INVARIANTS OF EUCLIDEAN REFLECTION GROUPS

BY LOUIS SOLOMON(1)

- 1. Introduction and statement of results. Let \mathbb{R}^n be n-dimensional Euclidean space and let G be a finite group of orthogonal transformations of \mathbb{R}^n generated by reflections. Let $V = \mathbb{C}^n$ be the complexification of \mathbb{R}^n . Then G acts naturally in V and we say that G is a Euclidean reflection group in V. Let S be the C-algebra of complex-valued polynomial functions on V, let I(S) be the subalgebra of polynomials invariant under G and let F be the ideal of S generated by the homogeneous elements of positive degree in I(S). Chevalley $\lceil 2 \rceil$ has proved that
- (a) I(S) is generated over C by n algebraically independent homogeneous polynomials f_1, \dots, f_n and the unit element.
 - (b) S/F as G-module affords the regular representation of G.

In view of (b) every irreducible G-module M occurs in S/F with multiplicity equal to dim M. Since F is a homogeneous ideal, $S/F = \sum_q (S/F)_q$ is naturally graded. We prove two theorems concerning the graded G-module structure of S/F.

The symmetric group G of degree n acts naturally as a Euclidean reflection group in V by permuting the elements of a basis. The irreducible characters of G are in 1-1 correspondence with partition diagrams of n nodes [6]. In the set of partition diagrams there is a natural ordering. The evidence suggests that characters which occur early in this ordering occur early in the decomposition $S/F = \sum_q (S/F)_q$ in the sense that they occur for small values of q. On the other hand, a formula of Frobenius [6, p. 534] indicates that if a character occurs early in the partition ordering, then a reflection (transposition) fixes a large part of the corresponding representation space. These observations led to the following.

THEOREM 1. Let G be a Euclidean reflection group and let M be an irreducible G-module. Let $\gamma \in G$ be a reflection, let M_{γ}^- be the subspace of all $x \in M$ such that $\gamma x = -x$ and suppose that $\dim M_{\gamma}^- = \dim M^-$ is independent of γ . If M is an irreducible constituent of $(S/F)_q$ for precisely the values $q_1(M), \dots, q_l(M)$, $l = \dim M$, then the average of the $q_i(M)$ is

$$\frac{\dim M}{\dim M}r$$

where r is the number of reflections in G.

Received by the editors June 7, 1963.

(1) This research was supported by the National Science Foundation under grant G-21514

The assumption that $\dim M_{\gamma}^-$ is independent of γ is satisfied for all M when the reflections in G form a single conjugate class, and is satisfied for the irreducible modules E_p of Theorem 2 when G is a Weyl group. The extreme cases in Theorem 1 are given by $\dim M^- = 0$, corresponding to the principal character, and $\dim M^- = \dim M$, corresponding to the alternating character of G.

Theorem 2. Let L be a complex simple Lie algebra and let V be a Cartan subalgebra of L. Let G be the Weyl group of L acting in V. Let E_p be the G-module of alternating multilinear p-forms over V. Then E_p is irreducible and occurs as a constituent of $(S/F)_q$ for precisely the values $q = m_{i_1} + \cdots + m_{i_n}$, $i_1 < \cdots < i_p$, where $m_i + 1$ is the degree of f_i . A basis for the isotypic component of S/F of type E_p is given by the set of minors of order p of the Jacobian matrix J of f_1, \cdots, f_n reduced mod F.

The irreducibility of the modules E_p for Weyl groups of the exceptional Lie algebras \mathfrak{E}_6 , \mathfrak{E}_7 was noticed by Frame [5]. It seems likely that Theorem 2 is true for all the Euclidean reflection groups. The proof we give depends on a theorem of Burnside [1] on Weyl groups which allows us to compute certain invariants of $G.(^2)$ Theorem 2 and its proof have the following corollaries:

- (2a) All minors of J are linearly independent over C and remain linearly independent after reduction mod F. In particular, none of them vanish.
- (2b) The algebra of invariants $I(S/F \otimes E)$ is an exterior algebra over C on n generators.
- (2c) If $E = \sum_p E_p$ is the Grassmann algebra of V, then the algebra of invariants $I(E \otimes E)$ is a truncated polynomial algebra over C, generated by the unit and an element w such that $w^{n+1} = 0$. The generator w may be identified with the Killing form.
 - (2d) For each $p = 0, \dots, n$ there exists a homogeneous isomorphism

$$I(S/F \otimes E_p) \simeq I(S/F \otimes E_{n-p})$$

of graded vector spaces. Existence of this isomorphism for p=1 is equivalent to so-called double duality in the exponents m_i , the fact that if the m_i are arranged in increasing order $m_1 \le \cdots \le m_n$ then $m_i + m_{n-i+1}$ is independent of i.

The double duality in the exponents m_i was a long standing mystery for Weyl groups, explained a few years ago by Coleman [3] and Kostant [7]. Even if one assumes the double duality as known, the argument in (2d) does not furnish an explicit isomorphism $I(S/F \otimes E_1) \simeq I(S/F \otimes E_{n-1})$. We prove the existence of the isomorphism by computing the Poincaré series of both spaces. It would thus be interesting to give a direct invariant-theoretic proof for the double duality by exhibiting an isomorphism which is in some sense a natural one. We have not been able to do this, but present a line of argument which seems to lead in the right

⁽²⁾ Added in proof. R. Steinberg has kindly shown me a proof of irreducibility which is independent of Burnside's theorem. His argument is valid for all the Euclidean groups.

direction. The elements of $S \otimes E_1$ may be viewed as differential 1-forms on V. We study the space of those differential 1-forms on V which are skew invariant under G, in the sense that they are invariant under the rotation subgroup H of G and change sign under the elements outside H. It is not hard to show that this space is a free module over I(S) of rank n. From the double duality and the fact that G has a unique invariant quadratic form one concludes that among the polynomials f_1, \dots, f_n there is a unique polynomial f_n of greatest degree. Then assuming the double duality we prove the following.

THEOREM 3. Let G be an irreducible Euclidean reflection group in V. Choose coordinates in V and let u_1, \dots, u_n be the minors of order n-1 of J obtained by deleting the partial derivatives of f_n . If u_1, \dots, u_n are algebraically independent, then there exists a homogeneous derivation $\hat{d}: S \to S \otimes E_1$ of S-modules such that $\hat{d}f_1, \dots, \hat{d}f_n$ are a basis for the module of skew invariant differential 1-forms over I(S).

Granted the existence of the map \hat{d} , we can construct an explicit isomorphism $I(S/F \otimes E_1) \simeq I(S/F \otimes E_{n-1})$. We have been able to verify the algebraic independence of u_1, \dots, u_n in special cases but have no general argument. If the u_i are algebraically independent, then the Jacobian (determinant) of the u_i must be a constant multiple of $(\det J)^{n-2}$.

We work over the complex field C as a matter of convenience, and irreducibility of modules will mean irreducibility over C. The complex field is probably an alien here because a likely conjecture of Kostant states that all the absolutely irreducible representations of a Euclidean reflection group may be written with coefficients in R. In any case, a real linear group which contains a reflection and is irreducible over R remains irreducible over C.

2. Notation. In this section we introduce some notation and collect some elementary facts about invariants and characters. Let G be a finite group of order g. By a graded G-module we mean a G-module which is a graded vector space $M = \sum_{q \geq 0} M_q$ over C, in which each homogeneous component M_q is a G-module finite dimensional over C. Let μ_q be the character of G corresponding to the module M_q . To the graded G-module M we let correspond the series

$$M(t,\gamma) = \sum_{q\geq 0} \mu_q(\gamma)t^q, \qquad \gamma \in G.$$

For $\gamma = 1$ this becomes the Poincaré series

$$M(t) = \sum_{q \ge 0} (\dim M_q) t^q$$

of the graded vector space M. All the tensor products we consider are tensor products over C. If M, N are graded G-modules, then $M \otimes N$ has a natural structure of graded G-module with the grading and G-module structure defined by

$$\begin{split} (M\otimes N)_q &= \sum_{a+b=q} M_a \otimes N_b, \\ \gamma(x\otimes y) &= \gamma x \otimes \gamma y, & x\in M, \ y\in N, \ \gamma\in G. \end{split}$$

From the fact that the character of a tensor product (direct sum) of two G-modules is the product (sum) of the characters it follows that

$$(M \otimes N)(t, \gamma) = M(t, \gamma) N(t, \gamma).$$

We let I(M) denote the submodule of invariants of M, elements $x \in M$ such that $\gamma x = x$ for all $\gamma \in G$. For a finite dimensional M with character μ the connection between invariants and characters is the formula

$$\dim I(M) = \frac{1}{g} \sum_{\gamma \in G} \mu(\gamma).$$

Thus for a graded M we have

$$I(M)(t) = \frac{1}{g} \sum_{\gamma \in G} M(t, \gamma).$$

The dual M^* of M has a natural G-module structure defined by

$$(\gamma f)(x) = f(\gamma^{-1}x), \qquad x \in M, f \in M^*, \gamma \in G,$$

and we may extend this action to the algebra of polynomial functions on M or the Grassmann algebra of M. If μ is the character of M then $\mu^*(\gamma) = \mu(\gamma^{-1})$ is the character of M^* . We have an isomorphism $M \cong M^*$ of G-modules if and only if the character of M is real. The space $\operatorname{Hom}_{\mathbb{C}}(M,N)$ has a natural G-module structure defined by

$$(\gamma\phi)(x) = \gamma(\phi(\gamma^{-1}x)), \quad x \in M, \ \phi \in \operatorname{Hom}_{\mathbf{C}}(M,N), \ \gamma \in G,$$

and the submodule $I(\operatorname{Hom}_{\mathbf{C}}(M,N))$ is just the space $\operatorname{Hom}_{\mathbf{G}}(M,N)$ of G-module homomorphisms. The natural isomorphism of vector spaces $\operatorname{Hom}_{\mathbf{C}}(M,N) \simeq N \otimes M^*$ is an isomorphism of G-modules and induces an isomorphism $\operatorname{Hom}_{\mathbf{G}}(M,N) \simeq I(N \otimes M^*)$. In particular we see that if M is irreducible then $\dim I(N \otimes M^*)$ is the multiplicity of M in N, and that M is irreducible if and only if $\dim I(M \otimes M^*) = 1$.

3. Let G be a Euclidean reflection group in V and let S be the algebra of complex valued polynomial functions on V. Then $S = \sum_{q \ge 0} S_q$ has a natural structure of graded G-module. A formula of Molien, easy to verify by assuming γ in diagonal form, states that

(3.1)
$$S(t, \gamma^{-1}) = \frac{1}{(1 - \omega_1(\gamma)t) \cdots (1 - \omega_n(\gamma)t)}$$

where $\omega_1(\gamma), \dots, \omega_n(\gamma)$ are the eigenvalues of γ as linear transformation of V.

If M is a finite dimensional G-module we give $S \otimes M$ the grading defined by $(S \otimes M)_q = S_q \otimes M$. Then Molien's formula implies

$$(3.2) I(S \otimes M)(t) = \frac{1}{g} \sum_{\gamma \in G} \frac{\mu(\gamma^{-1})}{(1 - \omega_1(\gamma)t) \cdots (1 - \omega_n(\gamma)t)}$$

where μ is the character of M. From Theorem (a) of Chevalley we see that

(3.3)
$$I(S)(t) = \frac{1}{(1-t^{m_1+1})\cdots(1-t^{m_n+1})}.$$

Chevalley has also shown [2] that if $p_1, \dots, p_k \in S$ form a C-basis for S/F when reduced mod F, then p_1, \dots, p_k are a basis for S as free module over I(S). From this fact we readily deduce the following two lemmas.

LEMMA 1. Let τ_a be the character of $(S/F)_a$. Then

$$\sum_{q} \tau_{q}(\gamma^{-1})t^{q} = \frac{(1 - t^{m_{1}+1}) \cdots (1 - t^{m_{n}+1})}{(1 - \omega_{1}(\gamma)t) \cdots (1 - \omega_{n}(\gamma)t)}.$$

Proof. Let $p_1, \dots, p_k \in S$ form a *C*-basis for S/F when reduced mod *F*. Then the map $\sum_i s_i p_i \to \sum_i s_i \otimes (p_i + F)$, $s_i \in I(S)$ defines an isomorphism $S \simeq I(S) \otimes S/F$ of graded *G*-modules. Since *G* acts trivially on I(S) we have $S(t, \gamma) = I(S)(t)(S/F)(t, \gamma)$. Thus from (3.1) and (3.3)

$$(S/F)(t,\gamma^{-1}) = \frac{(1-t^{m_1+1})\cdots(1-t^{m_n+1})}{(1-\omega_1(\gamma)t)\cdots(1-\omega_n(\gamma)t)}$$

which proves the lemma.

If we let $t \to 1$ we find $\sum_q \tau_q(\gamma) = 0$ if $\gamma \neq 1$ and $\sum_q \tau_q(1) = g$, so that $\sum_q \tau_q$ is the character of the regular representation of G. Thus S/F affords the regular representation of G. If M is an irreducible G-module we let $a_q(M)$ be the multiplicity of M in $(S/F)_q$. Since S/F contains M with multiplicity equal to dim M we have

$$\sum_{q} a_q(M) = \dim M.$$

We view $S \otimes M$ naturally as an S-module and then $I(S \otimes M)$ is an I(S)-module.

LEMMA 2. Let M be an irreducible G-module. Then $I(S \otimes M)$ is a free module over I(S). It has a basis over I(S) consisting of homogeneous elements in which the number of elements of degree q is $a_q(M^*)$. The rank of $I(S \otimes M)$ as I(S)-module is equal to dim M.

Proof. In the proof of Lemma 1 we have remarked that $S \simeq I(S) \otimes (S/F)$ and hence $S \otimes M \simeq I(S) \otimes (S/F) \otimes M$. Since G acts trivially on I(S) we see by averaging over the group that $I(S \otimes M) \simeq I(S) \otimes I(S/F \otimes M)$. Thus $I(S \otimes M)$ is free over I(S) and we may choose as basisa C-basis for $I(S/F \otimes M)$. This may be

chosen as a union of C-bases for the $I((S/F)_q \otimes M)$. But $\dim I((S/F)_q \otimes M)$ is the multiplicity of the irreducible M^* in $(S/F)_q$ so $\dim I((S/F)_q \otimes M) = a_q(M^*)$. The rank of $I(S \otimes M)$ as I(S)-module is thus $\sum_q a_q(M^*) = \dim M^* = \dim M$. The argument shows that $I(S \otimes M)$ is free over I(S) for any G-module M.

4. To prove Theorem 1 we simply compute the Poincaré series $I(S \otimes M^*)(t)$ in two ways and compare the results for t=1. Set $a(t)=\sum_q a_q(M)t^q$. From Lemma 2 with M replaced by M^* we have

$$I(S \otimes M^*)(t) = \frac{a(t)}{(1-t^{m_1+1})\cdots(1-t^{m_n+1})}$$

and thus from (3.2) we see that

(4.1)
$$\frac{1}{g} \sum_{\gamma \in G} \frac{\mu(\gamma)}{(1 - \omega_1(\gamma)t) \cdots (1 - \omega_n(\gamma)t)} = \frac{a(t)}{(1 - t^{m_1 + 1}) \cdots (1 - t^{m_n + 1})}$$

where μ is the character of M. Let G_1 be the set of elements of G, distinct from the identity, which fix an n-1 dimensional subspace of V. For $\gamma \in G_1$ the eigenvalues $\omega_i(\gamma)$ are $1, 1, \dots, 1, \omega$ where ω is a root of unity. Now the fact that G may be written as a real orthogonal group implies $\omega = -1$. The left-hand side of (4.1) becomes

$$\frac{1}{g} \left[\frac{\mu(1)}{(1-t)^n} + \frac{1}{(1-t)^{n-1}(1+t)} \sum_{\gamma \in G_1} \mu(\gamma) + \cdots \right]$$

where \cdots denotes terms which have at most $(1-t)^{n-2}$ in the denominator. Since $a(1) = \sum_q a_q(M) = \dim M = \mu(1)$ we have

$$\frac{1}{(1-t)^{n-1}(1+t)} \sum_{\gamma \in G_1} \mu(\gamma) + \cdots = \frac{ga(t)}{(1-t^{m_1+1})\cdots(1-t^{m_n+1})} - \frac{a(1)}{(1-t)^n}.$$

Now multiply both sides by $(1-t)^{n-1}$ and let $t \to 1$. Using the known formula [4; 8] $g = \prod_i (m_i + 1)$ for the group order we find

(4.2)
$$\frac{1}{2} \sum_{\gamma \in G_1} \mu(\gamma) = -a'(1) + \frac{1}{2} \left(\sum_i m_i \right) a(1)$$

where a' denotes the derivative with respect to t. For $\gamma \in G_1$, $\mu(\gamma) = \dim M_{\gamma}^+$ — $\dim M_{\gamma}^-$ is, by assumption, independent of γ . The number of elements in G_1 is the number of reflections in G which is known [4; 8] to be $\sum_i m_i$. From the definition of a(t) we have $a'(1) = \sum_q q a_q(M)$. If we insert this information in (4.2) we find

$$\frac{1}{2} \left(\sum_{i} m_{i} \right) (\dim M^{+} - \dim M^{-}) = -\sum_{q} q a_{q}(M) + \frac{1}{2} \left(\sum_{i} m_{i} \right) (\dim M^{+} + \dim M^{-})$$

so that

$$\sum_{q} q a_{q}(M) = \left(\sum_{i} m_{i}\right) \dim M^{-}.$$

The average of the $q_i(M)$ is then

$$\frac{\sum_{q} q a_{q}(M)}{\sum_{q} a_{q}(M)} = \frac{\dim M^{-}}{\dim M} r$$

with $r = \sum_i m_i$. The significance of the integer $r = \sum_i m_i$ in this formula becomes clear if one observes, with Lemma 1, that r is the largest integer q for which $(S/F)_q \neq 0$.

5. To prove Theorem 2 we shall need some results from an earlier article [9] together with a lemma concerning certain invariants of the symmetric group. Let $E = \sum_p E_p$ be the Grassman algebra of V. The homogeneous component E_p of degree p is the space of all p-linear alternating functions on V. We identify E_0 with C and E_1 , as vector space, with S_1 . The group G acts naturally on E and on $S \otimes E$. Choose a coordinate system x_1, \dots, x_n in V and let $d: S \otimes E \to S \otimes E$ be the C-linear map defined by

$$d: s \otimes x_{i_1} \wedge \cdots \wedge x_{i_n} \to \sum_{i=1}^n \frac{\partial s}{\partial x_i} \otimes x_j \wedge x_{i_1} \wedge \cdots \wedge x_{i_n}, \qquad s \in S.$$

If we identify S with $S \otimes C$ then $dx_i = d(x_i \otimes 1) = 1 \otimes x_i$ so that the elements of $S \otimes E_p$ may be written in the form

$$\sum_{i_1 < \dots < i_n} s_{i_1} \dots_{i_n} dx_{i_1} \cdots dx_{i_n}, \qquad s_{i_1} \dots_{i_n} \in S.$$

It is clear that $S \otimes E$ is just the algebra of differential forms on V and that d is exterior differentiation. Since d commutes with the action of G on $S \otimes E$ it follows that d maps $I(S \otimes E)$ into $I(S \otimes E)$. In particular, the differentials df_i are invariants of $S \otimes E$. We have shown in [9] that the C-algebra $I(S \otimes E)$ of invariant differential forms is an exterior algebra on n generators over the C-algebra I(S) of invariant polynomials, and is in fact generated over I(S) by the differentials df_1, \dots, df_n of the polynomial invariants f_1, \dots, f_n and the unit element. It follows that

(5.1)
$$I(S \otimes E_p)(t) = \frac{\sigma_p(t^{m_1}, \dots, t^{m_n})}{(1 - t^{m_1+1}) \cdots (1 - t^{m_n+1})}, \qquad p = 1, \dots, n,$$

where $\sigma_p(t_1, \dots, t_n)$ is the pth elementary symmetric function in the indeterminates t_1, \dots, t_n .

LEMMA 3. Let x_1, \dots, x_n be indeterminates, let G be the symmetric group on x_1, \dots, x_n and let E be the exterior algebra on x_1, \dots, x_n over C. The group G acts naturally on the commutative algebra $E \otimes E$. Set

$$u = \sum_i x_i \otimes x_i, \qquad v = \sum_{i < k} x_i \otimes x_k + x_k \otimes x_i.$$

Then

$$I(E_p \otimes E_p) = Cu^p \oplus Cu^{p-1}v, \qquad p = 1, \dots, n-1.$$

Proof. Clearly both u^p and $u^{p-1}v$ are in $I(E_p \otimes E_p)$. To hold the indices in check we let Ω denote the set of increasing sequences $i_1 < \cdots < i_p$ of p integers chosen from $1, \dots, n$, we let (i) denote an element of Ω , let $\{i\}$ be the corresponding unordered set, and write $x_{(i)} = x_{i_1} \wedge \cdots \wedge x_{i_n}$. Suppose $y = \sum c_{(i),(k)} x_{(i)} \otimes x_{(k)} \in I(E_p \otimes E_p)$ where $c_{(i),(k)} \in C$ and the sum is over all pairs (i),(k) of elements of Ω . If for given sets $\{i\}$, $\{k\}$ the intersection $\{i\} \cap \{k\}$ contains fewer than p-1 elements, then there exist two distinct indices, say k_{α}, k_{β} , which are distinct from all elements of $\{i\}$. Now apply the transposition $(k_a k_b)$ of G to each term in the sum y. The invariance of y shows that $c_{(i),(k)} = -c_{(i),(k)}$ and hence $c_{(i),(k)} = 0$. Thus we may write $y = y_1 + y_2$ where y_1 is a linear combination of elements $x_{(i)} \otimes x_{(k)}$ such that $\{i\} \cap \{k\}$ contains p elements, in other words $\{i\} = \{k\}$, and y_2 is a linear combination of elements $x_{(i)} \otimes x_{(k)}$ such that $\{i\} \cap \{k\}$ contains p-1 elements. Invariance of y implies the invariance of y_1 and y_2 . We thus have $y_1 = \sum_{(i)} b_{(i)} x_{(i)} \otimes x_{(i)}$ with $b_{(i)} \in C$ and invariance of y_1 shows that all the $b_{(i)}$ are equal, say $b_{(i)} = b$. Then $y_1 = b \sum_{(i)} x_{(i)} \otimes x_{(i)}$ is a C-multiple of $u^p = p! \sum_{(i)} x_{(i)} \otimes x_{(i)}$. Similarly with slightly more effort one sees that y_2 is a C-multiple of $u^{p-1}v$. Thus the elements u^p , $u^{p-1}v$ span $I(E^p \otimes E^p)$. For p < n both u^p and $u^{p-1}v$ are not zero and hence linearly independent over C. This proves the lemma. The argument breaks down for p = n only because $u^{n-1}v = 0$ and in that case we have $I(E_n \otimes E_n) = Cu^n$. The elements u, v also satisfy the relations $u^{n+1} = 0$ and $v^2 = 0$.

We are now in position to prove Theorem 2. Since L is simple, G acting in V is an irreducible group. A theorem of Burnside [1] states that there exists a coordinate system x_1, \dots, x_n in V such that G acting on $V^* \simeq E_1$ includes the symmetric group H on x_1, \dots, x_n . In this coordinate system the Killing form must be

$$\frac{a}{2} \sum_{i} x_i^2 + b \sum_{i < k} x_i x_k \in I(S_2)$$

where a, b are real numbers. We cannot have a=0 because the form is positive definite. We let $I(E\otimes E)$ denote the elements of $E\otimes E$ invariant under G and $I_H(E\otimes E)$ the elements invariant under H. Under the map $f\to \sum_i (\partial f/\partial x_i)\otimes x_i$ of $S_2\to E_1\otimes E_1$ the Killing form maps into $au+bv\in I(E_1\otimes E_1)$ where $u,v\in I_H(E_1\otimes E_1)$ are the invariants of Lemma 3. Since $I(E\otimes E)\subseteq I_H(E\otimes E)$, Lemma 3 shows that $\dim I(E_p\otimes E_p)\le 2$. Suppose $\dim I(E_p\otimes E_p)=2$ for some $p=1,\cdots,n-1$. We prove that $\dim I(E_{n-1}\otimes E_{n-1})=2$. If p=n-1 there is nothing to prove so assume p< n-1. From Lemma 3 we see that $u^p\in I(E_p\otimes E_p)$ and $u^{p-1}v\in I(E_p\otimes E_p)$. Since $v^2=0$ it follows that both $au^pv=u^{p-1}v(au+bv)$ and $au^{p+1}+bu^pv=u^p(au+bv)$ are in $I(E_{p+1}\otimes E_{p+1})$. Since p< n-1 we

have $u^p v \neq 0$ and since $a \neq 0$ it follows that $\dim I(E_{p+1} \otimes E_{p+1}) = 2$. We conclude by induction that $\dim I(E_{n-1} \otimes E_{n-1}) = 2$. Let Z be the 1-dimensional G-module defined by the homomorphism $\gamma \to \det \gamma$, $\gamma \in G$. Then $E_{n-1} \simeq E_1 \otimes Z$ as G-modules. Since $\det \gamma = \pm 1$, $Z \otimes Z \simeq C$ is the trivial G-module. Then $E_{n-1} \otimes E_{n-1} \simeq E_1 \otimes E_1$ as G-modules so that $\dim I(E_1 \otimes E_1) = 2$ which contradicts the irreducibility of E_1 . Thus $\dim I(E_p \otimes E_p) = 1$ for all p and hence E_p is irreducible for all p.

Let $\theta: S \to S/F$ be the natural map and extend θ to a map, denoted again θ , of $S \otimes E \to S/F \otimes E$ by letting it be the identity on E. Then θ is a homomorphism of G-modules and of C-algebras. Since θ is a homomorphism of G-modules we certainly have $\theta I(S \otimes E) \subseteq I(S/F \otimes E)$. Actually we have $\theta I(S \otimes E) = I(S/F \otimes E)$ because, using complete reducibility of the representations of G, we may choose a graded G-module T such that $S = F \oplus T$ and then $\theta: I(T \otimes E) \to I(S/F \otimes E)$ is an isomorphism. Set $z_i = \theta(df_i)$. Since $I(S \otimes E)$ is generated over I(S) by the df_i and the unit element, and since every element $s \in I(S)$ may be written as $s = s_0 + s_1$ with $s_0 \in C$ and $s_1 \in F$, it follows that the z_i together with the unit element generate $I(S/F \otimes E)$ as algebra over C. Thus the $\binom{n}{p}$ elements $z_{i_1} \cdots z_{i_n}$ if $i_1 < \cdots < i_p$ generate $I(S/F \otimes E_p)$ as vector space over C. In fact they form a basis for $I(S/F \otimes E_p)$ because Lemma 2 shows that dim $I(S/F \otimes E_p) = \dim E_p = \binom{n}{p}$. Thus the $z_{i_1} \cdots z_{i_n}$ are linearly independent over C.

The Killing form induces a natural isomorphism $E_p \simeq E_p^*$ of G-modules and hence a natural isomorphism $S/F \otimes E_p \simeq \operatorname{Hom}(E_p, S/F)$ of G-modules. Under this isomorphism the invariants $I(S/F \otimes E_p)$ correspond to $\operatorname{Hom}_G(E_p, S/F)$. For $(i) \in \Omega$, let $\phi_{(i)}$ be the image in $\operatorname{Hom}_G(E_p, S/F)$ of $z_{i_1} \cdots z_{i_p}$. The linear independence of the $z_{i_1} \cdots z_{i_p}$ implies linear independence of the $\phi_{(i)}$. Now if M is an irreducible G-module and ϕ_1, \cdots, ϕ_s are linearly independent G-module homomorphisms of M into a G-module N then the sum $\sum_i \phi_i(M)$ is direct. This follows at once from Schur's lemma by induction on the number of summands. In the case at hand this means that the sum $\sum_{(i)} \phi_{(i)}(E_p)$ is direct. Since the number of summands is $\binom{n}{p} = \dim E_p$, the sum $\sum_{(i)} \phi_{(i)}(E_p)$ is the isotypic component of S/F of type E_p . Thus E_p occurs as an irreducible constituent of $(S/F)_q$ for precisely the values $q = m_{i_1} + \cdots + m_{i_n}$, $i_1 < \cdots < i_p$. From the definition of $\phi_{(i)}$ as the image of $\theta(df_{i_1} \cdots df_{i_n})$ it follows that a basis for $\phi_{(i)}(E_p)$ is given by the $\binom{n}{p}$ minors of J which involve f_{i_1}, \cdots, f_{i_p} , reduced mod F. This completes the proof of Theorem 2.

For the corollaries we argue as follows:

- (2a) The linear independence over C of the minors of J after reduction mod F amounts to the linear independence of the elements $\theta(df_{i_1}\cdots df_{i_r})$ over C. This we have shown.
- (2b) The proof of the theorem shows that $I(S/F \otimes E)$ is generated as algebra over C by the $z_i = \theta(df_i)$ and the unit element. Since $z_i z_j = -z_j z_i$, $I(S/F \otimes E)$ is a homomorphic image of an exterior algebra on n generators. But

 $\dim I(S/F \otimes E) = \dim E = 2^n$ so $I(S/F \otimes E)$ is in fact an exterior algebra on the $z_i = \theta(df_i)$.

(2c) The proof of the theorem shows that $I(E_p \otimes E_p) = Cw^p$ for all $p = 1, \dots, n$ where w = au + bv may be identified with the Killing form. Suppose we have an isomorphism $E_p \simeq E_q$ of G-modules. Then $\binom{n}{p} = \dim E_p = \dim E_q = \binom{n}{q}$ so q = p or q = n - p. Suppose q = n - p. Let χ_p be the character of E_p and let $\gamma \in G$ be a reflection. Then $\chi_p(\gamma)$ is the pth elementary symmetric function of the eigenvalues $1, 1, \dots, 1, -1$ so that $\chi_p(\gamma) = \binom{n-1}{p} - \binom{n-1}{p-1}$. Now $\chi_p(\gamma) = \chi_{n-p}(\gamma)$ shows n - p = p. Thus in any case q = p. It follows that $I(E_p \otimes E_q) = 0$ for $q \neq p$ and hence $I(E \otimes E) = \sum_p I(E_p \otimes E_p)$ is generated over C by the unit element and an element w = au + bv which satisfies $w^{n+1} = 0$ and which may be identified with the Killing form.

(2d) From Theorem 2 or directly from (5.1) we conclude that $I(S/F \otimes E_p)(t) = \sigma_n(t^{m_1}, \dots, t^{m_n})$. Thus one has a homogeneous isomorphism

$$(5.2) I(S/F \otimes E_1) \simeq I(S/F \otimes E_{n-1})$$

of graded vector spaces if and only if there exists an integer k such that $t^k \sigma_1(t^{m_1}, \dots, t^{m_n}) = \sigma_{n-1}(t^{m_1}, \dots, t^{m_n})$. Comparing coefficients on both sides shows that this condition is equivalent to the existence of an integer k such that $k + m_i + m_{n-i+1} = m_1 + \dots + m_n$. This is equivalent in turn to the statement that $m_i + m_{n-i+1}$ is independent of i, the double duality. The same kind of coefficient comparison shows that double duality implies the isomorphisms

$$I(S/F \otimes E_p) \simeq I(S/F \otimes E_{n-p}).$$

For later use we remark that (5.2) is equivalent to the existence of a homogeneous isomorphism

$$(5.3) I(S \otimes E_1) \simeq I(S \otimes E_{n-1})$$

of graded vector spaces.

6. Let M, N be G-modules. We say that M and N are skew isomorphic if there exists a 1-1 C-linear map θ of M onto N such that $\theta \gamma x = (\det \gamma) \gamma \theta x$ for all $x \in M$ and all $\gamma \in G$. We call θ a skew isomorphism between M and N. Since $\det \gamma = \pm 1$ the relation of skew isomorphism is symmetric. Again we let Z denote the 1-dimensional G-module defined by the homomorphism $\gamma \to \det \gamma$ and let z be a generator of Z. If we set $\hat{M} = M \otimes Z$ we see that $x \to x \otimes z$, $x \in M$, defines a skew isomorphism between M and M. Since $Z \otimes Z \simeq C$, M and M are isomorphic as G-modules.

From Lemma 1 we conclude that $t^r(S/F)(t^{-1}, \gamma) = \det \gamma(S/F)(t, \gamma)$ where $r = \sum_i m_i$. Thus $\tau_{r-q}(\gamma) = (\det \gamma) \tau_q(\gamma)$ for all $\gamma \in G$ and all $q = 0, \dots, r$ so that $(S/F)_q$ and $(S/F)_{r-q}$ are skew isomorphic. If M is an irreducible G-module and N

is any G-module, then \hat{M} is irreducible and the multiplicity of M in N is equal to the multiplicity of \hat{M} in \hat{N} . Hence the

THEOREM. If M is an irreducible G-module, then the multiplicity of M in $(S/F)_q$ is equal to the multiplicity of \hat{M} in $(S/F)_{r-q}$ where $r = \sum_i m_i$. Thus in the notation of Theorem 1, with suitable ordering, $q_i(\hat{M}) = r - q_i(M)$.

We say that $x \in M$ is a skew invariant if $\gamma x = (\det \gamma)x$ for all $\gamma \in G$. Let $\hat{I}(M)$ denote the subspace of skew invariant elements of M. Then the map $x \to x \otimes z$ defines a natural isomorphism $\hat{I}(M) \simeq I(\hat{M})$ of vector spaces. It follows that we have an isomorphism

$$\hat{I}(S \otimes M) \simeq I(S \otimes \hat{M})$$

of graded vector spaces which is homogeneous of degree zero. From Lemma 2 we see that $\hat{I}(S \otimes M)$ is free over I(S) of rank equal to dim M.

Since $E_{n-1} \simeq \hat{E}_1$ is an isomorphism of G-modules, the isomorphism (5.3) equivalent to the double duality becomes

$$(6.2) f(S \otimes E_1) \simeq I(S \otimes E_1).$$

Now $I(S \otimes E_1)$ is generated freely over I(S) by the df_i . If we can construct the homogeneous derivation \hat{d} of Theorem 3 then $\hat{I}(S \otimes E_1)$ is generated freely over I(S) by the $\hat{d}f_i$ and the homogeneous isomorphism (6.2) is defined by $df_i \rightarrow \hat{d}f_i$. Thus in this formulation the double duality is equivalent to the existence of the map \hat{d} .

In connection with (6.2) it is worth noting that the homogeneous isomorphism $\hat{I}(S \otimes E_0) \simeq I(S \otimes E_0)$ amounts to the familiar fact that every skew invariant polynomial may be written as an invariant polynomial multiplied by $\det J$.

7. Let $q = m_1 + \cdots + m_{n-1}$. We have a sequence of natural maps

$$S_q \otimes E_{n-1} \xrightarrow{\psi_1} S_q \otimes E_1^* \xrightarrow{\psi_2} \operatorname{Hom}(E_1, S_q) \xrightarrow{\psi_3} \operatorname{Hom}(S_1, S_q)$$

where ψ_1 is a skew isomorphism of G-modules induced by the natural duality in the Grassman algebra, where ψ_2 is an isomorphism of G-modules induced by the natural isomorphism of vector spaces, and ψ_3 is the isomorphism of G-modules induced by the identification of E_1 with S_1 . The composite map

$$\psi: S_q \otimes E_{n-1} \to \operatorname{Hom}(S_1, S_q)$$

is a skew isomorphism of G-modules. Let $\eta = \psi(df_1 \cdots df_{n-1})$. Since $df_1 \cdots df_{n-1} \in I(S_q \otimes E_{n-1})$ we have $\eta \in \hat{I}(\operatorname{Hom}(S_1, S_q))$ so that η is a skew homomorphism of S_1 into S_q . Since S_1 is irreducible, η must be injective, and from the definition of the map ψ we see that $\eta x_i = u_i$ where u_i is the minor of order n-1 of J obtained by deleting the derivatives of f_n and the derivatives with respect to x_i .

Our map $d: S \to S \otimes E_1$ is homogeneous of degree -1 and commutes with the action of G. Let $\hat{d} = d \circ \eta$. Then \hat{d} is a skew isomorphism of S_1 into $S_{q-1} \otimes E_1$. Since S is a polynomial ring we may extend \hat{d} to a derivation $\hat{d}: S \to S \otimes E_1$ of S-modules. By induction on the degree of a homogeneous element one sees that $\hat{d}\gamma s = (\det \gamma)\gamma \hat{d}s$ for all $\gamma \in G$ and all $s \in S$. Thus \hat{d} maps I(S) into $\hat{I}(S \otimes E_1)$. Since $\hat{d}x_i = du_i = \sum_k (\partial u_i/\partial x_k) dx_k$ we have

(7.1)
$$\hat{d}f = \sum_{i} \sum_{k} \frac{\partial f}{\partial x_{i}} \frac{\partial u_{i}}{\partial x_{k}} dx_{k}.$$

We claim that the elements $\hat{d}f_1, \dots, \hat{d}f_n$ are linearly independent over S. If not, then we have a relation $\sum_i s_i \hat{d}f_i = 0$ where $s_i \in S$ and where s_1 , say, is not zero. Then multiplication by $\hat{d}f_2 \cdots \hat{d}f_n$ shows that $\hat{d}f_1 \cdots \hat{d}f_n = 0$. On the other hand, computing directly from (7.1) shows that

$$\hat{df}_1 \cdots \hat{df}_n = \det\left(\frac{\partial f_i}{\partial x_k}\right) \det\left(\frac{\partial u_i}{\partial x_k}\right) dx_1 \cdots dx_n$$

which is not zero in view of our assumption about the algebraic independence of the u_i . Thus the \hat{df}_i are linearly independent over S and the sum $P = \sum_i I(S) \hat{df}_i$ is direct. Since G is a real group it has an invariant quadratic form f_1 and hence $m_1 = 1$. The degree of the map \hat{d} is thus $q - 1 = m_1 + \cdots + m_{n-1} - 1 = m_2 + \cdots + m_{n-1}$ and the Poincaré series for the graded vector space P is thus

$$P(t) = \frac{t^{m_2 + \dots + m_{n-1}}(t^{m_1} + \dots + t^{m_n})}{(1 - t^{m_1 + 1}) \cdots (1 - t^{m_n + 1})}.$$

On the other hand, using (5.1), (6.1) and the double duality we see that $P(t) = I(S \otimes E_{n-1})(t) = \hat{I}(S \otimes E_1)(t)$. Since $P \subseteq \hat{I}(S \otimes E_1)$ is an inclusion of graded vector spaces we have $P = \hat{I}(S \otimes E_1)$. Thus $\hat{I}(S \otimes E_1)$ is freely generated over I(S) by $\hat{d}f_1, \dots, \hat{d}f_n$ and Theorem 3 is proved.

8. For the symmetric group on n letters x_1, \dots, x_n we can give the following construction for the skew invariant differential 1-forms. Let $\sigma_1, \dots, \sigma_n$ be the elementary symmetric functions of x_1, \dots, x_n and let $\Delta(x_1, \dots, x_{n-1}) = \prod_{1 \le i < j \le n-1} (x_i - x_j)$ be the fundamental skew invariant polynomial for the symmetric group on the letters x_1, \dots, x_{n-1} . Then a basis for the skew invariant differential 1-forms over the algebra of symmetric functions is given by the forms

$$\omega_k = \sum_i (-1)^{i+1} \Delta(x_1, \dots, \tilde{x}_i, \dots, x_n) \frac{\partial \sigma_k}{\partial x_i} dx_i, \qquad k = 1, \dots, n,$$

where \tilde{x}_i means that the letter x_i is to be omitted.

REFERENCES

- 1. W. Burnside, The determination of all groups of rational linear substitutions of finite order which contain the symmetric group in the variables, Proc. London Math. Soc. (2) 10 (1912), 284-308.
- 2. C. Chevalley, Invariants of finite groups generated by reflections, Amer. J. Math. 77 (1955), 778-782.
- 3. A. J. Coleman, The Betti numbers of the simple Lie groups, Canad. J. Math. 10 (1958), 349-356.
- 4. H. S. M. Coxeter, The product of the generators of a finite group generated by reflections, Duke Math. J. 18 (1951), 765-782.
- 5. J. S. Frame, The classes and representations of the groups of 27 lines and 28 bitangents, Ann. Mat. Pura Appl. 32 (1951), 83-119.
- 6. G. Frobenius, Über die Charaktere der symmetrischen Gruppe, S.-B. Preuss. Akad. Wiss. Berlin (1900), 516-534.
- 7. B. Kostant, The principal three dimensional subgroup and the Betti numbers of a complex simple Lie group, Amer. J. Math. 81 (1959), 973-1032.
- 8. G. C. Shephard and J. A. Todd, Finite unitary reflection groups, Canad. J. Math. 6 (1954), 274-304.
 - 9. L. Solomon, Invariants of finite reflection groups, Nagoya Math. J. 22 (1963), 57-64.

Institute for Advanced Study,
Princeton, New Jersey
Haverford College,
Haverford, Pennsylvania