SOME RESULTS ON STABILITY IN SEMIGROUPS(1)

BY
L. W. ANDERSON, R. P. HUNTER AND R. J. KOCH

A semigroup S is called stable if (1) $a, b \in S$ and $Sa \subseteq Sab$ imply that Sa = Sab and (2) $a, b \in S$ and $aS \subseteq baS$ imply that aS = baS. This notion was introduced by Koch and Wallace [5], who showed that in a stable semigroup the \mathcal{D} and \mathcal{J} equivalences coincide. Previously, Green [4], to obtain this equality, had imposed certain minimum conditions which were of a somewhat strong nature. Our principal concern here is the connection of stability with the \mathcal{H} -equivalence. In presenting a number of characterizations and consequences of stability, the bicyclic semigroup plays a rather special rôle. As we shall see, the fact that this semigroup cannot be immersed in a stable semigroup has, by itself, a number of consequences.

Frequently, we shall use fairly well-known results in the theory of semigroups which can be found in $\lceil 1 \rceil$.

The equivalences of Green [4], defined for any semigroup S, are as follows:

$$a\Re b \rightleftarrows a \cup aS = b \cup bS,$$
 $a\mathscr{L}b \rightleftarrows a \cup Sa = b \cup Sb,$
$$\mathscr{H} = \mathscr{L} \cap \mathscr{R}, \quad \mathscr{D} = \mathscr{L} \circ \mathscr{R} = \mathscr{R} \circ \mathscr{L},$$
 $a\mathscr{L}b \rightleftarrows a \cup Sa \cup aS \cup SaS = b \cup Sb \cup bS \cup SbS.$

Since we shall frequently assume the existence of an identity element it should be mentioned that the adjunction of an identity does not disturb the above equivalences(2).

For subsets A and B of a semigroup S, we shall write A : B for $\{x \mid Bx \subseteq A\}$. Similarly, $A : B = \{x \mid xB \subseteq A\}$, and $A : B = \{(x,y) \mid xBy \subseteq A\}$. The complement of A in B is $B \setminus A$, the empty set is \emptyset , and the notation $A \not\setminus B$ means $A \cap B \neq \emptyset$. In most instances our notation and terminology follow [1].

PROPOSITION 1. Let S be a semigroup with identity and let H, L, R, D be

Received by the editors August 7, 1963.

⁽¹⁾ This work was supported by National Science Foundation grants GP 610, GP 237 and GP 1637.

⁽²⁾ While adjoining an identity does not disturb the Green equivalence, there is, nevertheless, conceivably some loss of generality since it is at least conceptually possible to stabilize a semigroup through this adjunction.

- \mathcal{H} , \mathcal{L} , \mathcal{R} , and \mathcal{D} classes respectively such that $H = L \cap R \subseteq D$. The following are then equivalent:
 - (1) S is stable.
- (2) sHt $\$ D implies sH is an \mathcal{H} -class in L, Ht is an \mathcal{H} -class in R and sHt is an \mathcal{H} -class in D for all $s,t\in S$ and all H in S.

 - (4) $H ... H = H ... H \times H ... H$ for all H.
- **Proof.** (1) \rightarrow (2). First of all, $sHt \not \setminus D$ implies that $sht \in D$ for some $h \in H$, so that $h \not S ht$. Hence, there are elements p and q such that pshtq = h. Letting a = ps and b = tq we have h = ahb. We show next that $hb \mathcal{R} h$. Note that $hbS \subseteq hS = a(hbS)$. Since S is stable, hbS = hS = ahbS and $hb\mathcal{R} h$. Hence, Hb = Htq is an \mathcal{H} -class in R. Since $htq\mathcal{L} h$, we have Htq = H. It follows that $Ht \not \setminus R$ so by [1], Ht is an \mathcal{H} -class in R. Similarly, sH is an \mathcal{H} -class in L and sHt is an \mathcal{H} -class contained in D.
- $(2) \rightarrow (3)$. We immediately have sHt = H. Since sH is an \mathscr{H} -class in L and \mathscr{L} is right regular, we have $(sHt)\mathscr{L}(Ht)$. But Ht is already an \mathscr{H} -class in R. Since Ht lies in both L and R we conclude that H = Ht. Similarly, sH = H establishing (3).
- $(4) \rightarrow (1)$. Suppose $aS \subseteq saS$. Then a = sat, so that $(s,t) \in H_a$. H_a . Since $H_a
 cdots H_a \subseteq H_a \cap H_a \times H_a$, we have $sH_a \subseteq H_a$, so that $sa \in H_a$. But then, $aS \subseteq saS \subseteq H_aS = aS$ so that aS = saS. Similarly, $Sa \subseteq Sat$ implies Sa = Sat and the proof is complete.

COROLLARY 1.1. With all things as in Proposition 1 we have the following:

- (1) $SL \cap D = L$ and $RS \cap D = R$.
- (2) L : L = H : H and R : R = H : H.
- (3) $SH \cap R = H$ and $HS \cap L = H$.
- (4) If D is regular and $x \in H$ then $xSx \cap D = H$.
- (5) If x, y and xy lie in D then $xy \in R_x \cap L_y$ so that $R_y \cap L_x$ contains an idempotent. Thus, if $D^2 \not \setminus D$ then D is regular.
- (6) If e and f are idempotent elements in D such that ef = fe then $ef = fe \in S \setminus D$ and $SefS \subseteq SDS \setminus D$.
- (7) If $x \in D$ and there exists an integer n = n(x) such that $x \in Sx^nS$ then H_x is a group.
- **Proof.** (1) Suppose $ta \in D$ where $a \in L$. Then $ta \mathcal{D}a$ so that $ta \mathcal{J}a$. Hence there exist elements p and q such that a = ptaq. From the stability of S we have $pta \mathcal{L}a$. Hence, $Sa = Spta \subseteq Sta \subseteq Sa$, and Sta = Sa which is to say, $ta \mathcal{L}a$. Clearly, $L \subseteq SL \cap D$ so that $L = SL \cap D$. Similarly $RS \cap D = R$.

- (2) If $t \in L$. L, then $Lt \subseteq L$ so $at \mathcal{L}a$ for all $a \in L$. Since $at \in R_a S \cap D = R_a$, we see that $at \mathcal{H}a$ so that $t \in H$. H. The other containment is clear since any \mathcal{H} -class contained in L is a left translate of H. In the same way, R : R = H : H.
- (3) Suppose $ta\Re a$, where $a \in H$. Then $tR \subseteq R$ so by (2), $tH \subseteq H$, so that $ta \in H$. Clearly $H \subseteq SH \cap R$ so that we have $SH \cap R = H$. Similarly, $HS \cap L = H$.
- (4) If D is regular then there exist idempotents e and f such that xS = eS and Sx = Sf. Clearly then $xS \cap Sx = xSx$ and the result follows from (1).
- (5) From (1) it follows that $xy \in R_x \cap L_y$. The existence of an idempotent in $R_y \cap L_x$ follows from [1].
 - (6) This is immediate from (1) and the fact that $SDS \setminus D$ is an ideal.
- (7) If $x \in Sx^nS$ then x^n lies in D since $SDS \setminus D$ is an ideal. In particular x^2 lies in D and from (1) must lie in H. This implies that H is a group [4].

In his original investigations, Schützenberger, for his definition of the group of an \mathscr{H} -class, dealt with a somewhat restricted type of \mathscr{D} -class. (This restriction was later removed.) A \mathscr{D} -class D is said to be of elementary type if for any $a, b \in D$ we have

- (i) Sa = Sb and $aS \subseteq bS$ imply aS = bS,
- (ii) aS = bS and $Sa \subseteq Sb$ imply Sa = Sb.

Thus, noting conclusion (3) in Corollary 1.1 we see that if S is a stable semigroup then each \mathcal{D} -class is of elementary type.

The bicyclic semigroup $\mathscr{C}(p,q)$ is the semigroup with identity e generated by two elements p and q subject to qp = e. We write $\mathscr{C} = \mathscr{C}(p,q)$.

We summarize some properties of $\mathscr{C}(p,q)$. First of all, it has the following form:

For $x \in \mathcal{C}(p,q)$, L_x consists of those elements in the same column with x, and R_x consists of those elements in the same row with x. Further $E = \{e\} \cup \{p^n q^n : n = 1, 2, 3, \dots\}$, and $e > pq > p^2 q^2 > \dots$. Note that $\mathcal{C}(p,q)$ is a \mathcal{D} -simple inverse semigroup.

- (1) If $fSf < eSe \subseteq SfS$, then e is the unit of a bicyclic semigroup contained in J_e (see [1, p. 81]).
- (2) If S is a simple semigroup (with or without zero) which contains a nonzero idempotent, then S is completely simple if and only if S does not contain a bicyclic semigroup (Olaf Andersen, see [1, p. 81]).
- (3) An element p of a semigroup S lies in a bicyclic semigroup if there is an idempotent e and an element q such that $p, q \in eSe$, $pq = e \neq qp$ [1].

The \mathcal{L} -, \mathcal{R} -, and \mathcal{H} -relations in $\mathcal{C}(p,q)$ are compatible with those in S. In fact we have the following more general proposition.

PROPOSITION 2. Let a and b be regular elements in a semigroup S, and suppose S is embedded in a semigroup T. Then a and b are \mathcal{R} - $(\mathcal{L}$ - $,\mathcal{H}$ -) related in T if and only if a and b are \mathcal{R} - $(\mathcal{L}$ - $,\mathcal{H}$ -) related in S.

Proof. Suppose a and b are \mathcal{R} -related in S (notation aR_Sb). Then $aS = bS \subseteq bT$. So $a \in bT$, $aT \subseteq bT$. Similarly $bT \subset aT$, so aR_Tb . Dually, aL_Sb implies aL_Tb .

Conversely, suppose aR_Tb . By regularity there exist idempotents e and f in S such that eS = aS and fS = bS. Hence by the first part of the proof, eT = aT = bT = fT. Thus $e = fe \in fS$, so $aS = eS \subset fS = bS$, and similarly $bS \subset aS$. Hence aR_Sb ; a dual argument establishes the proposition.

Thus we see that regular elements of S cannot become \mathcal{R} - $(\mathcal{L}$ - $,\mathcal{K}$ -) related in an extension of S unless they already have the relation in S. This does not hold for \mathcal{D} , however; in fact, any semigroup can be embedded in a \mathcal{D} -simple semigroup [8]. It may be possible to characterize regularity in terms of the invariance of \mathcal{R} - $(\mathcal{L}$ - $,\mathcal{K}$ -) relations under embeddings.

COROLLARY 2.1. Let $\mathscr E$ be a bicyclic semigroup which is embedded in a semigroup S. Then $\mathscr E$ meets an $\mathscr H$ -class of S in at most one point. Thus if x is a non-idempotent in $\mathscr E$, then no power of x lies in a subgroup of S.

Proof. Suppose $a, b \in \mathcal{C}$ with $a\mathcal{H}_S b$. By the proposition we have $a\mathcal{H}_{\mathcal{C}} b$, so a = b. The remainder of the corollary follows readily.

COROLLARY 2.2. The bicyclic semigroup cannot be embedded in a stable semigroup.

Proof. Suppose that $\mathscr{C}(p,q) \subseteq S$. Note that $qp^2 = p \notin R_q \cap L_{p^2}$ so that S is not stable by (5) of Corollary 1.1.

COROLLARY 2.3. Let S be a 0-simple semigroup. Then S is completely 0-simple if and only if S is stable.

Proof. If S is completely 0-simple then it follows from the well-known structure theory for such semigroups that S is stable.

On the other hand suppose that S is 0-simple and stable. Let x, y be elements of S such that $xy \neq 0$. (Such elements exist since S is, by definition, not the zero semigroup of order 2.) By (5) of Corollary 1.1 it follows that S contains a nonzero idempotent. (We recall that $\mathcal{D} = \mathcal{J}$ since S is stable.) Now if S were not completely 0-simple it would have to contain a copy of the bicyclic semigroup (see [1, p. 81]). This is ruled out by the stability of S through Corollary 2.2. Thus, S is completely 0-simple.

In the same way one proves the following

COROLLARY 2.4. A semisimple semigroup is completely semisimple if and only if it is stable.

COROLLARY 2.5. If S is a stable semigroup which has a 0-simple ideal K then K is completely 0-simple.

It should be noted that our Corollary 2.4 is, in point of fact, equivalent to Theorem 2.3 of Munn [7]. The minimal conditions m_l^* and m_r^* are together, for a semigroup with identity, equivalent to stability. This last statement follows immediately from (1) of Corollary 1.1.

We note that it may be possible to embed a nonstable semigroup in a stable semigroup, in fact a group.

EXAMPLE (CROISOT [3]). Let S be a countable cancellative semigroup without idempotents, and let L be the free cancellative semigroup generated by the elements a_{ij} and b_{ij} , where i and j are positive integers. Let P = S * L be the free product of S and L. Denoting the elements of S by s_1, s_2, \cdots , the relations $s_i = a_{ij}s_jb_{ij}$ are imposed. Let S be so chosen that some element, say s_1 , is not a product in S. Then, in P, it is easy to see that both $s_1 : s_1$ and $s_1 : s_1$ are empty while $s_1 : s_1$ contains (a_{11}, b_{11}) . Moreover, since $\{s_1\}$ is itself an \mathscr{H} -class it is immediate that P is not stable. It also follows that the elements of S form a single \mathscr{I} -class. Moreover, it is easy to take S so that each \mathscr{D} -class is degenerate.

Another example illustrating this point can be found in [1, p. 51], due to Olaf Andersen.

PROPOSITION 3. Let S be a semigroup; the following are equivalent:

- (1) & is not embeddable in S.
- (2) SeS/(SeS\J_e) is completely 0-simple for each nonminimal idempotent $e \in S$.
- (3) $eSe \setminus H_e$ is an ideal in eSe for each nonminimal idempotent $e \in S$.
- **Proof.** (1) \rightarrow (2). Let $I = SeS \setminus J_e$ and suppose that $I \neq \emptyset$. Then SeS / I is 0-simple. Since \mathscr{C} is not embeddable in S it is not embeddable in SeS / I. Thus, SeS / I is completely 0-simple.
- $(2) \rightarrow (3)$. Again letting $I = SeS \setminus J_e$, we suppose that $SeS \mid I$ is completely 0-simple. Which is to say, $J_e \cup \{I\}$ is a completely 0-simple semigroup with $\{I\}$ as zero element. Now from the known structure of completely 0-simple semigroups, we know that H_e , the maximal subgroup of $J_e \cup \{I\}$, is precisely those elements in $J_e \cup \{I\}$ for which e is a two-sided identity. Which is to say, $eSe \cap J_e = H_e$. Thus, $eSe \setminus H_e$ lies in I which completes the argument.
- $(3) \rightarrow (1)$. Since \mathscr{C} fails to satisfy (3) it cannot be embedded in S. The proof is complete.

We may summarize some of these results in the following

COROLLARY 3.1. If S satisfies any of the following then S does not contain a

copy of $\mathcal{C}(p,q)$, so that SeS/I(e) is completely 0-simple for each nonminimal idempotent e.

- (1) S is stable.
- (2) S is periodic (i.e., each element generates a finite sub-semigroup).
- (3) Some power of every element lies in a subgroup.
- (4) For each $x \in S$ there exist integers n = n(x), m = m(x), n < m such that $x^n \in x^m S$.
- (1) and (2) are rather clear. To see (3) and (4) we have only to call upon Corollary 2.1.

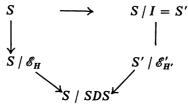
We note that Corollary 3.1 contains certain results of Croisot [2] and Munn [7]. We should note the following: If S is periodic then S is stable. To see this, suppose $Sa \subseteq Sab$. Then $Sa \subseteq Sab^n$ for each n. Thus for some idempotent e, a power of b, we have $Sa \subseteq Sab \subseteq Sab^2 \subseteq \cdots \subseteq Sae$. It is then immediate that Sa = Sae so that Sa = Sab.

Let A be a subset of a semigroup S having an identity. The congruence of Teissier [9] is defined as follows:

From the results of [9], it is known that in order for A to be a class of some congruence it is necessary and sufficient that for any c and d in S one has $cAd \ \ A \rightarrow cAd \subseteq A$. As we have seen, any \mathscr{H} -class in a stable semigroup has this property. Thus we have the following

PROPOSITION 4. Let H be an \mathcal{H} -class of a stable semigroup S. Then there exists a congruence on S in which H is a single class.

Suppose $I = S \setminus D$, where D is a \mathcal{D} -class in S, a stable semigroup with identity. If H is an \mathcal{H} -class contained in D we have the following diagram, the maps being canonical.



A more precise connection between \mathscr{E}_H and \mathscr{H} is given by the following

PROPOSITION 5. Let S be a semigroup with identity and let H and H' be \mathscr{H} -classes of S. If H and H' lie in the same \mathscr{D} -class then $\mathscr{E}_H = \mathscr{E}_{H'}$. If either H or H' is nondegenerate and S is stable then $\mathscr{E}_H = \mathscr{E}_{H'}$ implies H and H' lie in the same \mathscr{D} -class hence both are nondegenerate. Thus if S is stable and H is nondegenerate

$$H \equiv H'(\mathcal{D}) \leftrightarrows \mathscr{E}_H = \mathscr{E}_{H'}.$$

Proof. Suppose then that $p \equiv q(\mathscr{E}_H)$. If p = q then of course $p \equiv q(\mathscr{E}_{H'})$. If $p \neq q$ then there are elements $x_1, \dots, x_n, y_1, \dots, y_n$ such that

$$p \in x_1 H y_1 \bigvee x_2 H y_2 \bigvee \cdots \bigvee x_n H y_n \ni q$$
.

Since H and H' lie in the same \mathcal{D} -class, there exist elements r and s such that H = rH's. Thus we have

which is to say, $p \equiv q(\mathscr{E}_{H'})$. In the same way $p \equiv q(\mathscr{E}_{H'})$ implies $p \equiv q(\mathscr{E}_{H})$.

Now suppose that $\mathscr{E}_H = \mathscr{E}_{H'}$, that S is stable and that say, H contains at least two distinct elements a and b. Since $a \neq b$, it follows from the very definition of $\mathscr{E}_{H'}$ that $H \subseteq SH'S$. If H' were degenerate we would immediately conclude that a = b. Thus, H' is nondegenerate and so just as we had $H \subseteq SH'S$, we have $H' \subseteq SHS$. Thus, we see that H and H' lie in the same \mathscr{L} -class. Since S is stable, H and H' lie in the same \mathscr{D} -class and the proof is complete.

To see that nondegeneracy is needed in the second half of the above(3), we note that if S is the semigroup of order 3 having elements e, f, z with z as zero, $e^2 = e, f^2 = f, ef = fe = 0$, i.e., the resorbing semigroup of order 3, then $H = \{e\}$ and $H' = \{f\}$ are distinct \mathcal{D} -classes but $\mathscr{E}_H = \mathscr{E}_{H'}$.

In studying the Teissier congruence the "double orbits" xHy arise. Thus it might have been reasonable to think that in a stable, compact, or perhaps finite semigroup, $sHy \not \setminus aHb$ implies equality. However, the following example shows this is not so. Let S be the full transformation semigroup on 4 elements \mathcal{F}_4 (see [1]). Following the description in [1] we note that if H is the \mathcal{H} -class

$$(3413)$$
 (4314)

then $(1313)H(1111) \not (1313)H(1242)$. Both contain the element (1111). However, (3333) is contained in the first but not the second.

For the notion of inverse hull we follow, as usual, [1]. This inverse semigroup is defined for any right cancellative semigroup S having no idempotent $\neq 1$.

PROPOSITION 6. The only semigroups having stable inverse hulls are left groups. If S is a semigroup having the property that each of its sub-semigroups has a stable inverse hull then S is a torsion group.

⁽³⁾ Our thanks to the referee for this remark.

First of all, if a semigroup S has an inverse hull then it is, at any rate, right cancellative. We need only show that S is left simple, which is to say, Sx = S for each $x \in S$. Now let Sa be a proper subset of S. Consider the extended regular representation of S, $a \to \rho_a$, where ρ_a is the inner right translation defined by a. Now in the inverse hull, if i is the identical mapping of S^1 and γ is the inverse of ρ_a then

$$\gamma \rho_a = i$$
 but $\rho_a \gamma \neq i$.

But then, γ and ρ_a generate a copy of $\mathscr{C}(p, q)$. This is impossible by Corollary 2.2. Thus, Sa = S for each $a \in S$.

Now for the second statement in the proposition let x be any element of S. Since the inverse hull of an infinite cyclic semigroup is $\mathcal{C}(p, q)$, the semigroup generated by x is finite and contains an idempotent e. The element e is then a right identity and each x has an inverse with respect to e. Thus S is a torsion group.

Some REMARKS. In the following, let a, x, y be arbitrary elements of a semigroup S and let L and R be \mathcal{L} - and \mathcal{R} -classes contained in the \mathcal{J} -class J. Consider the following statements:

- (1) S is stable.
- (2) a = xay implies $xa\Re a$ and $ay\mathscr{L}a$.
- (3) a = xay implies $xa\mathcal{H}a$ and $ay\mathcal{H}a$.
- (4) a = xay implies $xa\mathcal{L}a$ and $ay\mathcal{R}a$.
- (5) $SL \cap J = L$ and $RS \cap J = R$.
- (6) $x, y, xy \in J$ imply $xy \in R_x \cap L_y$.
- (7) S contains no copy of $\mathscr{C}(p,q)$.

We have already seen in the proofs that $(1) \leftrightarrow (2) \leftrightarrow (3) \rightarrow (4) \leftrightarrow (5) \rightarrow (6) \rightarrow (7)$. Condition (4) could be considered to be a weakened form of stability; in this form also the conclusion $\mathcal{D} = \mathcal{J}$ holds. To see this, suppose $a\mathcal{J}b$ so that $S^1aS^1 = S^1bS^1$. Thus, a = xby and b = cad for appropriate x, y, b, and d. We then have

$$a = x(cad)y = (xc)a(dy).$$

Using (4) we have $xca\mathcal{L}a$ which in turn implies $ca\mathcal{L}a$. In the same way, $ad\mathcal{R}a$. Since \mathcal{L} is right regular $cad\mathcal{L}ad$ and since $ad\mathcal{R}a$ we have by definition $cad\mathcal{D}a$.

Needless to say, the absence of $\mathscr{C}(p, q)$ in S does not imply its stability. One can however make the following observation.

If (7) holds and each J-class contains an idempotent then S is stable.

Letting I(e) denote $SeS \setminus J_e$ we note that $SeS \setminus I(e)$ is 0-simple and, since it does not contain a copy of $\mathscr{C}(p,q)$, it is completely 0-simple. Thus, we see, in particular, that if a is an element such that J_a contains an idempotent e but contains no bicyclic semigroup then $J_a = D_a$ and a is regular.

Now suppose a is a regular element so that there exist idempotents e and f in D_a such that $e\mathcal{R}a$ and $f\mathcal{L}a$. We shall show that (2) holds. To this end let a = xay.

Then a = xay = x(ea)y = xe(ay). Dually a = xay = x(af)y = (xa)(fy). Note that xe, ay, xa, fy lie in J_a . Since xe, ay, and xeay = a lie in J_a we see that $xeay \mathcal{L}ay$ so that $a\mathcal{L}ay$. Dually, $a\mathcal{R}xa$ so that (2) holds which implies stability.

If L and R are \mathcal{L} - and \mathcal{R} -classes contained in a \mathcal{D} -class D and $L \cap R$ contains an idempotent then LR = D. There need not be an idempotent present in $L \cap R$ to have this equality. However, we note the following: If S is stable and D is a \mathcal{D} -class containing \mathcal{L} - and \mathcal{R} -classes L and R then LR = D if and only if $L \cap R$ contains an idempotent. Thus if D is a semigroup it is completely simple.

Finally we note that if S is stable cancellative and simple then S is a group. If S is stable and cancellative without idempotents then each \mathcal{J} -class is trivial.

REFERENCES

- 1. A. H. Clifford and G. B. Preston, *The algebraic theory of semigroups*, Math. Surveys No. 7, Amer. Math. Soc., Providence, R. I., 1961.
- 2. R. Croisot, Semi-groupes inversifs et demi-groupes réunions des demi-groupes simples, Ann. Sci. École Norm. Sup. 70 (1953), 361-379.
 - 3. ——, Sur les équivalences bilatères, J. Math. Pures Appl. 36 (1957), 373-417.
 - 4. J. A. Green, On the structure of semigroups, Ann. of Math. (2) 54 (1951), 163-172.
 - 5. R. J. Koch and A. D. Wallace, Stability in semigroups, Duke Math. J. 24 (1957), 193-196.
- 6. W. D. Munn, Semigroups satisfying minimal conditions, Proc. Glasgow Math. Assoc. 3 (1957), 145-152.
 - 7. ———, Pseudo-universes in semigroups, Proc. Cambridge Philos. Soc. 57 (1961), 247-250.
- 8. G. B. Preston, Embedding any semigroup in a D-simple semigroup, Trans. Amer. Math. Soc. 93 (1959), 351-355.
- 9. M. Teissier, Sur les équivalences régulières dans les demi-groupes, C. R. Acad. Sci. Paris 232 (1951), 1987-1989.

PENNSYLVANIA STATE UNIVERSITY,
UNIVERSITY PARK, PENNSYLVANIA
UNIVERSITY OF WISCONSIN,
MADISON, WISCONSIN