λ-CONTINUOUS MARKOV CHAINS(1)

BY SHU-TEH C. MOY

0. Introduction and summary. We call a Markov operator P which has a representation $P(x,A) = \int_A p(x,y) \lambda(dy)$ with p(x,y) bivariate measurable a λ -continuous Markov operator. It is a special kind of λ -measurable Markov operator of E. Hopf. If the state space is discrete, every Markov operator is λ -continuous where λ assigns measure 1 to every state. In §I various definitions and preliminaries are given. In §II the existence of invariant measures for a λ -continuous conservative P is proved. It is shown that the space is decomposed into at most countably many indecomposable closed sets C_1, C_2, \cdots . For each C_i there is a σ -finite invariant measure μ_i which is equivalent to λ on C_i and vanishes outside C_i . Every invariant measure is shown to be of the form $\sum \alpha_i \mu_i$. In §III convergence properties of $\sum_{n=1}^N p^n(z,x)/\sum_{n=1}^N p^n(z,y)$ are studied. It is shown that for a conservative ergodic P the limit of the ratio is f(x)/f(y) where f is the derivative of the invariant measure with respect to λ . All these theorems are well known for a discrete state space (cf. [2, 1.9]).

 \S IV treats laws of large numbers. The approach used here is similar to that of Harris and Robbins [7]. It contains generalizations of theorems of Chung for discrete state spaces (cf. [2, 1.15]). The theory of λ -measurable Markov operators is extensively used here.

 $\S VI$ is devoted to some new results on λ -measurable Markov operators which are used in this paper. In $\S V$ the theory of Martin boundaries is investigated. The kernel K(x,y) used here is

$$K(x,y) = \lim_{N \to +\infty} \frac{\sum_{n=1}^{N} p^{n}(x,y)}{\int_{\pi} \pi(dz) \sum_{n=1}^{N} p^{n}(z,y)},$$

where π is a finite measure equivalent to λ . By using this kernel the space X is embedded in a compact Hausdorff space \widetilde{X} . Every π -integrable invariant function h is shown to have the representation $h = \int \widetilde{y}\widetilde{\eta}(d\widetilde{y})$ for a Baire measure $\widetilde{\eta}$ on \widetilde{X} . The techniques used here are essentially extensions of that of G. A. Hunt [9]. The space X is assumed to be irreducible, i.e., X is the support of measure $\sum_{n=1}^{\infty} 2^{-n}\pi P^n$.

Received by the editors June 22, 1963.

⁽¹⁾ This work was supported by the National Science Foundation under Grant G-16024 and by the Office of Scientific Research, U.S. Air Force, under contract AF 49(638)-265.

- I. **Preliminaries.** Let X be a nonempty set, \mathcal{X} , a σ -algebra of subsets of X and λ , a σ -finite measure on X. Let p(x, y) be an $\mathcal{X} \times \mathcal{X}$ measurable function defined on $X \times X$ satisfying the following conditions:
 - 1. $p(x, y) \ge 0$ for $(\lambda \times \lambda)$ almost all (x, y),
 - 2. for (λ) almost all x, $\int p(x,y)\lambda(dy) \leq 1$.

Let $L_{\infty}(\lambda)$ be the collection of λ -essentially bounded functions and $\mathscr{A}(\lambda)$, the collection of all finite real valued, countably additive functions on \mathscr{X} which are absolutely continuous with respect to λ . Let $\mathscr{A}^+(\lambda)$ be the collection of all non-negative elements of $\mathscr{A}(\lambda)$. For any $f \in L_{\infty}(\lambda)$ define Pf by

(1.1)
$$Pf(x) = \int p(x, y)f(y) \lambda(dy).$$

For any $v \in \mathcal{A}(\lambda)$ define vP by

(1.2)
$$vP(A) = \int v(dx) \int_A p(x,y) \lambda(dy).$$

The operator P here is a special case of λ -measurable Markov operators of E. Hopf (cf. Appendix). We shall call it a λ -continuous Markov operator and $(X, \mathcal{X}, \lambda)$, the state space of P. The iterates of P are then given by

$$P^{n}f(x) = \int p^{(n)}(x, y)f(y) \lambda(dy),$$

$$vP^{n}(A) = \int v(dx) \int_{A} p^{n}(x, y) \lambda(dy),$$

where $p^{(n)}(x, y)$ are defined inductively by

$$p^{(n)}(x,y) = \int p^{(n-1)}(x,z) p(z,y) \lambda(dz).$$

The function p shall be called the density function of the operator P. (1.1), (1.2) remain meaningful for non-negative f not necessarily λ -essentially bounded and non-negative, σ -finite measure ν . All subsets of X discussed in this paper are elements of \mathcal{X} and all functions on X are \mathcal{X} -measurable functions. For two sets $A, B, A \subset B, A = B$ mean that $\lambda(A - B) = 0, \lambda(A \triangle B) = 0$ respectively. For two functions f, g on $X, f = g, f \le g$ mean that the equality and the inequality, respectively, are satisfied except on a λ -null set. For any set A, 1_A represents the function which equals to 1 on A and 0 on the complement A' of A. For any function f and any additive set function ν define

$$I_A f(x) = 1_A(x) f(x),$$

$$vI_A(B) = v(A \cap B).$$

 I_A is a λ -measurable Markov operator. Define

(1.3)
$$P_A^{\#} = \sum_{n=0}^{\infty} (I_{A'}P)^n,$$

(1.4)
$$P_{A} = \sum_{n=0}^{\infty} P(I_{A'}P)^{n}.$$

 P_A^* , P_A operating on either non-negative functions or measures have well-defined meanings. In our case of λ -continuous P,

$$P_{A}f(x) = \int p_{A}(x,y)f(y)\lambda(dy),$$

$$vP_{A}(B) = \int v(dx) \int_{B} p_{A}(x,y)\lambda(dy),$$

where

(1.5)
$$p_{A}(x,y) = \sum_{n=1}^{\infty} p_{A,n}(x,y) \text{ with}$$

$$p_{A,n}(x,y) = \int_{A'} \cdots \int_{A'} p(x,z_1) p(z_1,z_2) \cdots p(z_{n-1},y) \lambda(dz_1) \cdots \lambda(dz_{n-1}).$$

However $P_A^*I_A$ and P_AI_A are λ -measurable Markov operators and P_AI_A has density function $p_A(x, y)1_A(y)$ [Appendix, Theorem 6.1]. Following E. Hopf and J. Feldman we call a set A a conservative set if, for every λ -non-null subset B of $A, P_B 1_B = 1$ on B. Let C be the largest conservative set which is then called the conservative part of X. D = X - C is called the dissipative part of X. A set A is said to be transient if there is a non-negative number q < 1 such that $P_A 1_A \le q$ on A. Then D is the union of at most countably many transient sets [Appendix, Theorem 6.3]. For any finite measure ν which is equivalent to λ , $\sum_{n=1}^{\infty} \nu P^n(A) = \infty$ if $A \subset C$ and A is λ -non-null and $\sum_{n=1}^{\infty} vP^n$ is σ -finite on D. A set A is closed if $P1_A = 1$ on A. C is closed. It follows that $\sum_{n=1}^{\infty} p^n(x, y) < \infty$ for $(\lambda \times \lambda)$ almost all $(x, y) \in X \times D$, in particular, $\sum_{n=1}^{\infty} p^n(x, y) = 0$ a.e. $(\lambda \times \lambda)$ on $C \times D$. The collection of all closed subsets of C form a σ -algebra of subsets of C which we shall designate by \mathscr{C} . P is conservative if C = X. P is dissipative if D = X. An extended real valued non-negative function h is said to be P-excessive if $Ph \leq h$, P-invariant if equality holds. h is a P-potential if $P^nh\downarrow 0$ a.e. (λ) . A σ -finite measure μ is P-excessive if $\mu P \leq \mu$, P-invariant if equality holds. μ is a P-potential if $d\mu P^n/d\lambda \downarrow 0$ a.e. (λ). Let

(1.6)
$$g(x,y) = \sum_{n=1}^{\infty} p^{n}(x,y).$$

Then $P^n g(\cdot, y) = \sum_{k=n+1}^{\infty} p^k(\cdot, y)$. Hence for (λ) almost all y, $g(\cdot, y)$ is P-excessive, in particular, if $y \in D$, $g(\cdot, y)$ is a P-potential.

For a finite valued P-excessive function h we define

(1.7)
$$p_h(x,y) = \frac{1}{h(x)} p(x,y).$$

 p_h is well defined, a.e., $(\lambda_h \times \lambda_h)$ where λ_h is given by

$$\lambda_h(A) = \int_A h(x) \lambda(dx).$$

Since $\int p_h(x,y) \lambda_h(dy) = (1/h(x)) \int p(x,y) h(y) \lambda(dy) \le 1$, a λ_h -continuous Markov operator P_h may be defined by:

$$(1.8) P_h f(x) = \int p_h(x,y) f(y) \lambda_h(dy) = \frac{1}{h(x)} \int p(x,y) h(y) f(y) \lambda(dy),$$

$$(1.9) \quad vP_h(A) = \int v(dx) \int_A p_h(x,y) \, \lambda_h(dy) = \int v(dx) \frac{1}{h(x)} \int_A p(x,y) h(y) \lambda(dy).$$

The iterates P_h^n are then given by

$$P_h^n f(x) = \int p_h^{(n)}(x, y) f(y) \lambda_h(dy),$$

$$v P_h^n(A) = \int v(dx) \int_A p_h^{(n)}(x, y) \lambda_h(dy),$$

where

$$p_h^{(n)}(x,y) = \frac{1}{h(x)}p^{(n)}(x,y).$$

For the operator P_h it is easy to see that the space still has the same decomposition $C \cup D$ although sets of λ_h measure 0 have no significance.

II. Invariant measures.

THEOREM 2.1. Let P be λ -continuous and $\mathscr C$ be the σ -algebra of all closed subsets of the conservative part C. Then λ is purely atomic on $\mathscr C$. Let $\mathscr C$ be generated by distinct atoms C_1, C_2, \cdots and $P_i = PI_{C_i}$; then $P_iP_j = 0$ if $i \neq j$ and $I_CP = I_C(P_1 + P_2 + \cdots)$.

Proof. Suppose that $\mathscr C$ contained a nonatomic set A. We may assume $0 < \lambda(A) < \infty$. For every positive integer n there is a partition $E_1^{(n)}, \dots, E_{k_n}^{(n)}$ of A such that every $E_i^{(n)}$ belongs to $\mathscr C$ and $\lambda(E_i^{(n)}) < n^{-1}$. We may assume that each $E_i^{(n+1)}$ is a subset of $E_j^{(n)}$ for some j. Let $A_n = \bigcup_i [E_i^{(n)} \times E_i^{(n)}]$. Since both $E_i^{(n)}$ and $A - E_i^{(n)}$ are closed sets, p(x, y) = 0 a.e. $(\lambda \times \lambda)$ on $A \times A - A_n$. Since A_n is monotonically decreasing and $\lambda \times \lambda(A_n) \leq n^{-1}\lambda(A) \to 0$ as $n \to \infty$, p(x, y) = 0

a.e. $(\lambda \times \lambda)$ on $A \times A$ which contradicts the fact that $\int_A \int_A p(x, y) \lambda(dx) \lambda(dy)$ = $\lambda(A) > 0$.

For every closed set A, $I_AP = I_API_A$, hence $P_iP_j = PI_{C_i}PI_{C_j} = PI_{C_i}I_{C_j}PI_{C_j} = 0$ and $I_CP = I_CPI_C = I_C(P_1 + P_2 + \cdots)$.

A conservative Markov operator P is said to be *ergodic* if the only λ -non-null set in $\mathscr C$ is C.

THEOREM 2.2. If a λ -continuous Markov operator P is conservative and ergodic then P possesses a σ -finite invariant measure μ which is unique up to a constant multiple. Furthermore μ is equivalent to λ .

Proof. The proof of the existence of invariant measure shall be essentially that of T. E. Harris adapted to the present situation [6]. Since P is conservative $\int p(x,y) \lambda(dy) > 0$ implies that $\sum_{n=1}^{\infty} p^n(x,y) = \infty$ for (λ) almost all y on a nonnull closed set. Since X is the only non-null closed set, $\sum_{n=1}^{\infty} p^n(x,y) = \infty$ for (λ) almost all y. Hence $\sum_{n=1}^{\infty} p^{(n)}(x,y) = \infty$ a.e. $(\lambda \times \lambda)$. Let M, a be two positive numbers with $2^{-1} < a < 1$. We shall show that there is a set A with $0 < \lambda(A) < \infty$ and a positive integer N such that for (λ) almost all $x \in A$,

(2.1)
$$\lambda \left[y : \sum_{n=1}^{N} p^{(n)}(x, y) > M, \ y \in A \right] > a\lambda(A).$$

Let E be an arbitrary set with $0 < \lambda(E) < \infty$. Let

$$f_n(x) = \lambda \left[y : \sum_{i=1}^n p^{(i)}(x, y) > M \right] \cap E.$$

Then $f_n \uparrow \lambda(E)$ a.e. (λ) . Determine N so that $\lambda[x:f_N(x)>(4/5)\lambda(E), x \in E]>(4/5)\lambda(E)$. Let $A = [x:f_N(x)>(4/5)\lambda(E), x \in E]$. Then A satisfies (2.1). Consider P_A and P_A given by (1.4) and (1.5) respectively. $P_A I_A$ is a λ -continuous Markov operator with density function $r(x,y) = P_A(x,y)1_A(y)$. Let $r^n(x,y)$ be the nth iterate of r(x,y),

$$q(x,y) = N^{-1} \sum_{n=1}^{N} r^{(n)}(x,y)$$

and Q be the corresponding λ -continuous Markov operator with density function q(x, y). (2.1) implies that for (λ) almost all $x \in A$,

(2.2)
$$\lambda[y:q(x,y)>M/N, y\in A]>a\lambda(A).$$

(2.2) implies that there is a probability η such that

ess sup
$$|Q^n 1_E(x) - \eta(E)| \to 0$$
 uniformly in E

(see Appendix of [6]). η is $P_A I_A$ -invariant. Let $\mu = \eta P_A$. Then

$$\mu P = \eta P_A P = \eta P_A I_A P + \eta P_A I_A P = \eta P + \eta \sum_{n=1}^{\infty} P(I_A P)^n = \eta P_A = \mu.$$

Hence μ is P-invariant. Since P is ergodic, μ is σ -finite by Theorem 6.4 of Appendix, μ has density with respect to $\lambda : d\mu/d\lambda = \int \eta(dx) p_A(x, \cdot)$. The support of an invariant measure is necessarily a closed set. Hence the support of μ is X and μ is equivalent to λ . Uniqueness of μ follows from Corollary 6.2 of Appendix.

THEOREM 2.3. Let P be λ -continuous and conservative. Let C_1, C_2, \cdots be distinct atoms which generate \mathscr{C} . For each C_i there is a σ -finite P-invariant measure μ_i which is equivalent to λI_{C_i} and every P-invariant measure is of the form $\sum \alpha_i \mu_i$.

Proof. Let $P_i = PI_{C_i}$. It follows from Theorem 2.1 that there is a P_i -invariant measure which is equivalent to λI_{C_i} which is unique up to a constant multiple. Now $\mu_i P = \mu_i I_{C_i} P = \mu P_i = \mu_i$, hence μ_i is also P-invariant. Conversely, if μ is P-invariant, let $v_i = \mu I_{C_i}$; then $v_i P_i = \mu I_{C_i} P = \mu PI_{C_i} = \mu_{I_{C_i}} = v_i$. v_i is P_i -invariant, therefore a constant multiple of μ_i . Hence μ is of the form $\sum \alpha_i \mu_i$.

Let

$$(2.3) B = \lceil P_C 1_C > 0 \rceil - C.$$

J. Feldmann showed that every excessive measure for a λ -measurable Markov operator P is necessarily absolutely continuous to λI_{X-B} . In our case of λ -continuous Markov operators we have the following corollary.

COROLLARY 2.1. If P is a λ -continuous Markov operator then there exists an excessive measure μ which is equivalent to λI_{X-B} where B is given by (2.3).

Proof. Let $\pi \in \mathscr{A}^+(\lambda)$ and be equivalent to $\lambda I_{X-(B\cup C)}$. Let $\eta = \sum_{n=0}^{\infty} \pi P^n$. Then η is equivalent to $\lambda I_{X-(B\cup C)}$ and σ -finite. Let $\mu = \eta + \sum_{i=0}^{\infty} \alpha_i \mu_i$, $\alpha_i > 0$ where μ_i are invariant measures described in Theorem 2.3. μ is the desired excessive measure.

III. Ratio ergodic theorems. For a λ -measurable Markov operator P and $v, \eta \in \mathcal{A}^+(\lambda)$ the ratio ergodic theorem states that

$$\sum_{n=1}^{N} dv P^{n} / d\lambda$$
$$\sum_{n=1}^{N} d\eta P^{n} / d\lambda$$

converge a.e. (λ) on the set where the denominator is positive. The theorem was conjectured by E. Hopf and proved by Chacon and Ornstein [1]. The limit function was identified by J. Neveu [10]. For our case of λ -continuous operator P, because of $\mathscr C$ being atomic the ratio ergodic theorem may take the form of

Theorem 3.1. But, first, we shall introduce functions u_{C_i} . Let C_i be an atom of C. Let $u_{C_i} = P_{C_i} 1_{C_i}$. u_{C_i} is the smallest excessive function which equals to 1 on C_i (Appendix, Corollary 6.1).

THEOREM 3.1. Let P be λ -continuous and π , a finite measure equivalent to λ ; then for $(\lambda \times \lambda)$ almost all (x,z)

(3.1)
$$\lim_{N\to\infty} \frac{\sum_{n=1}^{N} p^{n}(x,z)}{\int \pi(dy) \sum_{n=1}^{N} p^{n}(y,z)} = \frac{u_{C_{i}}(x)}{\int \pi(dy) u_{C_{i}}(y)} \quad \text{if } z \in C_{i}$$

$$= \frac{g(x,z)}{\int \pi(dy) g(y,z)} \quad \text{if } z \in D \cap \left[\bigcup_{n=1}^{\infty} \operatorname{supp} \pi P^{n}\right].$$

We shall define kernel K(x,z) by

(3.2)
$$K(x,z) = \lim_{N \to \infty} \frac{\sum_{n=1}^{N} p^{n}(x,z)}{\int \pi(dy) \sum_{n=1}^{N} p^{n}(y,z)}.$$

This kernel shall be used to obtain the exit boundary of P.

Because of the existence of invariant measures for conservative λ -continuous Markov operators we are able to derive the following theorem.

THEOREM 3.2. Let P be a λ -continuous Markov operator, C_i , an atom of \mathscr{C} , μ a P-invariant measure which is equivalent to λI_{C_i} and $f = d\mu/d\lambda$; then for $(\lambda \times \lambda \times \lambda)$ almost all $(x, y, z) \in C_i \times C_i \times C_i$,

(3.3)
$$\lim_{N \to \infty} \frac{\sum_{n=1}^{N} p^{n}(z, x)}{\sum_{n=1}^{N} p^{n}(z, y)} = \frac{f(x)}{f(y)}.$$

Proof. It is sufficient to prove the theorem for P being conservative and ergodic and $C_i = X$. We shall define another λ -continuous Markov Q which we shall call the μ -reverse of P (or just the reverse of P for in this case a P-excessive measure is essentially unique). For any $g \in L_{\infty}(\lambda)$ define Qg to be a function satisfying the following equality for every $h \in L_1(\mu)$:

$$\int h(Qg)d\mu = \int (Ph)gd\mu.$$

In other words, if $dv = gd\mu$, Qg is defined by $dvP = Qgd\mu$. The P-invariance

and λ -equivalence of μ imply that Q is a well-defined λ -measurable Markov operator (cf. Appendix). This Q has been called an "inverse" by S. Kakutani and " μ -adjoint" by J. Feldman. It follows from Theorem 3.1 [5] that Q is conservative. Q is also ergodic (Appendix, Lemma 6.2). Since P is λ -continuous, Q is also λ -continuous with density function q(x, y):

(3.4)
$$q(x,y) = f(y) p(y,x) \frac{1}{f(x)}.$$

The iterates $q^{(n)}(x, y)$ are given by

(3.5)
$$q^{n}(x,y) = f(y) p^{(n)}(y,x) \frac{1}{f(x)}.$$

Applying (3.1) to q(x, y) we have for $(\lambda \times \lambda \times \lambda)$ almost all (x, y, z),

$$1 = \lim_{N \to \infty} \frac{\sum_{n=1}^{N} q^{n}(x, z)}{\sum_{n=1}^{N} q^{n}(y, z)}$$
$$= \lim_{N \to \infty} \frac{\sum_{n=1}^{N} p^{(n)}(z, x)}{\sum_{n=1}^{N} p^{(n)}(z, y)} \qquad \frac{f(y)}{f(x)}$$

and (3.3) follows immediately.

COROLLARY 3.1. Let P be λ -continuous, conservative and ergodic. Let μ be P-invariant and $f = d\mu/d\lambda$. If μ is finite and normalized to be a probability measure then for $(\lambda \times \lambda)$ almost all (x, y),

(3.6)
$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} p^{(n)}(x, y) = f(y),$$

and for (λ) almost all x,

(3.7)
$$\lim_{N\to\infty} \int \left| \frac{1}{N} \sum_{n=1}^{N} p^n(x,y) - f(y) \right| \lambda(dy) = 0.$$

If μ is not finite then for $(\lambda \times \lambda)$ almost all (x, y)

(3.8)
$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} p^{(n)}(x, y) = 0.$$

Proof. If μ is a probability measure, Theorem 3.1 implies that

$$\lim_{N \to \infty} \frac{\sum_{n=1}^{N} p^{(n)}(x, y)}{N f(y)} = 1,$$

hence (3.6) follows immediately. Since $p^n(x, y)$ are non-negative and

$$\int N^{-1} \left[\sum_{n=1}^{N} p^{n}(x,y) \right] \lambda(dy) = \int f(y) \lambda(dy),$$

(3.6) implies (3.7). If μ is not finite there is an increasing sequence $\{E_n\}$ of sets such that $\bigcup_n E_n = X$ and $\mu(E_n) < \infty$ for every n. The general ergodic theorem implies that for $(\lambda \times \lambda)$ almost all (x, y),

(3.9)
$$\lim_{N \to \infty} \sum_{n=1}^{N} p^{n}(x, y) \left| \sum_{n=1}^{N} \frac{d\mu I_{E_{k}} P^{n}}{d\lambda}(y) = \frac{1}{\mu(E_{k})}.$$

Now for each n, k, $\mu I_{E_k} P^n \le \mu$. Hence every term in the summation appearing as the denominator of the left-hand side of (3.9) is $\le f(y)$. Hence

$$\liminf_{N\to\infty} \frac{\sum_{n=1}^{N} p^{n}(x,y)}{Nf(y)} \leq \frac{1}{\mu(E_{k})}.$$

Since $\mu(E_k) \to \infty$, it follows that

$$\lim_{N \to \infty} \frac{\sum_{n=1}^{N} p^{(n)}(x, y)}{Nf(y)} = 0$$

and (3.8) is proved.

The following theorem follows immediately from Theorem 6.5 cf Appendix.

THEOREM 3.3. Let P be λ -continuous and conservative and C_1, C_2, \cdots are the atoms of C. Let μ be an invariant measure which is equivalent to λ and $\mu_i = \mu I_{C_i}$. Then if $f, g \in \bigcap_i L_1(\mu_i), g > 0$ a.e. (λ) then there exists limit

$$\lim_{N\to\infty} \frac{\sum_{n=1}^{N} P^{n} f}{\sum_{i=1}^{N} P^{n} g} = \sum_{i=1}^{n} \frac{a_{i}}{b_{i}} 1_{C_{i}} \quad a.e. \quad (\lambda),$$

where $a_i = \int f d\mu_i$, $b_i = \int h d\mu_i$. The limit is independent of particular μ chosen. Furthermore there exists

$$\lim_{N\to\infty}\frac{1}{N}\left(\sum_{n=1}^{N}P^{n}f\right)=\sum a'_{i}1_{C_{i}} a.e.(\lambda),$$

where

$$a'_i = a_i/\mu_i(C_i)$$
 if $\mu(C_i) < \infty$,
 $a'_i = 0$ if $\mu(C_i) = \infty$.

Again the limit is independent of the particular μ chosen.

IV. Laws of large numbers. In this section we shall assume that $\int p(x,y)\lambda(dy)$ = 1 for (λ) almost all x.

A function $\mathcal{P}(x, E)$, $x \in X$, $E \in \mathcal{F}$ is defined in the following manner. If $E = [X_0 \in A_0, \dots, X_n \in A_n]$ where $A_i \in \mathcal{X}$,

$$(4.1) \ \mathscr{P}(x,E) = \int_{A_0} \lambda(dx_0) \int_{A_1} \lambda(dx_1) \cdots \int_{A_n} \lambda(dx_n) \, p(x,x_0) \, p(x_0,x_1) \cdots p(x_{n-1},x_n).$$

Then the definition of $\mathscr{P}(x, E)$ is extended to arbitrary $E \in \mathscr{F}$ by a well-known measure extension argument. We have that for (λ) almost all_i $x \mathscr{P}(x, \cdot)$ is a probability measure on \mathscr{F} and for every $E \in \mathscr{F} \mathscr{P}(\cdot, E)$ is \mathscr{X} -measurable. For a real valued, bounded or non-negative \mathscr{F} -measurable function f we define

(4.2)
$$\mathscr{P}\mathbf{f} = \int \mathscr{P}(\cdot, dw')\mathbf{f}(\cdot, w').$$

In the above we write $w = \{x_0, x_1, \dots\}$ as a pair (x_0, w') where w' = Tw. $\mathscr{P}f$ is \mathscr{X} -measurable and

$$\mathscr{P}T^{n}f = P^{n}\mathscr{P}f.$$

(4.3) may be first proved for f being of the form 1_E where $E = [X_0 \in A_0, \dots, X_n \in A_n]$ and then extended to arbitrary f. If f is of the form $f(X_n)$ with f being \mathcal{X} -measurable then $\mathcal{P}f(X_n) = Pf$. For any measure η absolutely continuous with respect to λ , a measure η is defined on \mathcal{F} by letting

(4.4)
$$\langle \eta, f \rangle = \langle \eta, \mathscr{P} f \rangle = \int \eta(dx) \int \mathscr{P}(x, dw') f(x, w')$$

for every non-negative \mathscr{F} -measurable function f. η is σ -finite. Since $\langle \eta, f \rangle = 0$ if and only if $\mathscr{F} f = 0$ a.e. (η) , $\langle \lambda, f \rangle = 0$ implies that $\langle \eta, f \rangle = 0$ so that η is absolutely continuous with respect to λ . Since

$$\langle \lambda T, f \rangle = \langle \lambda, Tf \rangle = \langle \lambda, \mathscr{P} Tf \rangle = \langle \lambda, P \mathscr{P} f \rangle = \langle \lambda P, \mathscr{P} f \rangle$$

and since λP is absolutely continuous with respect to λ , λT is absolutely continuous with respect to λ . Hence T is a λ -measurable Markov operator acting on $(\Omega, \mathcal{F}, \lambda)$ and the theory of λ -measurable Markov operator is applicable.

We shall begin with the ergodic decomposition of Ω for T. In the following all subsets of Ω are understood to be \mathscr{F} -measurable sets and two sets are equal if they are equal modulo λ -null sets.

LEMMA 4.1. Let $X = C \cup D$ be the ergodic decomposition of X for P; then $C = \prod_{n=0}^{\infty} C$ is the conservative part of Ω for T and $\Omega - C$ is the dissipative part of Ω .

Proof. To show that C is T-conservative we shall show that, for every T-transient set E, $\lambda(E \cap C) = 0$. If E is T-transient then there is a number c for which $\sum_{n=0}^{\infty} T^n 1_E \leq c$ a.e. (λ) . Let $f = \mathcal{P}1_E$. Then $P^n f = \mathcal{P}T 1_E$ so that $\sum_{n=0}^{\infty} P^n f = \mathcal{P}(\sum_{n=0}^{\infty} T^n 1_E) \leq c$ a.e. (λ) . Hence f = 0 a.e. (λ) on C. Now

$$\lambda(E \cap C) = \int_C \mathscr{P} 1_{E \cap C} d\lambda \leq \int_C \mathscr{P} 1_E d\lambda = 0.$$

To show that $\Omega - C$ is T-dissipative it is sufficient to show that the set $[X_n \in D]$ is dissipative for $n = 0, 1, 2, \cdots$. Let A be P-transient (therefore $A \subset D$) then $\sum_{n=0}^{\infty} P^n 1_A \leq d$ a.e. (λ) for some number d. Let η be a finite measure equivalent to λ . Then η is equivalent to λ . Now

$$\left\langle \eta, \sum_{k=0}^{\infty} T^{k} 1_{\left[X_{n} \in A\right]} \right\rangle = \left\langle \eta, \sum_{k=0}^{\infty} P^{k+n} 1_{A} \right\rangle < \infty.$$

Hence $\sum_{k=0}^{\infty} T^k 1_{[X_n \in A]} < \infty$ a.e. (λ) . It follows from Theorem 2.1 [5] that $[X_n \in A]$ is T-dissipative. Since D is a countable union of P-transient sets, $[X_n \in D]$ is T-dissipative.

We shall designate by Γ the collection of **T**-closed subsets of C.

LEMMA 4.2. Let P be conservative. Then T is also conservative. If a non-negative function f is P-invariant $(f = Pf \ a.e. \ (\lambda))$ then $f(X_n)$ is T-invariant $(f(X_n) = f(X_{n+1}) \ a.e. \ (\lambda))$. Conversely if a non-negative function g on Ω is T-invariant then there is a P-invariant function f such that $g = f(X_n) \ a.e. \ (\lambda)$.

Proof. If a P-invariant function f is of the form 1_A with $A \in \mathcal{C}$ then

$$\mathscr{P}1_{A}(X_{n})\cdot 1_{A}(X_{n+1}) = P^{n}I_{A}P1_{A} = P^{n}1_{A} = 1_{A} = P^{n+1}1_{A}.$$

Since $\mathcal{P}1_A(X_n) = P^n1_A$ and $\mathcal{P}1_A(X_{n+1}) = P^{n+1}1_A$ we have

$$\lambda [1_A(X_n) \neq 1_A(X_n) \cdot 1_A(X_{n+1})] = \lambda [1_A(X_{n+1}) \neq 1_A(X_n) \cdot 1_A(X_{n+1})] = 0.$$

Hence $1_A(X_n) = 1_A(X_{n+1})$ a.e. (λ) . In general f may be approximated from below by linear combinations of functions of the form 1_A . $f(X_n) = f(X_{n+1})$ a.e. (λ) is obtained by the usual limiting process.

Conversely if a bounded function g is T-invariant and $f = \mathcal{P}g$ then f is P-invariant. By the Martingale convergence theorem $\{f(X_n)\}$ converges a.e. (λ) to g

(cf. the proof of Theorem 1.1 on p. 460, [3]). Since $f(X_n) = f(X_0)$ a.e. (λ) , $g = f(X_n)$ a.e. (λ) . It follows that every set E in Γ is of the form $[X_n \in A]$ where $A \in \mathcal{C}$. Since every non-negative T-invariant function g is Γ -measurable, g is of the form $f(X_n)$ where f is \mathcal{C} -measurable.

COROLLARY 4.1. A set E belongs to Γ if and only if E is of the form $[X_0 \in A]$ for some $A \in \mathcal{C}$.

LEMMA 4.3. If a measure μ on \mathcal{X} is P-invariant (P-excessive) then μ on \mathcal{F} is T-invariant (T-excessive).

Proof. The lemma follows from the following equalities:

$$\mu(E) = \langle \mu, \mathcal{P}1_E \rangle \leq \langle \mu P, \mathcal{P}1_E \rangle = \langle \mu, P \mathcal{P}1_E \rangle$$
$$= \langle \mu, \mathcal{P}T1_E \rangle = \langle \mu, T1_E \rangle = \langle \mu, T1_E \rangle$$
$$= \mu T(E).$$

Theorem 4.1. Let P be λ -continuous, C_1, C_2, \cdots , atoms of the σ -algebra $\mathscr C$ of P-closed subsets of C and μ_1, μ_2, \cdots , the P-invariant measures equivalent to $\lambda I_{C_1}, \lambda I_{C_2}, \cdots$ respectively. Then the σ -algebra Γ of T-closed subsets of C is also purely atomic with atoms C_1, C_2, \cdots where $C_i = [X_0 \in C_i]$. Each μ_i is T-invariant and equivalent to λI_{C_i} .

Proof. By Corollary 4.1, $\mathscr C$ and Γ are isomorphic. Since $\mathscr C$ is purely atomic, Γ is purely atomic with atoms $[X_0 \in C_i]$, $i = 1, 2, \cdots$. By Lemma 4.3, μ_i is *T*-invariant. μ_i is equivalent to λI_{C_i} since μ_i is equivalent to λI_{C_i} .

THEOREM 4.2. Let P be λ -continuous and μ_1, μ_2, \cdots be T-invariant measures of Theorem 4.1. Let $E_i = \bigcup_{n=0}^{\infty} [X_n \in C_i]$. If f, g are μ_i -integrable functions with $g \ge 0$, $\int g d\mu_i > 0$ then

(4.4)
$$\lim_{N\to\infty} \frac{\sum_{n=0}^{N} T^{n} f}{\sum_{n=0}^{N} T^{n} g} = \frac{\int f d\mu_{i}}{\int g d\mu_{i}} \quad a.e. (\lambda) \text{ on } E_{i}.$$

The above limit is independent of the particular T-invariant, λI_{C_i} equivalent measure μ_i chosen. Furthermore

(4.5)
$$\lim_{N\to\infty} N^{-1} \left(\sum_{n=0}^{N} T^n f \right) = \int f d\mu_i / \mu_i(C_i) \text{ a.e. } (\lambda) \text{ on } E_i$$

(the right-hand side of (4.5) is interpreted to be 0 if $\mu_i(C_i) = \infty$).

Proof. Since C_i is an atom of Γ and μ_i is a *T*-invariant measure with support C_i , (4.4) is true a.e. (λ) on C_i by Theorem 6.5 of Appendix. Let

$$F = \left[w: \lim_{N \to \infty} \frac{\sum_{n=0}^{N} T^{n} f(w)}{\sum_{n=0}^{N} T^{n} g(w)} = \frac{\int f d\mu_{i}}{\int g d\mu_{i}} \right].$$

Then $\mathcal{P}1_{F\cap C_i}=1$ a.e. (λ) on C_i . Let $E^k=[X_0\notin C_i,\cdots,X_{k-1}\notin C_i,X_k\in C_i]$. To show that (4.4) is also true a.e. (λ) on E_i-C_i it is sufficient to show $\lambda(E^k-E^k\cap F)=0$ for $k=1,2,\cdots$. We shall show this by showing $\mathcal{P}1_{E^k}=\mathcal{P}1_{E^k\cap F}$ a.e. (λ) . It is clear that $1_{E^k\cap F}(w)=1_{E^k}(w)\cdot 1_{E\cap C_i}(T^{k+1}w)$. Hence for (λ) almost all x,

$$\begin{split} \mathscr{P}1_{E^k \cap F}(x) &= 1_{X - C_i}(x) \quad \int_{X - C_i} \cdots \int_{C_i} p(x, y_1) \cdots p(y_{k-1}, y_k) \lambda(dy_1) \cdots \lambda(dy_k) \mathscr{P}1_{F \cap C_i}(y_k) \\ &= 1_{X - C_i}) \quad \int_{X - C_i} \cdots \int_{C_i} p(x, y_1) \cdots p(y_{k-1}, y_k) \lambda(dy_1) \cdots \lambda(dy_k) \\ &= \mathscr{P}1_{E_k}(x). \end{split}$$

Any *T*-invariant λI_{Ci} equivalent measure is a constant multiple of μ_i . Hence the limit is independent of the particular μ_i chosen. If $\mu_i(C_i) < \infty$ and g is chosen to equal to 1 on C_i then (4.4) becomes (4.5). If $\mu(C_i) = \infty$ we may choose a monotone nondecreasing sequence $\{g_k\}$ such that $0 \le g_k \le 1$, $\int g_k d\mu_i < \infty$, $g_k \uparrow 1$ a.e. (λ); then

$$\limsup_{N\to\infty} \frac{\sum\limits_{n=0}^{N} T^{n}f}{N} \leq \lim_{N\to\infty} \frac{\sum\limits_{n=0}^{N} T^{n}f}{\sum\limits_{n=0}^{N} T^{n}g_{k}} = \frac{\int fd\mu_{i}}{\int g_{k}d\mu_{i}} \text{ a.e. } (\lambda) \text{ on } E_{i}.$$

Since $\int g_k d\mu_i \uparrow \infty$ as $k \to \infty$, $\lim_{N \to \infty} N^{-1} \sum_{n=0}^N T^n f = 0$ a.e. (λ) on E_i .

THEOREM 4.3. Let $D = \bigcap_{n=0}^{\infty} [X_n \in D]$ and $\eta \in \mathscr{A}^+(\lambda)$. Let η be defined by (4.4) and $\mu = \sum_{n=0}^{\infty} \eta I_D T^n$. Then μ is T-excessive and $\sum_{n=0}^{\infty} T^n f$ converges a.e. (λ) on D for every μ -integrable function f.

Proof. It is clear that **D** is **T**-closed and dissipative. μ is σ -finite with **D** as its support. The convergence of $\sum_{n=0}^{\infty} T^n f$ then follows from Theorem 6.5 of Appendix.

The following corollaries are special cases of Theorem 4.2 and Theorem 4.3.

COROLLARY 4.2. Let C_i be an atom of $\mathscr C$ and μ_i a P-invariant measure equivalent to λI_{C_i} . If f,g are μ_i -integrable functions with $g \ge 0$, $\int g d\mu_i > 0$ then

$$\lim_{N\to\infty}\frac{f(X_1)+\cdots+f(X_N)}{g(X_1)+\cdots+g(X_n)}=\frac{\int fd\mu_i}{\int gd\mu_i}\quad a.e.\ (\lambda)\ on\ E_i,$$

where $E_i = \bigcup_{n=0}^{\infty} [X_n \in C_i]$ and

$$\lim_{N\to\infty}\frac{f(X_1)+\cdots+f(X_n)}{N}=\frac{\int fd\mu_i}{\mu_i(C_i)} \ a.e. \ (\lambda) \ on \ E_i,$$

where $1/\infty$ is 0.

COROLLARY 4.3. Under the same assumption as in Theorem 4.3 if f is a function on X and $g = \mathcal{P}1_D$ and if fg is integrable with respect to $\sum_{n=0}^{\infty} \eta I_D (PI_D)^n$ then $\sum_{n=0}^{\infty} f(X_n)$ converges a.e. (λ) on D.

Proof. We only need to point out that $\int f(X_0)d\mu = \int fgd(\sum_{n=0}^{\infty} \eta I_D(PI_D)^n)$. Then the corollary follows immediately from Theorem 4.3.

V. Martin boundaries. Let π be a finite measure equivalent to λ which is fixed all through this section and h, a P-excessive π -integrable function. Let measure π_h , λ_h be defined by $\pi_h(A) = \int_A h d\pi$, $\lambda_h(A) = \int_A h d\lambda$. π_h is finite and λ_h is σ -finite. Let P_h be given by (1.8), (1.9). P_h is a λ_h -continuous Markov operator of which p_h of (1.7) is the density with respect to λ_h . Let the kernel K(x,y) be given by (3.2). We shall construct measures on the product σ -algebra $\mathscr F$ of subsets of the product space Ω as in §IV. However in this section the component spaces of Ω will be $X \cup [\rho]$. ρ is usually called an "absorbing state." An element w of Ω is a sequence $\{x_0, x_1, x_2, \cdots\}$ with x_n being elements of X or equal to ρ . X_n shall be the function on Ω to $X \cup [\rho]$ defined by $X_n(w) = x_n$ if $w = \{x_0, x_1, x_2, \cdots\}$. For a π -integrable P-excessive function h a function $\mathscr P_h(x, E)$ ($x \in X$, $x \in \mathscr F$) is defined as follows. If $x \in X$ function $x \in X$, let

$$\mathscr{P}_h(x,E) = \int_{A_0} \lambda_h(dx_0) \int_{A_1} \lambda_h(dx_1) \cdots \int_{A_n} \lambda_h(dx_n) p_h(x,x_0) p_h(x_0,x_1) \cdots p_h(x_{n-1},x_n).$$

If $E \in \mathscr{F}$ and is of the form $\Omega - E$ we let $\mathscr{P}_h(x,F) = 1 - \mathscr{P}_h(x,E)$. Then the definition of $\mathscr{P}_h(x,E)$ is extended to arbitrary $E \in \mathscr{F}$ by the usual measure extension argument. Measure π_h on \mathscr{F} is defined by

(5.1)
$$\pi_h(E) = \int_{A \cap Y} \pi_h(dx_0) \mathscr{P}(x_0, E_1)$$

if E is of the form $[X_0 \in A, \{X_1, X_2, \dots\} \in E_1]$. Then the definition is again extended to arbitrary E. π_h is a finite measure on \mathscr{F} .

THEOREM 5.1. Let h be P-excessive and π -integrable. Let π_h be defined by (5.1) and

$$K(x, X_n(w)) = K(x, y) \text{ if } X_n(w) = y \in X,$$

= 0 \text{ if } X_n(w) = \rho.

Then $\{K(x,X_n(w))\}$ converges for $(\lambda \times \pi_h)$ almost all (x,w). (Note that $\pi_h\{X_n \in D \cap [\bigcup_{n=1}^\infty \operatorname{supp} \pi P^n]\} = 0$ for $n \ge 1$. Hence $K(x,X_n(w))$ are well defined a.e. $(\lambda \times \pi_h)$ for $n \ge 1$.)

Proof. If $X_n(w)$ are in C for $n \ge 1$ the convergence of $K(x, X_n(w))$ is obvious since $K(x, \cdot)$ is constant on every C_i and C, C_i are also P_n -closed. Since $K(x, y)1_D(y)$ is the kernel for operator PI_D it is sufficient to prove the theorem for a dissipative P.

Let $\mu = \sum_{n=1}^{\infty} \pi P^n$. μ is a σ -finite, P-excessive measure. Let $f = d\mu/d\lambda$; then $f(y) = \int \pi(dx) g(x, y)$ where g(x, y) is given by (1.6). Let

$$q^{n}(y,x) = f(x)p^{n}(x,y)/f(y).$$

Then we may define a μ -continuous Markov operator Q with q(x, y) as its density function with respect to μ . Q is actually the μ -reverse of P (cf. Appendix). Since P is dissipative so is Q. Hence for any finite measure ν absolutely continuous with respect to μ , $\int \nu(dy) \sum_{n=1}^{\infty} q^n(y,x)$ is finite for (μ) almost all x. Since

$$\sum_{n=1}^{\infty} q^n(y,x) = f(x) g(x,y) / f(y) = f(x) K(x,y),$$

hence $\int v(dy) K(x, y) < \infty$ for (μ) almost all x.

Let a, b be two real numbers with $0 \le a < b$. Let $\beta(w)$ be the number of down crossings of [a, b] by the sequence $K(x, X_1(w)), K(x, X_2(w)), \cdots$. Now we shall proceed to prove the theorem by showing that for (μ) almost all x, $\beta(w)\pi_h(dw) < \infty$.

Since P_h is also dissipative there is a monotone nondecreasing sequence of transient sets E of which the union is X. Let

$$\Omega_E = [w: X_n(w) \in E \text{ for some } n > 0],$$

$$\tau_E(w) = \sup[n: X_n(w) \in E] \text{ if } w \in \Omega_E$$

$$= 0 \text{ otherwise.}$$

 τ_E is finite valued a.e. (π_h) . Let

$$L_{E}(x) = \mathscr{P}_{h}\left(x, \bigcap_{n=1}^{\infty} X_{n} \notin E\right) \text{ if } x \in E$$

= 0 otherwise.

On Ω_E define functions Y_0, Y_1, Y_2, \cdots with values in $X \cup [\rho]$ as follows:

$$Y_0(w) = X_{\tau_E(w)}(w),$$

$$Y_1(w) = X_{\tau_E(w)-1}(w) \text{ if } \tau_E(w) \ge 2$$

$$= \rho \text{ otherwise,}$$

Let $A_0, \dots, A_n \in X$. We shall compute the following measure:

$$\pi_{h}[Y_{0} \in A_{0}, Y_{1} \in A_{1}, \cdots, Y_{n} \in A_{n}]$$

$$= \sum_{m=n+1}^{\infty} \pi_{h}[X_{m-n} \in A_{n}, X_{m-n-1} \in A_{n-1}, \cdots, X_{0} \in A_{0}] \cap [\tau_{E} = m]$$

$$= \sum_{m=n+1}^{\infty} \int_{A_{n}} \pi P^{m-n}(dy_{n}) \int_{A_{n-1}} \lambda(dy_{n-1}) \cdots \int_{A_{0}} \lambda(dy_{0}) p(y_{n}, y_{n-1}) \cdots \cdots p(y_{1}, y_{0}) h(y_{0}) L_{E}(y_{0})$$

$$(5.3) = \int_{A_{n}} \mu(dy_{n}) \int_{A_{n-1}} \lambda(dy_{n-1}) \cdots \int_{A_{0}} \lambda(dy_{0}) p(y_{n}, y_{n-1}) \cdots p(y_{1}, y_{0}) h(y_{0}) L_{E}(y_{0})$$

$$= \int_{A_{n}} \mu(dy_{n}) \int_{A_{n-1}} \lambda(dy_{n-1}) \cdots \int_{A_{0}} \lambda(dy_{0}) q(y_{n-1}, y_{n}) \cdots q(y_{0}, y_{1}) f(y_{0}) h(y_{0}) L_{E}(y_{0})$$

$$= \int_{A_{n}} f(y_{0}) h(y_{0}) L_{E}(y_{0}) \lambda(dy_{0}) \int_{A_{n}} \lambda(dy_{1}) \cdots \int_{A_{n}} \lambda(dy_{n}) q(y_{0}, y_{1}) \cdots q(y_{n-1}, y_{n}).$$

Let $\eta_E(A) = \pi_h[Y_0 \in A]$. η_E is the distribution of Y_0 . η_E has density function $f(y_0)h(y_0)L_E(y_0)$ with respect to λ . The collection of x for which $\int \eta_E(dy)K(x,y) = \infty$ for some E in the sequence is a μ -null set. Let x belong to the complement of this μ -null set. Then $\int K(x,Y_0)d\pi_h < \infty$. Let

$$\beta_E(w) = \text{ the number of down crossings of } [a, b]$$

$$\text{by } K(x, X_1(w)), \dots, K(x, X_{\tau_E}(w)) \text{ if } W \in \Omega_E,$$

$$= 0 \text{ otherwise.}$$

Then $\beta_E(w)$ is also the number of up crossings of [a,b] by $K(x,Y_0(w))$, $K(x,Y_1(w)),\cdots$. Since $K(x,\cdot)$ is a Q-potential, (5.3) implies that $K(x,Y_n)$ is a supermartingale and $\int K(x,Y_n)d\pi_h \downarrow 0$. It follows from a well-known inequality of Doob [3, p. 316, Theorem 3.3] that $E[\beta_E] \leq b/(b-a)\pi_h(\Omega_E)$. $\int \beta_E d\pi_h \uparrow \int \beta d\pi_h$ as $E \uparrow X$. Hence $\int \beta d\pi_h \leq b/(b-a)$ and the theorem is proved.

The kernel K(x,y) has the property that for (λ) almost all $y \in \bigcup_{n=1}^{\infty} \operatorname{supp} \pi P^n$, $K(\cdot,y)$ is an element of $L_1(\pi)$ with L_1 norm = 1. For an element ϕ of $L_{\infty}(\pi)$ define

(5.4)
$$l_{\phi}(y) = \int \phi(x) K(x, y) \pi d(x).$$

COROLLARY 5.1. Let h be P-excessive and π -integrable. Let $\phi \in L_{\infty}(\pi)$ and $l_{\phi}(y)$ be defined by (5.4) and $l_{\phi}(\rho) = 0$. Then $\{l_{\phi}(X_n)^k\}$ converges a.e. (π_h) and also in $L_1(\pi_h)$ for every positive integer k. Furthermore, if P is dissipative, E is transient and $E \uparrow X$ and τ_E be defined by (5.2), then $\{l_{\phi}(X_{\tau_E})^k\}$ converges a.e. (π_h) and also in $L_1(\pi_h)$ as $E \uparrow X$ where the value of $l_{\phi}(X_{\tau_E})$ is taken to be 0 if

 $w \notin \Omega_E$. The limit is independent of the particular sequence of transient sets E chosen.

Proof. It is sufficient to prove the corollary for a non-negative ϕ . For the a.e. (π_h) -convergence of $\{l_\phi(X_n)\}$ the same proof of Theorem 5.1 goes through since l_ϕ is a Q-potential if P is dissipative. Let $\tau(w) = \lim \tau_E(w)$ as $E \uparrow X$. If $\tau(w)$ is finite the convergence of $l_\phi(X_{\tau_E(w)})^k$ is trivial and the limit is $l_\phi(X_{\tau(w)}(w))^k$. If $\tau(w) = \infty$, $l_\phi(X_{\tau_E(w)}(w))^k$ is a subsequence of $l_\phi(X_n(w))^k$, therefore, its convergence follows from the convergence of $l_\phi(X_n(w))^k$ and both sequences have the same limit. The $L_1(\pi_h)$ -convergence follows from the fact that $|l_\phi(y)| \leq ||\phi||_\infty$.

For the rest of this section we shall assume that $X = \bigcup_{n=1}^{\infty} \operatorname{supp} \pi P^n$. We shall also assume that for every $y \in X$, $K(\cdot, y)$ is a non-negative element of $L_1(\pi)$ with L_1 norm 1. This may be accomplished by discarding a λ -null set. Consider the map T:

$$(5.5) T(y) = K(\cdot, y).$$

This is a map of X into $L_1(\pi)$. We shall consider $L_1(\pi)$ as a subset of its second dual. Let \widetilde{X} be the weak closure of the image of X under T. \widetilde{X} is a compact Hausdorff space under the weak topology.

LEMMA 5.1. Let $\widetilde{\mathcal{X}}$ be the σ -algebra of all Baire subsets of \widetilde{X} . Then T given by (5.5) is a measurable transformation of (X, \mathcal{X}) to $(\widetilde{X}, \widetilde{\mathcal{X}})$.

Proof. We shall use the symbol $\langle \tilde{y}, \phi \rangle$ for $\phi \in L_{\infty}(\pi), \tilde{y} \in \tilde{X}$ to denote the value of \tilde{y} at ϕ . To prove Lemma 5.1 we shall show that for every real valued continuous function f on \tilde{X} , fT is \mathscr{X} -measurable. We shall show this by two steps. First, we shall show that every real continuous function on \tilde{X} may be uniformly approximated by polynomials of functions of the type $\langle \cdot, \phi \rangle$. Second, we shall show that $\langle T(\cdot), \phi \rangle$ is \mathscr{X} -measurable for every $\phi \in L_{\infty}(\pi)$.

Let Λ be the collection of all functions on the unit ball S of $L_{\infty}(\pi)$ into the closed interval [-1,+1]. The topology on Λ shall be the Tychonoff topology. Then \widetilde{X} may be considered as a closed subset of Λ . For any $\eta \in \Lambda$, $\phi \in S$ we shall denote the value of η at ϕ by $\langle \eta, \phi \rangle$. The polynomials of functions of the type $\langle \cdot, \phi \rangle$ form a subalgebra of the algebra of all real valued continuous functions on Λ . This subalgebra separates points of Λ and contains the constant functions. By the Stone-Weierstrass theorem every continuous function on Λ may be uniformly approximated by elements of this subalgebra. Now every continuous real valued function on \widetilde{X} may be extended to be real continuous function on Λ . Hence the first step is finished. The \mathscr{X} -measurability of $\langle T(\cdot), \phi \rangle$ follows from the equality:

$$\langle T(\,\cdot\,),\phi\rangle = \int \pi(dx)\,\phi(x)\,K(x,\,\cdot\,).$$

THEOREM 5.2. For every non-negative P-invariant π -integrable function h there is a Baire measure \tilde{x} for which the following formula holds,

$$(5.6) h = \int \tilde{y}\tilde{\eta}(d\tilde{y}).$$

(5.6) is interpreted to be that for every $\phi \in L_{\infty}(\pi)$

$$\langle h, \phi \rangle = \int \langle \tilde{y}, \phi \rangle \tilde{\eta}(d\tilde{y}).$$

Proof. Let

$$\tilde{y}_{C_i} = \frac{u_{C_i}}{\int \pi(dy) u_{C_i}(y)}.$$

 \tilde{y}_{C_i} is then the image of all points y in C_i under the transformation T. If h is of the form $\sum a_i u_{C_i}$, then $\tilde{\eta}$ in (5.6) is atomic which assigns measure $a_i \int \pi(dy) u_{C_i}(y)$ to \tilde{y}_{C_i} and the formula is valid. In general if $h = a_i$ on C_i then $h - \sum a_i u_{C_i} = 0$ on C. $\sum a_i u_{C_i}$ is P-invariant and, by Theorem 6.2 of Appendix, is the smallest P-excessive function which is equal to h on C. Hence $h - \sum a_i u_{C_i} \ge 0$ and is P-invariant. Hence we only need to establish (4.4) for h which equals to 0 on C.

Since h=0 on C, we may replace P by PI_D . In other words we may assume P to be dissipative. Then P_h is also dissipative. Let E be P_h -transient and $E \uparrow X$. Let τ_E be defined by (5.2). Let us consider X_{τ_E} to be defined on Ω_E and η_E to be its distribution. Let $\widetilde{X}_E = TX_{\tau_E}$ and $\widetilde{\eta}_E$ be its distribution. We shall show that $\widetilde{\eta}_E$ converges weakly, i.e., for every continuous function f on \widetilde{X} , $\int f d\widetilde{\eta}_E$ converges as $E \uparrow X$. Since $\{\widetilde{\eta}_E(\widetilde{X})\}$ is a bounded sequence, it is sufficient to show the convergence for f being a polynomial of functions of the form $\langle \cdot, \phi \rangle$ where $\phi \in L_\infty(\pi)$. It is clear that

$$\int (\langle \tilde{y}, \phi \rangle)^k \tilde{\eta}_E(d\tilde{y}) = \int_{\Omega_E} l_{\phi}(X_{\tau_E})^k d\pi_h$$

where l_{ϕ} is given by (5.4). The convergence of $\{\int (\langle \tilde{y}, \phi \rangle)^k \tilde{\eta}_E(d\tilde{y})\}$ is then a consequence of Corollary 5.1. Let $\tilde{\eta}$ be the limit measure of $\{\tilde{\eta}_E\}$.

Now we shall compute $\mathcal{P}_h(x, [X_{\tau_E} \in A, \tau_E > 0])$. For (π_h) almost all x

$$\begin{split} \mathscr{P}_{h}(x, [X_{\tau_{E}} \in A, \tau_{E} > 0]) &= \frac{1}{h(x)} \sum_{m=1}^{\infty} \int_{A} p^{(m)}(x, y) h(y) L_{E}(y) \lambda(dy) \\ &= \frac{1}{h(x)} \int_{A} g(x, y) h(y) L_{E}(y) \lambda(dy) \\ &= \frac{1}{h(x)} \int_{A} K(x, y) \eta_{E}(dy). \end{split}$$

Hence

$$\int \phi(x) h(x) \mathcal{P}_{h}(x, [\tau_{E} > 0]) \pi(dx) = \int \int \phi(x) K(x, y) \pi(dx) \eta_{E}(dy)$$

$$= \int \langle \tilde{y}, \phi \rangle \tilde{\eta}_{E}(d\tilde{y}).$$
(5.7)

Now $\mathscr{P}_h(x, [\tau_E > 0]) \ge \mathscr{P}_h(x, [X_1 \in E]) \uparrow 1$ a.e. (π_h) since h is P-invariant. (5.6) is then obtained by letting $E \uparrow X$ in (5.7).

VI. Appendix on λ -measurable Markov operators. Let λ be a σ -finite measure and $\mathscr{A}(\lambda)$ be the Banach space of the collection of all finite countably additive set functions which are absolutely continuous with respect to λ . Let $L_{\infty}(\lambda)$ be the dual of $\mathscr{A}(\lambda)$. Let $P: v \to vP$ be a positive linear operator and a contraction on $\mathscr{A}(\lambda)$ to $\mathscr{A}(\lambda)$. Let $P: f \to Pf$ acting on $L_{\infty}(\lambda)$ be its dual. Operator P on $L_{\infty}(\lambda)$ is characterized by (1) P is positive, (2) $P1 \le 1$, (3) $f_k \downarrow 0$ implies that $Pf_k \downarrow 0$. For an extended real valued non-negative function f which is not λ -essentially bounded Pf shall be the limit of Pf_n where $f_n \in L_{\infty}(\lambda)$, $f_n \uparrow f$. Similarly for any measure v absolutely continuous with respect to λ , vP shall be the limit of v_nP where $v_n \in \mathscr{A}(\lambda)$, $v_n \uparrow v$. $\langle v, f \rangle$ is to designate the integral $\int f dv$ whenever the latter is well defined. We have $\langle vP, f \rangle = \langle v, Pf \rangle$. We shall call P a λ -measurable Markov operator. An extended real valued non-negative function h is excessive if $Pf \subseteq f$, a potential if $P^n f \downarrow 0$. A σ -finite measure μ is excessive if $\mu P \subseteq P$, a potential if $d\mu P^n/d\lambda \downarrow 0$. It should be emphasized that for a λ -measurable Markov operator λ -null sets are irrelevant and $P \subseteq P$ mean $P \subseteq P$ and $P \subseteq P$ and $P \subseteq P$ is described by $P \subseteq P$.

For any set A, A' designates its complement. Let

$$P_A^* = \sum_{n=0}^{\infty} (I_{A'}P)^n, \quad P_A = \sum_{n=0}^{\infty} P(I_{A'}P)^n,$$

then $P_A = PP_A^{\#}$ and

$$(6.1) P_A^* I_A = I_A + I_{A'} P_A I_A.$$

LEMMA 6.1. If h is an excessive function and l is an excessive function which is $\geq h$ on A then $P_A^*I_Ah \leq l$. It follows that $P_A^*I_Ah \leq h$.

Proof. We need to show

(6.2)
$$\sum_{n=0}^{N} (I_{A'}P)^{n}I_{A}h \leq l$$

for $N=0,1,2,\cdots$. For N=0 (6.2) becomes $I_Ah \leq l$. Assume (6.2) to be true for N; then

$$P\sum_{n=0}^{N} (I_{A'}P)^{n}I_{A}h \leq Pl \leq l.$$

Hence

$$I_A h + I_{A'} P \sum_{n=0}^{N} (I_{A'} P)^n I_A h \le l$$
, i.e., $\sum_{n=0}^{N+1} (I_{A'} P)^n I_A h \le l$.

Theorem 6.1. $P_A^*I_A$ and P_AI_A are λ -measurable Markov operators.

Proof. We need to prove the theorem for $P_A^*I_A$ only. By Lemma 6.1, $P_A^*I_A 1 \le 1$. It follows that $f \in L_{\infty}(\lambda)$ implies that $P_A^*I_A f \in L_{\infty}(\lambda)$. Positivity of P_AI_A is obvious.

Let $f_k \in L_\infty(\lambda)$, $f_k \ge 0$, $f_k \downarrow 0$. The theorem is proved if we can show that $P_A^{\#}I_Af_k\downarrow 0$. We may assume $f_k \le 1$ for all k. Then

(6.3)
$$P_A^{\#} I_A f_k(x) \leq \sum_{n=0}^{N} (I_{A'} P)^n I_A f_k(x) + \sum_{n=N+1}^{\infty} (I_{A'} P)^n 1_A(x).$$

Let x be fixed. For any $\varepsilon > 0$ choose N so large that the second term at the right-hand side of (6.3) is $\leq \varepsilon/2$, then choose K so large that the first term at the right-hand side of (6.3) is $\leq \varepsilon/2$ whenever $k \geq K$. Then $P_A^{\#}I_Af_k(x) \leq \varepsilon$ whenever $k \geq K$ and the assertion that $P_A^{\#}I_Af_k \downarrow 0$ is proved.

THEOREM 6.2. If h is excessive then $P_A^*I_Ah$ is the smallest excessive function which is $\geq h$ on A.

Proof. We need only to prove that $P_A^*I_Ah$ is excessive. Then the rest of the theorem follows from Lemma 6.1. By Lemma 6.1, $P_A^*I_Ah \leq h$. Hence $P_AI_Ah \leq h$. By (6.1)

$$P_A^* I_A h = I_A h + I_A P_A I_A h \ge I_A P_A I_A h + I_A P_A I_A h = P_A I_A h = PP_A^* I_A h.$$

COROLLARY 6.1. If A is conservative then $P_A 1_A$ is an invariant function and is the smallest excessive function which is = 1 on A.

Proof. $P_A 1_A = P P_A I_A 1$. Hence $P_A 1_A$ is excessive and is $\leq P_A I_A 1$. However A being conservative implies $P_A 1_A = 1$ on A. Hence, by Theorem 6.2, $P_A 1_A 1 = P_A 1_A$. Hence $P_A 1_A$ is invariant and is the smallest excessive function = 1 on A.

A set A is said to be recurrent if $P_A 1_A = 1$ on A. A set B is conservative if every subset of B is recurrent. A set E is dissipative if every λ -non-null subset of E is not conservative. A set T is transient if there is a non-negative number q < 1 such that $P_T 1_T \le q$ on T. A subset of a transient set is transient.

THEOREM 6.3. Any dissipative set E is a union of at most countably many transient sets.

Proof. First we shall show that every λ -non-null nonrecurrent set A contains a λ -non-null transient set. The set $(P_A 1_A < 1) \cap A$ is λ -non-null, hence, there is a non-negative number q < 1 such that $T = (P_A 1_A \le q) \cap A$ is non-null. By Theorem 6.2, $P_T 1_T \le P_A 1_A$. Hence $P_T 1_T \le P_A 1_A \le q$ on T and T is transient.

If E is transient then there is nothing to prove. We assume that E is not transient. For every countable ordinal number $\alpha>0$ we shall define a transient subset T_{α} of E by transfinite induction. Since E is λ -non-null (because E is not transient) and dissipative, E contains a λ -non-null subset which is not recurrent. Hence E contains a λ -non-null transient set T_1 . Suppose T_{β} are defined for all $\beta<\alpha$. If $E-U_{\beta<\alpha}T_{\beta}$ is λ -null define T_{α} to be the null set. Otherwise $E-U_{\beta<\alpha}T_{\beta}$ contains a λ -non-null transient set T_{α} . There must be an α for which T_{α} is null. For, if not, E would contain uncountably many disjoint λ -non-null sets which is im-

possible. Let α_0 be the first ordinal number such that T_{α_0} is null. Then $E = U_{\alpha < \alpha_0} T_{\alpha}$ and the theorem is proved.

For any $v \in \mathcal{A}^+(\lambda)$ the support of v, supp v, is the set for which $A \subset \text{supp } v$ and A being λ -non-null imply that v(A) > 0, and $B \subset X - \text{supp } v$ implies that v(B) = 0. For any set A, we define the consequent of A, F(A) by

$$F(A) = \bigcup_{n=0}^{\infty} \operatorname{supp} v P^{n}$$

where $v \in \mathcal{A}^+(\lambda)$ has A as its support. The particular v chosen clearly does not matter. If A is recurrent then F(A) is the smallest closed set containing A.

THEOREM 6.4. If A is recurrent then for every $v \in \mathcal{A}^+(\lambda)$, vP_A is σ -finite on F(A). In particular, if P is conservative and ergodic, then vP_A is σ -finite for every non-null set A, and every $v \in \mathcal{A}^+(\lambda)$.

Proof. It is sufficient to prove that vP_A^* is σ -finite on F(A). Since $I_A P$ is a λ -measurable Markov operator and $P_A^* = \sum_{n=0}^{\infty} (I_A P)^n$ it is sufficient to show that F(A) is dissipative under the operator $I_A P$.

We shall first show that $P_A 1_A = 1$ on F(A). It follows that $P_A^* 1_A = 1$ on F(A) since $P_A^* 1_A$ is P-excessive (Theorem 6.2) and $P_A 1_A = P P_A^* 1_A$. Let $F_n(A) = \operatorname{supp} \eta P^n$ where η has A as its support. We shall show that $P_A 1_A = 1$ on $F_n(A)$ for $n = 0, 1, 2 \cdots$. By the definition of recurrency of A, $P_A 1_A = 1$ on $F_0(A) = A$. Assuming that $P_A 1_A = 1$ on $F_n(A)$ we proceed to show that $P_A 1_A = 1$ on $F_{n+1}(A)$.

$$\eta P^{n}(x) = \eta P^{n}(F_{n}(A)) = \langle \eta P^{n}, P_{A} 1_{A} \rangle
= \langle \eta P^{n}, P P_{A}^{*} 1_{A} \rangle = \langle \eta P^{n+1}, P_{A}^{*} 1_{A} \rangle
= \langle \eta P^{n+1}, 1_{A} \rangle + \langle P^{n+1}, I_{A} \cdot P_{A} 1_{A} \rangle
\leq \langle \eta P^{n+1}, 1_{A} \rangle + \langle \eta P^{n+1}, 1_{A} \cdot \rangle = \langle \eta P^{n+1}, 1 \rangle
= \eta P^{n+1}(X).$$

The fifth equality in (6.5) is owing to (6.1) and the inequality following it is owing to the fact $P_A 1_A \le 1$ (Lemma 6.1). Since $\eta P^n(X) \ge \eta P^{n+1}(X)$, equality holds all through (6.5). Hence

$$\langle \eta P^{n+1}, I_A, P_A 1_A \rangle = \langle \eta P^{n+1}, 1_A, \rangle$$

and $P_A 1_A = 1$ on supp $\eta P^{n+1} - A = F_{n+1}(A) - A$. Hence $P_A 1_A = 1$ on $F_{n+1}(A)$. Now we have the following equality:

$$P^{n} = \sum_{k=0}^{n-1} (I_{A} P)^{k} I_{A} P^{n-k} + (I_{A} P)^{n}.$$

Since F(A) is closed, for $v \in \mathcal{A}^+(\lambda)$ with supp $v \subset F(A)$, we have

$$v(F(A)) = vP^{n}(F(A)) = \langle vP^{n}, 1 \rangle$$

$$= \langle v \sum_{k=0}^{n-1} (I_{A} \cdot P)^{k} I_{A} P^{n-k}, 1 \rangle + \langle v(I_{A} \cdot P)^{n}, 1 \rangle$$

$$= \langle v \sum_{k=0}^{n-1} (I_{A} \cdot P)^{k} I_{A}, 1 \rangle + v(I_{A} \cdot P)^{n}(X)$$

$$= \langle v, \sum_{k=0}^{n-1} (I_{A} \cdot P)^{k} I_{A} \rangle + v(I_{A} \cdot P)^{n}(X).$$

Now

$$\lim_{n \to \infty} \sum_{k=0}^{n-1} (I_A \cdot P)^k 1_A = P_A^* 1_A = 1 \text{ on } F(S).$$

Hence

(6.6)
$$\lim_{n \to \infty} v(I_{A'}P)^n(X) = 0.$$

If F(A) were not dissipative under the operator $I_A P$ then F(A) would contain an $I_A P$ -recurrent set B. Let v have support B. Then $v(X) = v(I_A P)^n(X)$ for all positive integers n, which contradicts (5.6).

Let μ be a σ -finite excessive measure. Then, if ν is absolutely continuous to μ , so is νP . P acting on $\mathscr{A}(\mu)$ is a μ -measurable Markov operator which we shall designate by P_{μ} . Let $g \in L_{\infty}(\mu)$ with $L_{\infty}(\mu)$ norm $\|g\|$ and μ_g be defined by $\mu_g(A) = \int_A g d\mu$. $\mu_g P$ is σ -finite and absolutely continuous with respect to μ . Define

$$Qg = d\mu_{\rm g} P/d\mu.$$

Since $\pm \mu_g \le \|g\| \mu$, $\pm \mu_g P \le \|g\| \mu P \le \|g\| \mu$, hence $Qg \in L_{\infty}(\mu)$ with $\|Qg\| \le \|g\|$. Clearly $g_k \in L_{\infty}(\mu)$, $g_k \downarrow 0$ imply that $Qg_k \downarrow 0$, so that Q is a μ -measurable Markov operator. Q is characterized by the following equality:

whenever one side of (6.7) is well defined. J. Feldman showed that the space X has the same decomposition $X = C \cup D$ for Q as that of P although μ -null sets are irrelevant to Q [5, Theorem 3.1]. We shall call Q the μ -reverse of P. Since for $g \ge 0$

$$\langle \mu, Qg \rangle = \int 1 \cdot Qg d\mu = \int P1 \cdot g d\mu \leq \int g d\mu = \langle \mu, g \rangle,$$

 μ is also Q-excessive. The symmetric roles played by Q, P in (6.7) imply that P_{μ} is the μ -reverse of Q.

LEMMA 6.2. Let P be a conservative λ -measurable Markov operator which possesses an invariant measure μ . Let Q be its μ -reverse. If set A is P-closed then it is Q-closed. Conversely if A is a subset of the support of μ and A is Q-closed then it is P-closed.

Proof. We shall prove the lemma for the case that μ is equivalent to λ . Then, applying it to P_{μ} and noting that a subset of the support of μ is P-closed if and only if it is P_{μ} -closed, we obtain the assertion for the general case.

When μ is equivalent to λ the roles played by P,Q are symmetric. Hence we only need to prove the sufficiency part. Let S be Q-closed. Let f be non-negative, bounded, μ -integrable and [f>0]=S. Let μ_f be defined by $\mu_f(A)=\int_A f d\mu$. Then $S=\bigcup_{n=0}^\infty \sup \mu_f Q^n$. Now (6.7) implies that $d\mu_f Q^n/d\mu=P^nf$. Hence $S=\bigcup_{n=0}^\infty [P^nf>0]$. However $[P^nf>0]=[P^n1_S>0]$. Hence

$$S = \bigcup_{n=0}^{\infty} [P^{n}1_{S} > 0] = [P_{S}1_{S} > 0].$$

Now by Corollary 6.1, $P_S 1_S$ is *P*-invariant, therefore \mathscr{C} -measurable [7, Theorem 9.1]. Hence the set $[P_S 1_S > 0] = S$ is *P*-closed.

LEMMA 6.3. Let P possess an excessive measure μ and Q be its μ -reverse.

- 1. If h is a finite valued P-excessive function then the measure μ_h defined by $\mu_h(A) = \int_A h d\mu$ is Q-excessive. If, in addition, h is a P-potential then μ_h is a Q-potential.
- 2. If η is a P-excessive measure absolutely continuous with respect to μ then $d\eta/d\mu$ is Q-excessive. If, in addition, η is a P-potential then $d\eta/d\mu$ is a Q-potential.

Proof. For any non-negative function f, μ_f shall always denote the measure defined by $\mu_f(A) = \int_A f d\mu$. Now if $0 \le Ph \le h$, $g \ge 0$ then by (6.7)

$$\langle \mu_h Q^n, g \rangle = \langle \mu_h, Q^n g \rangle = \langle \mu_g, P^n h \rangle \leq \langle \mu_h, g \rangle.$$

Hence μ_h is Q-excessive. It is clear that $P^n h = d\mu_h Q^n/d\mu$ so that h being a P-potential implies that μ_h is a Q-potential. If η is a P-excessive measure absolutely continuous to μ , then, by (6.7), for $g \ge 0$

$$\langle \eta, P^n g \rangle = \langle \mu_{\sigma}, Q^n (d\eta/d\mu) \rangle.$$

However

$$\langle \mu_g, d\eta/d\mu \rangle = \langle \eta, g \rangle \ge \langle \eta P^n, g \rangle = \langle \mu_g, d\eta P^n/d\mu \rangle.$$

Hence

$$\langle \mu_g, d\eta/d\mu \rangle \ge \langle \mu_g, Q^n(d\eta/d\mu) \rangle,$$

 $Q^n(d\eta/d\mu) = d\eta P^n/d\mu$

and the conclusion 2 follows.

COROLLARY 6.2. If P is conservative and ergodic and if P possesses a nontrivial invariant measure μ then it is unique up to a constant multiple.

Proof. By Lemma 6.2, Q, the μ -reverse of P, is also ergodic. Hence the only Q-excessive functions are constants. If η is another P-invariant measure then $d\eta/d\mu$ is Q-excessive and is a constant by Lemma 6.3. Hence η is a constant multiple of μ .

THEOREM 6.5. If μ is a P-excessive measure and if f, $g \in L_1(\mu)$, g > 0 a.e. (μ) then $\sum_{n=1}^{\infty} P^n f$ converges a.e. (μ) on D and, on C, there exists

$$\lim_{N \to \infty} \frac{\sum_{n=1}^{N} P^{n} f}{\sum_{n=1}^{N} P^{n} g} = \frac{\bar{f}}{\bar{g}} \quad a.e. (\mu)$$

where \bar{f} , \bar{g} are *C*-measurable and satisfy

$$\int_{A} \bar{f} d\mu_{1} = \int_{A} f d\mu, \qquad \int_{A} \bar{g} d\mu_{1} = \int_{A} g d\mu$$

for every $A \in \mathscr{C}$ where μ_1 is a finite measure equivalent to μ .

Proof. Let Q be the μ -reverse of P. It follows from (6.7) that $d\mu_f Q^n/d\mu = P^n f$, $d\mu_g Q^n/d\mu = P^n g$. For Q, $\mathscr C$ is still the σ -algebra of conservative Q-closed sets by Lemma 6.2. The theorem is then obtained immediately by applying the general ratio ergodic theorem.

REFERENCES

- 1. R. V. Chacon and D. S. Ornstein, A general ergodic theorem, Illinois J. Math. 4 (1960), 153-160.
- 2. K. L. Chung, Markov chains with stationary transition probabilities, Springer-Verlag, Berlin, 1960.
 - 3. J. L. Doob, Stochastic processes, Wiley, New York, 1953.
 - 4. ——, Discrete potential theory and boundaries, J. Math. Mech. 8 (1959), 433-458.
- 5. Jacob Feldman, Subinvariant measures for Markoff operator, Duke Math. J. 29 (1962), 71-98.
- 6. T. E. Harris, *The existence of stationary measures for certain Markov processes*, Proc. Third Berkeley Sympos. Math. Statist. Prob., Vol. II, pp. 113-124, Univ. of California, Berkeley, Calif., 1956.
- 7. T. E. Harris and H. E. Robbins, Ergodic theory of Markov chains admitting an infinite invariant measure, Proc. Nat. Acad. Sci. U.S.A. 39 (1953), 860-864.
- 8. Eberhard Hopf, The general temporally discrete Markoff process, J. Rational Mech. Anal. 3 (1954), 13-45.
 - 9. G. A. Hunt, Markoff chains and Martin boundaries, Illinois J. Math. 4 (1956), 313-340.
- 10. Jacques Neveu, Sur le théorème ergodique ponctuel, C. R. Acad. Sci. Paris 252 (1961), 1554-1556.

SYRACUSE UNIVERSITY,
SYRACUSE, NEW YORK