TWO NOTES ON LOCALLY MACAULAY RINGS

BY LOUIS J. RATLIFF, JR.

1. Introduction. In this paper all rings are assumed to be commutative rings with a unit. The undefined terminology used in this paper (height, altitude, etc.) will be the same as that in [1]. Throughout this paper a number of known properties of locally Macaulay rings are stated, and then are used in the remainder of the paper without explicit mention.

In §2 it is proven that if R is a locally Macaulay ring and if (a_1, \dots, a_n) is a prime sequence in R, the kernel of the natural homomorphism from $P = R[X_1, \dots, X_{n-1}]$ onto $R' = R[a_2/a_1, \dots, a_n/a_1]$ is $(a_1X_1 - a_2, a_1X_2 - a_3, \dots, a_1X_{n-1} - a_n)P$ (Lemma 2.3). As a consequence, R' is a locally Macaulay ring and $(a_1, a_2/a_1, \dots, a_n/a_1)$ is a prime sequence in R' (Theorem 2.4). Further, if $R[X_1]$ is a Macaulay ring, then R' is a Macaulay ring (Theorem 2.8). An example is given to show that the converses are not in general true.

In §3 it is proven that, with the same R and a_i , the Rees ring $R^* = R[ta_1, \dots, ta_n, 1/t]$ (t an indeterminant) of R with respect to $A = (a_1, \dots, a_n)R$ is a locally Macaulay ring (a Macaulay ring if $R[X_1]$ is) and $(1/t, ta_1, \dots, ta_n)$ is a prime sequence in R^* (Theorems 3.1 and 3.3). A form of the converses of Theorems 3.1 and 3.3 is true (Theorem 3.8). Also, for every $e \ge 1$, $k \ge e$, and $i = 1, \dots, n$, $(a_1^e, a_2^e, \dots, a_i^e)A^{k-e} = (a_1^e, a_2^e, \dots, a_i^e) \cap A^k$ (Corollary 3.6). Further, for all $k \ge 1$, every prime divisor of A^k has height n, and $A^k : a_1R = A^{k-1}$ (Corollary 3.7). It is also proven that if the Rees ring R^* of a Noetherian ring R with respect to an ideal $A = (a_1, \dots, a_n)R$ is a locally Macaulay ring (a Macaulay ring), then $R' = R[a_1/a, \dots, a_n/a]$ is a locally Macaulay ring (a Macaulay ring) for every non-zero-divisor $a \in A$ (Corollary 3.9).

2. Transformations of locally Macaulay rings by a prime sequence.

LEMMA 2.1. Let R be a ring, let a, b be elements in R such that a is not a zero divisor, and let X be an indeterminant. If aR:bR=aR, then the kernel K of the natural homomorphism from R[X] onto R[b/a] is generated by aX-b.

Proof. Clearly $aX - b \in K$. Let $f(X) = r_n X^n + \cdots + r_0 \in K$. Then $r_n b^n + r_{n-1} a b^{n-1} + \cdots + r_0 a^n = 0$, so $r_n \in aR$: $b^n R = aR$, say $r_n = da$. Since a is not a zero divisor, $g(X) = (db + r_{n-1})X^{n-1} + r_{n-2}X^{n-2} + \cdots + r_0 \in K$, and $f(X) = (aX - b)dX^{n-1} + g(X)$. Hence, by induction on $n, f(X) \in (aX - b)R[X]$, so K is generated by aX - b, q.e.d.

Presented to the Society, November 14, 1964; received by the editors September 29, 1964.

A local (Noetherian) ring R is a Macaulay local ring in case there exists a system of parameters (a_1, \dots, a_n) in R such that a_i is not in any prime divisor of $(a_1, \dots, a_{i-1})R$ $(i = 1, \dots, n)$. In particular a_1 is not a zero divisor. A Noetherian ring R is a locally Macaulay ring in case R_M is a Macaulay local ring for every maximal ideal M in R. R is a Macaulay ring in case R is a locally Macaulay ring such that height M = altitude R for every maximal ideal M in R. It is known that if R is a Macaulay local ring of altitude n and if (a_1, \dots, a_k) is a subset of a system of parameters in R, then $R/(a_1, \dots, a_k)R$ is a Macaulay local ring of altitude n-k [3, p. 397]. Also, R is a locally Macaulay ring if and only if the following theorem (the unmixedness theorem) holds: If an ideal A in R is generated by k elements and if height A = k ($k \ge 0$), then every prime divisor of A has height k [1, p. 85]. These two facts immediately imply that if R is a locally Macaulay ring (a Macaulay ring) and if A is an ideal in R which is generated by k elements and has height k, then R/A is a locally Macualay ring (a Macaulay ring). Finally, it is known that if X_1, \dots, X_n are algebraically independent over a Noetherian ring R, then $R[X_1, \dots, X_n]$ is a locally Macaulay ring if and only if R is [1, p. 86].

These facts are used in the proof of

COROLLARY 2.2. Let R be a locally Macaulay ring, and let a, b be elements in R such that a is not a zero divisor and aR:bR=aR. Then R[b/a] is a locally Macaulay ring.

Proof. R[X] is a locally Macaulay ring, and the kernel of the natural homomorphism from R[X] onto R[b/a] is generated by aX - b (Lemma 2.1). Since aX - b is not a zero divisor in R[X], R[b/a] is a locally Macaulay ring, q.e.d. Theorem 2.4 below generalizes the above corollary. To obtain the generalization the following definitions and lemma will be used.

An integral domain R satisfies the *altitude formula* in case the following condition holds: If R' is an integral domain which is finitely generated over R, and if p' is a prime ideal in R', then height $p' + \operatorname{trd}(R'/p')/(R/p' \cap R) = \operatorname{height} p' \cap R + \operatorname{trd} R'/R$. It is known that if an integral domain R is a homomorphic image of a locally Macaulay ring, then R satisfies the altitude formula [1, p. 130].

If R is a locally Macaulay ring, and if $p \subset q$ are prime ideals in R, then R_q is a Macaulay local ring [1, p. 86], so height p + height q/p = height q [3, p. 399]. This fact will be used in the future without explicit mention.

A sequence (a_1, \dots, a_n) of nonunits in a Noetherian ring R is a *prime sequence* in case a_1 is not a zero divisor, $(a_1, \dots, a_i)R$: $a_{i+1}R = (a_1, \dots, a_i)R$ ($i = 1, \dots, n-1$), and $(a_1, \dots, a_n)R \neq R$. It is known that if R is a semi-local ring, and if (a_1, \dots, a_n) is a prime sequence of elements in the Jacobson radical of R, then $(a_{\pi 1}, \dots, a_{\pi n})$ is a prime sequence for every permutation π of $\{1, \dots, n\}$ [3, pp. 394–395].

LEMMA 2.3. Let R be a locally Macaulay ring, let (a_1, \dots, a_n) be a prime sequence in R, and let X_1, \dots, X_{n-1} be algebraically independent over R. Then

the kernel K of the natural homomorphism ϕ from $P = R[X_1, \dots, X_{n-1}]$ onto $R' = R[a_2/a_1, \dots, a_n/a_1]$ is generated by $(a_1X_1 - a_2, a_1X_2 - a_3, \dots, a_1X_{n-1} - a_n)$.

Proof(1). The proof is by induction on n. The case n=1 is trivial, and Lemma 2.1 proves the case n=2. Let n>2 and assume the conclusion holds for the case n-1. Now $\phi=fg$, where f and g are the natural homomorphisms from $S=R[a_2/a_1,X_2,\cdots,X_{n-1}]$ onto R' and from P onto S respectively. Since the kernel of g is $(a_1X_1-a_2)P$ (Lemma 2.1), and since $R^*=R[a_2/a_1]$ is a locally Macaulay ring (Corollary 2.2), it is sufficient (by induction) to prove that (a_1,a_3,a_4,\cdots,a_n) is a prime sequence in R^* . Since R and R^* have the same total quotient ring, a_1 is not a zero divisor in R^* , hence height $a_1R^*=1$. Let $A_i^*=(a_1X_1-a_2,a_1,a_3,\cdots,a_i)P$ ($i\geq 3$). Then $A_i^*=(a_1,a_2,a_3,\cdots,a_i)P$, hence height $A_i^*=i$. Consequently, by the unmixedness theorem $(a_1X_1-a_2,a_1,a_3,\cdots,a_n)$ is a prime sequence in P, hence (a_1,a_3,\cdots,a_n) is a prime sequence in R^* , q.e.d.

THEOREM 2.4. With the same notation as Lemma 2.3, $R'_i = R[a_2/a_1, \dots, a_i/a_1]$ $(2 \le i \le n)$ is a locally Macaulay ring, and $(a_1, a_{i+1}, \dots, a_{i+j}, b_1, \dots, b_k)$ is a prime sequence in R'_i , where $\{b_1, \dots, b_k\}$ is a subset of $\{a_2/a_1, \dots, a_i/a_1\}$, and $0 \le j \le n - i$. (For j = 0 the sequence is (a_1, b_1, \dots, b_k) .)

Proof. That R'_i is a locally Macaulay ring follows immediately from Lemma 2.3 and the remarks preceding the proof of Corollary 2.2. Let $A^* = (a_1, a_{i+1}, \dots, a_{i+j}, b_1, \dots, b_k)R'_i$. Since $(a_1X_1 - a_2, \dots, a_1X_{i-1} - a_i, a_1)R[X_1, \dots, X_{i-1}]$ is generated by (a_1, \dots, a_i) , A^* is a proper ideal. Hence by the unmixedness theorem, since j and k are arbitrary, it is sufficient to prove height $A^* = j + k + 1$. Let p' be a minimal prime divisor of A^* , let q' be a (minimal) prime divisor of zero in R'_i such that $q' \subset p'$ and let $p = p' \cap R$, $q = q' \cap R$. By the altitude formula (for R'/q' over R/q), height $p'/q' + \operatorname{trd} R'/p'/R/p = \operatorname{height} p/q$ (since $a_1 \notin q$). Also, height $p'/q' \leq j + k + 1$, $\operatorname{trd} R'/p'/R/p \leq i - 1 - k$, and height $p/q = \operatorname{height} p \geq i + j$. Hence, height $p' = \operatorname{height} p'/q' = j + k + 1$. Therefore height $A^* = j + k + 1$, q.e.d.

REMARK 2.5. The last step in the proof of Theorem 2.4 shows the following results. For every (minimal) prime divisor p' of A^* and for every prime divisor q' of zero contained in p', p'/q' is a minimal prime divisor of $(A^* + q')/q'$. Since height p'/q' = j + k + 1, none of the elements $a_1, \dots, a_{i+j}, b_1, \dots, b_k$ are in q'. Also the elements $a_2/a_1, \dots, a_i/a_1$ which are not in p' are such that their p' residues are algebraically independent over $R/(p' \cap R)$.

REMARK 2.6. In Theorem 2.4, if every permutation of (a_1, \dots, a_n) is a prime sequence in R (for example, if R is a semi-local locally Macaulay ring and a_1, \dots, a_n are in the Jacobson radical of R), then every permutation of $(a_1, a_{i+1}, \dots, a_n, a_2/a_1, \dots, a_i/a_1)$ is a prime sequence in R_i' .

⁽¹⁾ The author is indebted to the referee for the following proof which is considerably simpler than the author's original proof, and which leads to a more direct proof of Theorem 2.4.

Proof. Let (c_1, \dots, c_n) be a permutation of $(a_1, a_{i+1}, \dots, a_n, a_2 | a_1, \dots, a_i | a_1)$. Since no a_i is a zero divisor in R, c_1 is not a zero divisor in R'_i . Also $(c_1, \dots, c_n)R'_i \neq R'_i$. Therefore, by the unmixedness theorem, it remains to prove height $(c_1, \dots, c_h)R'_i = h$ $(h = 2, \dots, n-1)$. Let p' be a minimal prime divisor of $(c_1, \dots, c_h)R'_i$, let q' be a prime divisor of zero in R'_i which is contained in p', and let $p = p' \cap R$, $q = q' \cap R$. If $a_1 \notin p'$, then $\operatorname{trd} R'/p'/R/p = 0$. Hence by the altitude formula (for R'/q' over R/q), height $p'/q' = \operatorname{height} p/q$. Now height $p' \leq h$ and height $p \geq h$ (by the assumption on (a_1, \dots, a_n)), so height $p' = \operatorname{height} p = h$. If $a_1 \in p'$, let k of the elements c_1, \dots, c_h be in $\{a_2/a_1, \dots, a_i/a_1\}$. Then height $p \geq i + (h-1-k)$ (by the assumption on (a_1, \dots, a_n)), and $\operatorname{trd} R'/p'/R/p \leq i - 1 - k$. By the altitude formula for R'/q' over R/q, height $p' = \operatorname{height} p'/q' = h$, q.e.d.

Remark 2.6 is of some interest because of the following

LEMMA 2.7. Let R be a locally Macaulay ring, and let (a_1, \dots, a_n) be a prime sequence in R such that every permutation of (a_1, \dots, a_n) is a prime sequence in R. Let $A = (a_1, \dots, a_n)R$. Then, for all $k \ge 1$, (1) every prime divisor of A^k has height n, and (2) A^k : $a_iR = A^{k-1}$ $(i = 1, \dots, n)$.

Proof. This can be proved in the same way as Lemmas 5 and 6 in [3, pp. 401-402]. Without assuming that every permutation of (a_1, \dots, a_n) is a prime sequence in R, Corollary 3.7 below proves (1) is still true and (2)' A^k : $a_1R = A^{k-1}$ (for all $k \ge 1$), q.e.d.

It is known that if R is a Macaulay ring and if X_1, \dots, X_n are algebraically independent over R, then $R[X_1, \dots, X_n]$ is a Macaulay ring if and only if there does not exist an ideal p in R such that R/p is a semi-local integral domain of altitude one [1, p. 87]. Hence if $R[X_1]$ is a Macaulay ring, then $R[X_1, \dots, X_n]$ is a Macaulay ring. This fact is used in the proof of the next theorem.

THEOREM 2.8. If R and R[X] are Macaulay rings (X transcendental over R), and if (a_1, \dots, a_n) is a prime sequence in R, then $R' = R[a_2/a_1, \dots, a_n/a_1]$ is a Macaulay ring.

Proof. The kernel K of the natural homomorphisms from $P = R[X_1, \dots, X_{n-1}]$ onto R' has height n-1. Since P is a Macaulay ring, if M is a maximal ideal in P which contains K, then altitude R+n-1= altitude P= height M= height M/K= height K= altitude K= height K= height

REMARK 2.9. If R is a locally Macaulay ring (a Macaulay ring such that R[X] is a Macaulay ring), and if (a_1, \dots, a_n) is a prime sequence in R, then $R[a_1/a, \dots, a_n/a]$ is a locally Macaulay ring (a Macaulay ring) for every non-zero-divisor $a \in (a_1, \dots, a_n)R$. This follows from Theorems 3.1 and 3.3 and Corollary 3.9 below. It will now be shown that the converses of Theorems 2.4 and 2.8 are not in

general true. Let S=k[X,Y], where k is a field and X and Y are algebraically independent over k. Let P=(X-1,Y)S, $R_1=S_P$, and $N_1=PR_1$. Let Q=(X,Y)S, $R_2=S_Q$, and $N_2=QR_2$. Let $R'=R_1\cap R_2$, $M_1=N_1\cap R'$, and $M_2=N_2\cap R'$. Further let $R=k+(M_1\cap M_2)$, and let $M=(M_1\cap M_2)R$. Then R' is the intersection of two regular local rings, hence R' is normal. The following statements are easily verified: (1) M_1 and M_2 are the maximal ideals in R', and $R'_{M_i}=R_i$ is Noetherian (i=1,2). Therefore R' is Noetherian [1,p.203], so R' is a normal semi-local Macaulay domain. (2) Since $R'/M_i=k$ (i=1,2), R is a local domain and R' is its derived normal ring [1,p.204]. (3) $XY,Y\in R$, $X\notin R$, R'=R[XY/Y], and (Y,X=XY/Y) is a prime sequence in R'. (4) If P is a height one prime ideal in R, then R_P is a regular local ring. Since $R\neq R'$, M is an imbedded prime divisor of every nonzero element in M [1,p.41], hence R is not a Macaulay domain.

3. The Rees ring of a locally Macaulay ring. Let R be a Noetherian ring, let $A = (a_1, \dots, a_n)R$ be an ideal in R, let t be an indeterminant, and set $u = t^{-1}$. The graded Noetherian ring $R^* = R[ta_1, \dots, ta_n, u]$ is called the *Rees ring* of R with respect to A.

THEOREM 3.1. Let R be a locally Macaulay ring, and let a_1, \dots, a_n be a prime sequence in R. Then the Rees ring R_i^* of R with respect to $(a_1, \dots, a_i)R$ $(1 \le i \le n)$ is a locally Macaulay ring, and $(u, a_{i+1}, \dots, a_{i+j}, b_1, \dots, b_k)$ is a prime sequence in R_i^* , where $\{b_1, \dots, b_k\}$ is a subset of $\{ta_1, \dots, ta_i\}$ and $0 \le j \le n - i$. (For j = 0 the sequence is (u, b_1, \dots, b_k) .)

Proof. Since u is transcendental over R, R[u] is a locally Macaulay ring, hence (u, a_1, \dots, a_n) is a prime sequence in R[u]. Since $ta_j = a_j/u$, R_i^* is a locally Macaulay ring and $(u, a_{i+1}, \dots, a_{i+j}, b_1, \dots, b_k)$ is a prime sequence in R_i^* by Theorem 2.4, q.e.d. REMARK 3.2. In Theorem 3.1, if every permutation of (a_1, \dots, a_n) is a prime sequence in R, then every permutation of (u, a_1, \dots, a_n) is a prime sequence in R[u] (since R[u] is a locally Macaulay ring and u is transcendental over R), hence by Remark 2.6 every permutation of $(u, a_{i+1}, \dots, a_n, ta_1, \dots, ta_i)$ is a prime sequence in R_i^* .

THEOREM 3.3. If R and R[X] are Macaulay rings (X transcendental over R), and if a_1, \dots, a_n is a prime sequence in R, then the Rees ring R^* of R with respect to (a_1, \dots, a_n) R is a Macaulay ring.

Proof. Considering the natural homomorphism from $R[u, X_1, \dots, X_n]$ onto R^* and the ideal (u, a_1, \dots, a_n) of R^* , the proof is the same as the proof of Theorem 2.8, q.e.d.

LEMMA 3.4. Let R^* be the Rees ring of a locally Macaulay ring R with respect to a prime sequence (a_1, \dots, a_n) in R. Then (ta_1, \dots, ta_i, u) is a prime sequence in R^* $(i = 1, \dots, n)$.

Proof. Since R^* is a locally Macaulay ring and height $(u, ta_1, \dots, ta_i)R^* = i + 1$ (Theorem 3.1), it is sufficient to prove height $(ta_1, \dots, ta_i)R^* = i$. Let p be a minimal prime divisor of $A_i^* = (ta_1, \dots, ta_i)R^*$. Then height $p \le i$, hence $u \notin p$. Let T = R[u, t], so T is a quotient ring of R^* . Since pT is a minimal prime divisor of $A_i^*T = (a_1, \dots, a_i)T$, and since height $(a_1, \dots, a_i)R[u] = i$, height $A_i^*T = i$. Therefore height p = i, so height $A_i^* = i$, q.e.d.

REMARK 3.5. Let (a_1, \dots, a_n) be a prime sequence in a locally Macaulay ring R. Then the radical of $(a_1, \dots, a_n)R$ is the radical of $(a_1^{e_1}, a_2^{e_2}, \dots, a_n^{e_n})R$ $(e_i \ge 1, i = 1, \dots, n)$. Hence, by the unmixedness theorem, $(a_1^{e_1}, a_2^{e_2}, \dots, a_n^{e_n})$ is a prime sequence in R. Therefore $R[a_2^{e_2}/a_1^{e_1}, \dots, a_n^{e_n}/a_1^{e_1}]$ and $R[ta_1^{e_1}, \dots, ta_n^{e_n}, u]$ are locally Macaulay rings. Let R be a Noetherian ring and let R^* be the Rees ring of R with respect to an ideal A in R. Let T = R[t, u], so T is a quotient ring of R*. For any ideal B in R let $B' = BT \cap R^*$. For any homogeneous ideal B^* in R^* let $[B^*]_k$ be the set of elements $r \in \mathbb{R}$ such that $rt^k \in \mathbb{B}^*$. It is immediately seen that $[\mathbb{B}^*]_k$ is an ideal in R and $A^k \supseteq [B^*]_k \supseteq [B^*]_{k+1} \supseteq A[B^*]_k$ for all integers k (with the convention that $A^k = R$ if $k \le 0$). Also, since R^* is Noetherian, if k is greater than or equal to the maximum degree of the generators of B^* , then $[B^*]_{k+1} = A[B^*]_k$, and if k is less than or equal to the degree of the generators of B^* , then $[B^*]_{k-1} = [B^*]_k$ [2]. Let $B = (b_1, \dots, b_i)R \subseteq A^e$. Clearly $B' = BT \cap R^* \supseteq (b_1t^e, b_2t^e, \dots, b_it^e)R^* = B^*$, and for $k \leq e, [B']_k = B \cap A^k = B \supseteq [B^*]_k = [B]_e \supseteq B$. Hence for k > e, $[B']_k = B \cap A^k \supseteq [B^*]_k = BA^{k-e}$. Since $B'T = B^*T = BT$, $B^* = B'$ if and only if u is not in any prime divisor of B^* . Hence if $(b_1t^e, b_2t^e, \dots, b_it^e, u)$ is a prime

COROLLARY 3.6. Let R be a locally Macaulay ring, let (a_1, \dots, a_n) be a prime sequence, and let $A = (a_1, \dots, a_n)R$. Then, for every $e \ge 1$, $k \ge e$, and $i = 1, \dots, n$, $(a_1^e, a_2^e, \dots, a_i^e)A^{k-e} = (a_1^e, a_2^e, \dots, a_i^e)R \cap A^k$.

sequence in R^* , then $B' = B^*$. In particular, by Lemma 3.4 and Remark 3.5 we

have proved the following

COROLLARY 3.7. Let (a_1, \dots, a_n) be a prime sequence in a locally Macaulay ring R. Set $A = (a_1, \dots, a_n)R$. Then, for all $k \ge 1$, (1) every prime divisor of A^k has height n, and (2) A^k : $a_1R = A^{k-1}$.

Proof. By Corollary 3.6, $a_1A^{k-1}=a_1R\cap A^k$. Since a_1 is not a zero divisor in R, $A^{k-1}=a_1A^{k-1}$: $a_1R=(a_1R\cap A^k)$: $a_1R=A^k$: a_1R , hence (2) holds. For (1), $u^kR^*\cap R=A^k$, where $R^*=R[ta_1,\cdots,ta_n,u]$, and $k\geq 1$. Since R^* is a locally Macaulay ring, every prime divisor of uR^* has height one, and the prime divisors of u^kR^* are the prime divisors of uR^* (Remark 3.5). Let p' be a prime divisor of uR^* , let q' be a minimal prime divisor of zero in R^* which is contained in p', and let $p=p'\cap R$, $q=q'\cap R$. Applying Remark 2.5 (with $A^*=uR^*$) and the altitude formula for R^*/q' over R/q, height p=n (since $trdR^*/q'/R/q=1$), so p is a prime divisor of A^k . Since $u^kR^*\cap R=A^k$, (1) holds, q.e.d.

If (a_1, \dots, a_n) is a prime sequence in a locally Macaulay ring R, then (ta_1, \dots, ta_n, u) is a prime sequence in the locally Macaulay ring $R[ta_1, \dots, ta_n, u]$ (Theorem 3.1 and Lemma 3.4). Theorem 3.8 contains the converse of this.

THEOREM 3.8. Let R be a Noetherian ring and let A be an ideal in R. If the Rees ring R* of R with respect to A is a locally Macaulay ring (a Macaulay ring), then R is a locally Macaulay ring (R and R[X] are Macaulay rings). If also there are elements b_1, \dots, b_n in A such that $(b_1 t^{e_1}, \dots, b_n t^{e_n}, u)$ is a prime sequence in R^* , then (b_1, \dots, b_n) is a prime sequence in R.

Proof. Let R^* be a locally Macaulay ring. Then, since $T = R^*[t]$ is a quotient ring of R^* , T is a locally Macaulay ring. Let M be a maximal ideal in R. Since T is a quotient ring of R^* and of R[u], $T_{MT} = R[u]_{MR[u]}$ is a Macaulay local ring. Since u is transcendental over R, a system of parameters in R_M is a system of parameters in $R[u]_{MR[u]}$. It is known that if a local ring has one system of parameters which form a prime sequence, then each system of parameters forms a prime sequence [3, p. 399]. Hence R is a locally Macaulay ring. Therefore, if $(b_1t^{e_1}, \dots, b_nt^{e_n}, u)$ is a prime sequence in R^* , then, for $i = 1, \dots, n$, every prime divisor of $(b_1t^{e_1}, \dots, b_it^{e_i})T = (b_1, \dots, b_i)T$ has height i. Hence height $(b_1, \dots, b_i)R = i$, and so (b_1, \dots, b_n) is a prime sequence in R. Let R^* be a Macaulay ring. By what has already been proved, R and R[X] are locally Macaulay rings. To prove that R is a Macaulay ring, let M be a maximal ideal in R. Then $N^* = (M, u - 1)T \cap R^*$ is a maximal ideal in R^* . Therefore, altitude R+1 = altitude R^* = height N^* = height N^*T = height M+1, hence R is a Macaulay ring. Finally, let N be a maximal ideal in R[u]. If there is a maximal ideal N^* in R^* such that $N^* \cap R[u] = N$, then altitude R[u] = altitude R^* = height N^* = (since R^*/N^* is a field) height $\operatorname{trd} R^*/N^*/R[u]/N = (\operatorname{altitude formula}) \text{ height } N \leq \operatorname{altitude } R[u].$ If there does not exist such N*, then NT = T, hence $u \in N$. Therefore $R/N \cap R = R[u]/N$ is a field, so altitude R[u] = altitude R + 1 = height $N \cap R + 1$ = height N^* . Hence $R[X] \cong R[u]$ is a Macaulay ring, q.e.d.

COROLLARY 3.9. Let R be a Noetherian ring. If there exists an ideal $A = (a_1, \dots, a_n)R$ in R such that the Rees ring R^* of R with respect to A is a locally Macaulay ring (a Macaulay ring), then for every non-zero-divisor $a \in A$, $R' = R[a_1/a, \dots, a_n/a]$ is a locally Macaulay ring (a Macaulay ring).

Proof. Since (a-u)R[t,u] = (at-1)R[t,u] is the kernel of the mapping from R[t,u] onto R[1/a,a] (Lemma 2.1), and since R[t,u] is a quotient ring of R^* , to prove the two statements about R' it is sufficient to prove that u is not in any prime divisor of $(ta-1)R^*$. If u is in some (minimal) prime divisor p of $(ta-1)R^*$, then p is a prime divisor of uR^* . But uR^* is a graded ideal, hence p is a graded deal. This implies the contradiction $1 \in p$. Therefore u is not in any prime divisor of $(ta-1)R^*$, q.e.d.

Theorem 3.8 is of some interest, since the Rees ring R^* of a locally Macaulay ring R with respect to an ideal A which cannot be generated by a prime sequence may be a locally Macaulay ring. For example, let R be a semi-local Macaulay ring of altitude $n \ge 2$, and let (a_1, \dots, a_n) be a prime sequence in the Jacobson radical of R. Let $A = (a_1, \dots, a_n)R$ and fix an integer $e \ge 2$. Then A^e cannot be generated by n elements, but the Rees ring of R with respect to A^e is a locally Macaulay ring. For convenience of notation this will be proved for the case n=2 (the general case being exactly the same). Let $a=a_1$ and $b=a_2$, and let N be a maximal ideal in $R^* = R[ta^e, \dots, ta^fb^{e-f}, \dots, tb^e, u]$. If $u \notin N$, then R_N^* contains T = R[t, u]. Since T is a locally Macaulay ring, R_N^* is a Macaulay local ring. If $(ta^e, \dots, ta^fb^{e-f}, \dots, tb^e)R^*$ is not contained in N, say $ta^fb^{e-f} \notin N$. Then $ta^{f+1}b^{e-f-1}/ta^fb^{e-f} = a/b \in R_N^*$ (if f < e), and/or $b/a \in R_N^*$ (if f > 0). Since (a, b) and (b, a) are prime sequences in R, $R_e = R[a/b]$, $R_0 = R[b/a]$, and $R_f = R[a/b, b/a]$ are locally Macaulay rings, and at least one of these rings (call it R') is contained in R_N^* . Hence $S = R'[ta^f b^{e-f}]$ is a locally Macaulay ring contained in R_N^* , and S contains $R[ta^e, \dots, ta^gb^{e-g}, \dots, tb^e]$. Since $ta^fb^{e-f} \notin N'$ $=NR_N^* \cap S$, $u=a^fb^{e-f}/ta^fb^{e-f} \in S_N$. Hence $R_N^* = S_N$ is a locally Macaulay ring. Clearly the only maximal ideals in R^* which contain $(ta^e, \dots, ta^fb^{e-f}, \dots, tb^e, u)R^*$ are the ideals $N_i = (M_i, ta^e, \dots, ta^fb^{e-f}, \dots, tb^e, u)R^*$, where M_i is a maximal ideal in R. Therefore it remains to prove that the semi-local ring $R^*_{R^*-\cup N_i}$ is a Macaulay ring. For this, it will be shown that (ta^e, tb^e, u) is a prime sequence in R^* (since the N_i contain this sequence). Since (a^e, b^e) is a prime sequence in the locally Macaulay ring $R^*[t]$, to prove (ta^e, tb^e, u) is a prime sequence, it is sufficient to prove that u is not in any prime divisor of either of the ideals ta^eR^* or $(ta^e, tb^e)R^*$. This is equivalent to proving $ta^eR^* = a^eT \cap R^*$ and $(ta^e, tb^e)R^* = (a^e, b^e)T \cap R^*$, where T = R[t, u]. With the notation used in the proof of Corollary 3.6, these latter equalities are equivalent to $[ta^eR^*]_k = [a^eT \cap R^*]_k$ and $[(ta^e, tb^e)R^*]_k$ $=[(a^e,b^e)T\cap R^*]_k$ for all k. Since the degrees of the generators of the four ideals are all non-negative, and since $[ta^eR^*]_0 = [a^eT \cap R^*]_0 = a^eR$ and $[(ta^e, tb^e)R^*]_0 = [(a^e, b^e)T \cap R^*]_0 = (a^e, b^e)R$, it must be shown that $a^e(A^e)^{k-1}$ $= a^e R \cap (A^e)^k$ and $(a^e, b^e)(A^e)^{k-1} = (a^e, b^e)R \cap (A^e)^k$ for all $k \ge 1$. These equalities hold by Corollary 3.6.

REFERENCES

- 1. M. Nagata, Local rings, Interscience, New York, 1962.
- 2. D. Rees, A-transforms of local rings and a theorem on multiplicities of ideals, Proc. Cambridge Philos. Soc. 57 (1961), 8-17.
- 3. O. Zariski and P. Samuel, *Commutative algebra*, Vol. II, Van Nostrand, Princeton, N. J., 1960.

University of California, Riverside, California