpha_{3} z^{p-1}\right) \circ d_{23},$$

$$a_{3} = \left(\frac{\partial \mathbf{g}}{\partial x} + \alpha_{1} x^{p-1}\right) \circ d_{31} + \left(\frac{\partial \mathbf{g}}{\partial y} + \alpha_{2} y^{p-1}\right) \circ d_{32}.$$

If $a_1 = a_2 = 0$ then $a_1 \equiv 0$ modulo y^{p-1} and $\partial g / \partial y \in y^{p-1} \circ \mathfrak{A}$. Hence g is independent of y. In the same way g is independent of x. Therefore $a_3 = -x^{p-1} \circ y^{p-1} \circ \mu \circ (\alpha_1 + \alpha \alpha_2)$ which is not of the form $\eta \mu$ for $\eta \in \mathfrak{F}$.

We can now conclude:

THEOREM 4. Let $\mathfrak A$ be a simple, nodal, Lie-admissible noncommutative Jordan algebra of characteristic $p \neq 2$ with 2r + 1 generators; then the derivation algebra $\mathfrak D(\mathfrak A)$ of $\mathfrak A$ is the set of all mappings

$$f \to \sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}} \circ a_{i}$$

in which

$$a_{i} = \sum_{j=1}^{n} \left(\frac{\partial g}{\partial x_{j}} + \alpha_{j} x_{j}^{p-1} \right) \circ c_{ij},$$

$$a_{2r+1} = \sum_{2r-1}^{2N} \left(\frac{\partial g}{\partial x_{i}} + \alpha_{i} x_{i}^{p-1} \right) \circ c_{2r+1i} + \eta \mu$$

for $i = 1, \dots, 2r$. (In case i < 2r - 1 then a_i reduces to a single summand.) The dimension of $\mathfrak{D}(\mathfrak{A})$ is $p^{2r+1} + 2r + 1$.

To determine the dimension of (adj \mathfrak{A}^-)' we proceed as in the even-dimensional case. Let \mathfrak{I} be an ideal of \mathfrak{A}^- containing all of the generators x_1, \dots, x_{2r} . Using only the generators x_1, \dots, x_{2r-2} we have the result from the even-dimensional case that the only possible residue classes modulo \mathfrak{I} are the classes determined by 1 and the polynomials of the form q m in which $q = x_1^{p-1} \circ \cdots \circ x_{2r-2}^{p-1}$ and m is a polynomial in x_{2r-1}, x_{2r} and x_{2r+1} . We adopt the notation above using x, y and z, x_{2r-1}, x_{2r} , and x_{2r+1} respectively. Assume m is a monomial and $m = x^i \circ n$, n independent of x and i < p-1; then

$$\left(\frac{1}{i+1}q\circ x^{i+1}\circ n\right)D_{y}=-q\circ m\circ d_{12}.$$

Also if $m = y^i \circ n$, n independent of y and i then

$$\left(\frac{1}{i+1}q\circ y^{i+1}\circ n\right)D_x=q\circ m\circ d_{12}.$$

Hence the only remaining residue classes of \Im to examine are those determined by $q \circ x^{p-1} \circ y^{p-1} \circ n$ in which n is a polynomial in z. However the equation

$$(q \circ x^{p-1} \circ t)D_x = q \circ x^{p-1} \circ y^{p-1} \circ \frac{\partial t}{\partial y} \circ \mu$$
$$= q \circ x^{p-1} \circ y^{p-1} \circ n$$

can be solved for t, a polynomial in $\mathfrak{F}[z]$, to within a scalar multiple of $q \circ x^{p-1} \circ y^{p-1} \circ z^{p-1}$. Hence the only possible residue class of \mathfrak{F} is that containing $q \circ x^{p-1} \circ y^{p-1} \circ z^{p-1}$. If $\mathfrak{S} = \emptyset$ (the set of all $i = 1, \dots, r$ such that $c_{ii+r} \in \mathfrak{F}$) and $\beta \neq 0$ then as we have seen in the even-dimensional case $q \circ x^{p-1} \circ y^{p-1} \in \mathfrak{F}$ and $(q \circ x^{p-1} \circ z)D_x = (q \circ x^{p-1} \circ y^{p-1} \circ \mu) \in \mathfrak{F}$. Therefore $q \circ x^{p-1} \circ y^{p-1} \circ z^{p-1} \in \mathfrak{F}$.

If \Im is the ideal in \mathfrak{A}^- such that $\mathfrak{A}^-/\mathfrak{F}1$ is isomorphic to (adj \mathfrak{A}^-)' then we can show, exactly as in the even-dimensional case, that $q \circ x^{p-1} \circ y^{p-1} \circ z^{p-1}$ is not in \Im if either $\mathfrak{S} \neq \emptyset$ or $\beta = 0$. Hence (adj \mathfrak{A}^-)' is of dimension $p^{2r-1} - 1$ or $p^{2r+1} - 2$.

We now examine the ideals of (adj \mathfrak{A}^-)'. Let \mathfrak{I} be an ideal of (adj \mathfrak{A}^-)'. (We again use the notation of \mathfrak{A}^- .) As in the even-dimensional case we can assume there are polynomials of the form $x_i \circ m$ for any $i \leq 2r-1$ and in which m is a polynomial in $\mathfrak{F}[x,y,z]$.

Consider those polynomials $x \circ m$. If m is in $\mathfrak{F}[x]$ we choose a k so that

$$(x_1 \circ m)D(x_1 \circ x_{1+p} \circ x^k) = x_1 \circ x^{p-1}.$$

If $m \notin \mathfrak{F}[x]$, write

$$m = m_1 + \sum_{k}^{p-1} x^i \circ n_i$$

in which m_1 is a polynomial in x, every term of every nonzero n_i has either a y or z in it and some $n_i \neq 0$. If $k \neq 0$ then

$$(x_1 \circ m)D(x^{p-k}) = -kx^{p-1} \circ n_k D_x \circ x_1 \neq 0$$

is in \Im . If k=0 then

$$(x_1 \circ m)D(x^{p-1}) = (-n_0D_x \circ x^{p-2} - x^{p-1} \circ n_1D_x) \circ x_1 \neq 0$$

is in \mathfrak{I} . If n_0D_x and n_1D_x are in \mathfrak{F} then as above we can conclude $x_1 \circ x^{p-1} \in \mathfrak{I}$. If n_0D_x is in \mathfrak{F} but n_1D_x is not then

$$(x_1 \circ m)D(x^{p-1})D_x = -x^{p-1} \circ x_1 \circ n_1D_xD_x \neq 0$$

is in \Im . If $n_0 D_x \notin \Im$ then

$$(x_1 \circ m)D(x^{p-1})D(x^2) = -2n_0D_x^2 \circ x^{p-1} \circ x_1 \neq 0$$

is in \Im . In any case, there is a polynomial $x_1 \circ x^{p-1} \circ m$ in \Im in which $m \in \Im[y, z]$. If m is in \Im we can proceed as in the even-dimensional case to show that x_1, \dots, x_{2r} are in \Im .

If m is independent of y then assume m is such a polynomial of minimal degree in z. We have

$$(x_1 \circ x^{p-1} \circ m)D_x^p = x_1 \circ x^{p-1} \circ \frac{\partial m}{\partial z}.$$

By the minimality of the degree of z in m we have $\partial m/\partial z = 0$, $m \in \mathfrak{F}$ and $x_1 \circ x^{p-1} \in \mathfrak{J}$.

If m is not independent of y then

$$(x_1 \circ x^{p-1} \circ m)D_v^{p-2} = x_1 \circ x \circ m$$

is in \Im . Let k be the smallest exponent of y in m. If k=0 then $(x_1 \circ x \circ m)D_z = \alpha x_1 \circ y^{p-1} \circ m \circ \mu = x_1 \circ y^{p-1} \circ n$ is in \Im for some polynomial n in $\Im[z]$. If $k \neq 0$ then $(x_1 \circ x \circ m)D(y^{p-k}) = kx_1 \circ y^{p-1} \circ n$ is in \Im for some polynomial n in $\Im[z]$. Choose n to be of minimal degree in z. Then as above we can show n is in \Im and $x_1 \circ y^{p-1} \in \Im$.

Thus either $x_1 \circ x^{p-1}$ or $x_1 \circ y^{p-1}$ is in \mathfrak{I} . As in the even-dimensional case this implies x_1, \dots, x_{2r} are in \mathfrak{I} . Hence from our conclusion above on such ideals \mathfrak{I} we have (adj \mathfrak{U}^-)' is simple. Thus

THEOREM 5. If $\mathfrak U$ is a simple, Lie-admissible nodal noncommutative Jordan algebra of characteristic $p \neq 2$ with 2r+1 generators then $(\operatorname{adj} \mathfrak U^-)'$ is a simple Lie-algebra. The dimension of $(\operatorname{adj} \mathfrak U^-)'$ is $p^{2r-1}-1$ if $\mathfrak S=\varnothing$ and $\beta\neq 0$ and is $p^{2r+1}-2$ if either $\mathfrak S\neq 0$ or $\beta=0$.

REFERENCES

- 1. Richard Block, New simple Lie algebras of prime characteristic, Trans. Amer. Math. Soc. 89 (1958), 421-449.
- 2. Nathan Jacobson, Classes of restricted Lie algebras of characteristic p. II, Duke Math. J. 10 (1943), 107-121.
- 3. L. A. Kokoris, Some nodal noncommutative Jordan algebras, Proc. Amer. Math. Soc. 9 (1958), 164-166.
- 4. —, Simple nodal noncommutative Jordan algebras, Proc. Amer. Math. Soc. 9 (1958), 652-654.
 - 5. ——, Nodal noncomutative Jordan algebras, Canad. J. Math. 12 (1960), 488-492.
- R. D. Schafer, On noncommutative Jordan algebras, Proc. Amer. Math. Soc. 9 (1958), 110-117.
- 7. ——, Nodal noncommutative Jordan algebras and simple Lie algebras of characteristic p, Trans. Amer. Math. Soc. 94 (1960), 310-326.

Institute for Defense Analyses, Princeton, New Jersey Michigan State University, East Lansing, Michigan