THE HAUSDORFF-BESICOVICH DIMENSION OF THE LEVEL SETS OF PERRON'S MODULAR FUNCTION

JOHN R. KINNEY AND TOM S. PITCHER

1. Introduction. The modular function M was introduced by O. Perron in [5]. $M(\xi)$ (for irrational ξ) is defined by the property that, for any $\varepsilon > 0$, the inequality

$$\left|\xi - \frac{p}{q}\right| < \frac{1+\varepsilon}{M(\xi)q^2}$$

has infinitely many integer solutions (p, q) while the inequality

$$\left|\xi - \frac{p}{q}\right| < \frac{1 - \varepsilon}{M(\xi)q^2}$$

has only finitely many. Let

$$\xi = \left[x_1, x_2, \cdots \right] = \frac{1}{x_1 +} \frac{1}{x_2 +} \cdots$$

be the continued fraction expansion of ξ (we will only use the continued fraction expansion for numbers in the open interval (0,1)) and set

$$M_k(\xi) = x_k + \left(\frac{1}{x_{k-1} +} \frac{1}{x_{k-2} +} \cdots + \frac{1}{x_1}\right) + \left(\frac{1}{x_{k-1} +} \frac{1}{x_{k+2} +} \cdots\right).$$

It is easily shown (see [5]) that

$$M(\xi) = \limsup_{k \to \infty} M_k(\xi).$$

For every positive number γ let

$$L(\gamma) = [\xi | M(\xi) = \gamma]$$

be the level set of M at γ . The theorem of this paper provides an estimate of the Hausdorff-Besicovich dimension of $L(\gamma)$ for sufficiently large γ . The Hausdorff-Besicovich dimension of a set S, which we will write $\dim(S)$, is defined as follows: let (I_i) be a covering of S by intervals, and let $|I_i|$ be the length of I_i ; then $\delta = 1.u.b.$ $|I_i|$ is called the norm of the covering;

$$\Gamma(\lambda, S) = \lim_{\delta \to \infty} \text{g.l.b. } \sum |I_i|^{\lambda},$$

where the greatest lower bound is taken over all coverings of norm δ , is the

 λ -dimensional Hausdorff measure of S and dim(S) is the number such that, for every positive ε ,

$$\Gamma(\dim(S) - \varepsilon, S) = \infty$$

and

$$\Gamma(\dim(S) + \varepsilon, S) = 0.$$

We will write E_N for the set of those numbers in (0, 1) whose continued fraction expansions involve no integer bigger than N, s_N for the smallest number in E_N and l_N for the largest. It is easily seen that

$$s_N = [N, 1, N, 1, \cdots] = \frac{(N^2 + 4N)^{1/2} - N}{2N}$$

and

$$l_N = [1, N, 1, N, \cdots] = \frac{(N^2 + 4N)^{1/2} - N}{2}.$$

The following facts on continued fraction expansions can be found in [3]. Let $\xi = [x_1, x_2, \cdots]$. Then the integers $P_k(\xi)$ and $Q_k(\xi)$ defined by

$$P_0(\xi) = 0, P_1(\xi) = 1',$$

$$Q_0(\xi) = 1, Q_1(\xi) = x_1,$$

$$P_{k+1}(\xi) = x_{k+1} P_k(\xi) + P_{k-1}(\xi),$$

$$Q_{k+1}(\xi) = x_{k+1} Q_k(\xi) + Q_{k-1}(\xi)$$

satisfy

$$\frac{P_k(\xi)}{Q_k(\xi)} = \frac{1}{x_1 +} \frac{1}{x_2 +} \cdots + \frac{1}{x_k},$$

$$P_{k-1}(\xi) Q_k(\xi) - P_k(\xi) Q_{k-1}(\xi) = (-1)^k.$$

If we set $\eta = [x_{k+1}, x_{k+2}, \cdots]$ then

$$\xi = \frac{(x_k + \eta) P_{k-1}(\xi) + P_{k-2}(\xi)}{(x_k + \eta) Q_{k-1}(\xi) + Q_{k-2}(\xi)}$$

If $\xi' = [x'_1, x'_2, \cdots]$ where $x_i = x'_i$ for i < k and if we set $\eta' = [x'_{k+1}, x'_{k+2}, \cdots]$ then

$$|\xi - \xi'| = \frac{|x_k + \eta - x' - \eta'|}{((x_k + \eta)Q_{k-1}(\xi) + Q_{k-2}(\xi))((x'_k + \eta')Q_{k-1}(\xi) + Q_{k-2}(\xi))}$$

$$= \frac{|x_k + \eta - x'_k - \eta'|}{(Q_k(\xi) + \eta Q_{k-1}(\xi))(Q_k(\xi') + \eta' Q_{k-1}(\xi'))}.$$

 $Q_k(\xi)$ is an increasing function of k and satisfies

(2)
$$\left(\prod_{k=j+1}^{j+l} x_k\right) Q_j(\xi) \leq Q_{j+l}(\xi) \left(\prod_{k=j+1}^{j+l} (x_k+1)\right) Q_j(\xi).$$

2. Preliminary lemmas. We define intervals A_N , B_N , and C_N by;

$$A_4 = \left[5 + l_4 - \frac{1}{6 + l_4}, 5 + 2l_4 \right),$$

$$B_4 = \left[5 + 2l_4, 5 + 2l_5 \right),$$

$$A_N = \left[N + 2l_N, N + 1 + 2l_4 \right), \quad N \ge 5,$$

$$B_N = \left[N + 1 + 2l_4, N + 1 + 2l_{N+1} \right), \quad N \ge 5,$$

$$C_N = A_N \cup B_N, \quad N \ge 4.$$

Our first lemma is a direct corollary of a theorem of Marshall Hall.

LEMMA 1. If γ is in C_N , $N \ge 4$ we can write

$$\gamma = F(\gamma) + \alpha + \beta$$

where α and β are in E_4 and $F(\gamma)$ is N+1 for γ in A_N and is N+2 for γ in B_N .

Proof. By Theorem 3.1 of [1] every number γ in $[M+2s_4, M+2l_4]$ can be written in the form $M+\alpha+\beta$ with α and β in E_4 . Straightforward computation shows that $[N+1+2s_4, N+1+2l_4]$ contains A_N and that $[N+2+2s_4, N+2+2l_4]$ contains B_N for all $N \ge 4$.

Suppose now that $\gamma = F(\gamma) + \alpha + \beta$ is in C_N with $\alpha = [a_1, a_2, \cdots]$ and $\beta = [b_1, b_2, \cdots]$ in E_4 . We choose a sequence (p_i) of integers satisfying

$$p_1 \geq 3$$

and

$$\lim_{k\to\infty}\frac{k^2}{S_k}=0$$

where

$$S_k = 0$$
 if $k = 0$
= $\sum_{i=1}^{k} p_i$ if $k > 0$.

For any $\xi = [x_1, x_2, \cdots]$ in E_N we define $\phi(\xi) = [y_1, y_2, \cdots]$ by setting

$$y_j = x_{j-n(n-1)}$$
 if $S_{n-1} + n(n-1) < j \le S_n + n(n-1)$,
 $= a_{n+1-l}$ if $j = S_n + n(n-1) + l$, $l = 1, \dots, n$,
 $= F(\gamma)$ if $j = S_n + n^2 + 1$,
 $= b_l$ if $j = S_n + n^2 + 1 + l$, $l = 1, \dots, n-1$,

for $n = 1, 2, \dots$. If we set

$$\pi(j) = j + n(n-1)$$
 if $S_{n-1} < j \le S_n$

then $x_j = y_{\pi(j)}$, j and $\pi(j)$ have the same parity and

$$1 \le \frac{\pi(j)}{j} = 1 + \frac{n(n-1)}{j} \le 1 + \frac{n(n-1)}{S_{n-1}} \to 1$$
.

LEMMA 2. ϕ is an order preserving map of E_N into $L(\gamma)$.

Proof. If $y_k = 4$

$$M_k(\phi(\xi)) \le \max\left(4 + l_4 + \frac{1}{1 + (1/F(\gamma) + l_4)}, 4 + l_4 + l_N\right) + O(1)$$

$$= 5 + l_4 - \frac{1}{F(\gamma) + 1 + l_4} + O(1),$$

and if $y_k = N$

$$M_k(\phi(\xi)) \le N + 2l_N + O(1).$$

If follows from this that

$$\lim_{k\to\infty} \sup M_k(\phi(\xi)) = \lim_{n\to\infty} M_{S_n+n^2+1}(\phi(\xi))$$
$$= F(\gamma) + \alpha + \beta = \gamma,$$

i.e. that $\phi(\xi)$ is in $L(\gamma)$.

Now suppose that $\xi = [x_1, x_2, \cdots] < \xi' = [x'_1, x'_2, \cdots]$ and let k be the first integer for which $x_k \neq x'_k$. Then either k is odd and $x'_k < x_k$ or k is even and $x'_k > x_k$. If $\phi(\xi) = [y_1, y_2, \cdots]$ and $\phi(\xi') = [y'_1, y'_2, \cdots]$ then $y_j = y'_j$ for $j < \pi(k)$ and either $\pi(k)$ is odd and $y'_{\pi(k)} = x'_k < x_k = y_{\pi(k)}$ or $\pi(k)$ is even and $y'_{\pi(k)} = x'_k > x_k = y_{\pi(k)}$. Hence $\phi(\xi) < \phi(\xi')$.

Set, for $k \ge 2$.

$$\rho(k) = \pi(k) - k + \pi(k-1) - (k-1).$$

Note that ρ is an increasing function of k and that

$$\lim_{k\to\infty}\frac{\rho(k)}{k}=2\lim_{k\to\infty}\left(\frac{\pi(k)}{k}-1\right)=0.$$

LEMMA 3. For $k \ge 2$

$$Q_k(\xi) \le Q_{\pi(k)}(\phi(\xi)) \le (N+3)^{\rho(k)}Q_k(\xi).$$

Proof. Since $p_1 \ge 3$ the lemma holds for k = 2 or 3. Suppose it holds for all $j \le k$. Then if $\xi = [x_1, x_2, \cdots]$ is in E_N and $\phi(\xi) = [y_1, y_2, \cdots]$ we have

$$Q_{\pi(k+1)}(\phi(\xi)) = y_{\pi(k+1)}Q_{\pi(k+1)-1}(\phi(\xi)) + Q_{\pi(k+1)-2}(\phi(\xi))$$

$$\geq x_{k+1}Q_{\pi(k)}(\phi(\xi)) + Q_{\pi(k-1)}(\phi(\xi))$$

$$\geq x_{k+1}Q_{k}(\xi) + Q_{k-1}(\xi) = Q_{k+1}(\xi)$$

so the first inequality holds for k + 1.

Now suppose that $\pi(k\pm 1)=\pi(k)\pm 1$ and hence that $\rho(k+1)=\rho(k)$. Then

$$Q_{\pi(k+1)}(\phi(\xi)) = y_{\pi(k+1)} Q_{\pi(k)} (\phi(\xi)) + Q_{\pi(k-1)} (\phi(\xi))$$

$$\leq (N+3)^{\rho(k)} (x_{k+1} Q_k(\xi) + Q_{k-1}(\xi))$$

$$= (N+3)^{\rho(k)} Q_{k+1}(\xi).$$

If $\pi(k+1) = \pi(k) + 2n + 1$, i.e. if $k = S_n$, then $\pi(k-1) = \pi(k) - 1$ and $\rho(k+1) = \rho(k) + 2n$. We have, using (2),

$$Q_{\pi(k+1)}(\phi(\xi)) = y_{\pi(k+1)} Q_{\pi(k+1)-1}(\phi(\xi)) + Q_{\pi(k+1)-2}(\phi(\xi))$$

$$\leq (N+3)^{2n} (x_{k+1} Q_{\pi(k)}(\phi(\xi)) + Q_{\pi(k-1)}(\phi(\xi)))$$

$$\leq (N+3)^{2n+\rho(k)} (x_{k+1} Q_{k}(\xi) + Q_{k-1}(\xi))$$

$$= (N+3)^{\rho(k+1)} Q_{k+1}(\xi).$$

The case $k-1=S_n$, $\pi(k+1)=\pi(k)+1$, $\pi(k-1)=\pi(k)-2n-1$, $\rho(k+1)=\rho(k)+2n$ is handled similarly.

LEMMA 4. If $\xi = [x_1, x_2, \cdots]$ and $\xi' = [x'_1, x'_2, \cdots]$ are in E_M and $x_i = x'_i$ for i < k but $x_k \neq x'_k$ then

$$\left| \, \xi - \xi' \, \right| \ge \frac{1 - (l_M - s_M)}{4 Q_k(\xi) Q_k(\xi')} \, \ge \, \frac{1 - (l_M - s_M)}{4 (M+1)^{2k}} \, .$$

Proof. Setting $\eta = [x_{k+1}, x_{k+2}, \cdots]$ and $\eta' = [x'_{k+1}, x'_{k+2}, \cdots]$ and using formulas (1) and (2) we have

$$\begin{aligned} \left| \, \xi - \xi' \, \right| &= \frac{\left| \, x_k + \eta - x_k' - \eta' \, \right|}{\left(Q_k(\xi) + \eta Q_{k-1}(\xi) \right) \left(Q_k(\xi') + \eta' Q_{k-1}(\xi') \right)} \\ &\geq \frac{1 - \left(l_M - s_M \right)}{4 Q_k(\xi) Q_k(\xi')} \geq \frac{1 - \left(l_M - s_M \right)}{4 (M+1)^{2k}}. \end{aligned}$$

LEMMA 5. If $\xi = [x_1, x_2, \cdots]$ and $\xi' = [x'_1, x'_2, \cdots]$ are in E_N and $x_i = x'_i$ for i < k but $x_k \neq x'_k$ then there is an A depending only on N such that

$$|\phi(\xi) - \phi(\xi')| \ge A(N+3)^{-2\rho(k)} |\xi - \xi'|.$$

Proof. By Lemmas 3 and 4

$$\begin{aligned} \left| \phi(\xi) - \phi(\xi') \right| &\geq \frac{1 - (l_{N+2} - s_{N+2})}{4Q_{\pi(k)}(\phi(\xi))Q_{\pi(k)}(\phi(\xi'))} \\ &\geq \frac{1 - (l_{N+2} - s_{N+2})}{4(N+3)^{2\rho(k)}} \frac{1}{Q_k(\xi)Q_k(\xi')}. \end{aligned}$$

But, if $\eta = [x_k, x_{k+1}, \cdots]$ and $\eta' = [x'_k, x'_{k+1}, \cdots]$, then

$$\begin{aligned} |\xi - \xi'| &= \frac{|x_k + \eta - (x_k' + \eta')|}{(Q_k(\xi) + \eta Q_{k-1}(\xi)) (Q_k(\xi') + \eta' Q_{k-1}(\xi'))} \\ &\leq \frac{N}{Q_k(\xi) Q_k(\xi')} \end{aligned}$$

so the lemma holds with

$$A = (1 - (l_{N+2} - s_{N+2}))/4N$$
.

3. The dimension of $L(\gamma)$. In §7 of [4] a probability measure ω^* on [0,1] was defined for every pair of positive integers M_1 and M_2 with $M_1 > M_2 + 1$. We take ω_N^* to be one that corresponds to $M_1 = N + 1$ and $M_2 = 1$ so that $\omega_N^*(E_N) = 1$. Let

$$h_N = -2 \int_0^1 \log t \, \omega_N^*(dt).$$

It is clear from the estimates in [4] that $0 < h_N < \infty$. For every $\varepsilon > 0$ and integer l set

$$E_N'(\varepsilon,l) = \left\lceil \xi \left| \xi \in E_N \text{ and } \left| \frac{P_k(\xi)}{O_k(\xi)} - \xi \right| \le \exp\left[-k(h_N - \varepsilon) \right] \text{ for all } k \ge l \right\rceil.$$

If

$$E'_{N} = \lim_{\varepsilon \to 0} \lim_{l \to \infty} E'_{N}(\varepsilon, l)$$

then it follows from Theorems 2.2 and 7.1 of [4] that

$$\dim(E'_N) \ge \frac{2}{h_N} \left[\log N - \int_0^1 \log((N-1)t + 1) \frac{d\omega}{d\lambda}(t) dt \right] > 0$$

where

$$\frac{d\omega}{d\lambda}(t) = \frac{N-1}{\log\left(\frac{N(2N+1)}{(N+1)^2}\right)} \left(\frac{1}{N+1+(N-1)t} - \frac{1}{N^2+1+(N-1)t}\right).$$

The estimate in Theorem 8.1 of [4] gives

$$\dim(E'_N) \ge 1 - \frac{2}{\tau(N-1)} + O\left(\frac{1}{N^2}\right)$$

where $\tau = \pi^2/(6 \log 2)$ is Khintchine's constant.

THEOREM. If $\gamma \ge (7/2) + (7/4) 2^{1/2}$ then dim $(L(\gamma)) > 0$. For γ in C_N

$$\dim(L(\gamma)) \geq 1 - \frac{2}{\tau(N-1)} + O\left(\frac{1}{N^2}\right).$$

For γ in C_N , $N \ge 6$

$$\dim(L(\gamma)) \leq 1 - \frac{1}{8(N+2)\log(N+2)}.$$

Proof. Set $\gamma = F(\gamma) + \alpha + \beta$ as in the previous section. We will first show that dim $(\phi(E'_N)) \ge \dim(E'_N)$ which will establish the first and second assertions. For small enough ε and large enough l we can find $\lambda < 1$ such that

$$k \left[\lambda(h_N - \varepsilon) - 2\frac{\rho(k)}{k} \log(N+3) \right] + \log A - \lambda \log(2e^{hN}) > 0$$

for all $k \ge l$. By Lemma 4 with M = N + 2 we can choose δ so small that $|\phi(\xi) - \phi(\eta)| \le \delta$ implies that $\phi(\xi)$ and $\phi(\eta)$ have the same first $\pi(l-1)$ continued fraction coefficients and hence that ξ and η have the same first l-1 coefficients. Let (I_i) be a covering of $\phi(E'_N(\varepsilon, l))$ of norm at most δ . We can assume that each I_i is the smallest interval containing $I_i \cap \phi(E'_N(\varepsilon, l))$. Let $J_i = \phi^{-1}(I_i)$. Since ϕ preserves order, there are sequences (ξ_i) and (η_i) contained in J_i such that

$$\frac{\left|I_{i}\right|}{\left|J_{i}\right|^{1+\lambda}} = \lim_{j \to \infty} \frac{\left|\phi(\xi_{j}) - \phi(\eta_{j})\right|}{\left|\xi_{j} - \eta_{j}\right|^{1+\lambda}}$$

$$\geq \limsup_{j \to \infty} \frac{A}{(N+3)^{2\rho(k_{j})}} \frac{1}{\left|\xi_{j} - \eta_{j}\right|^{\lambda}}$$

where $k_j \ge l$ is the first place where the continued fraction coefficients of ξ_j and η_i differ. But

$$\begin{aligned} \left| \left| \xi_{j} - \eta_{j} \right| &\leq \left| \left| \left| \xi_{j} - \frac{P_{k,j-1}(\xi_{j})}{Q_{k-1}(\xi_{j})} \right| + \left| \left| \frac{P_{k,j-1}(\eta_{j})}{Q_{k,j-1}(\eta_{j})} - \eta_{j} \right| \right| \\ &\leq 2 \exp \left[\left| -(k_{j} - 1)(h_{N} - \varepsilon) \right| \leq 2e^{hN} \exp \left[\left| -k_{j}(h_{N} - \varepsilon) \right| \right] \end{aligned}$$

so that

$$\frac{\left|I_{i}\right|}{\left|J_{i}\right|^{1+\lambda}} \geq \limsup_{j \to \infty} \frac{A}{(2\exp(h_{N}))^{2}} \exp\left\{k_{j}\left[\lambda(h_{N}-\varepsilon) - \frac{2\rho(k_{j})}{k_{j}}\log(N+3)\right]\right\}$$

$$\geq 1.$$

Now (J_i) is a covering of $E'_N(\varepsilon, l)$ of norm at most $\delta^{1/(1+\lambda)}$ so for all small enough δ and

$$\mu < \frac{\dim(E'_N(\varepsilon,l))}{1+\lambda}$$

we have

$$\sum |I_i|^{\mu} \geq \sum |J_i|^{\mu(1+\lambda)} \geq 1$$

and hence

$$\dim(\phi(E'_N(\varepsilon,l))) \ge \frac{\dim(E'_N(\varepsilon,l))}{1+\lambda}.$$

As we let $l \to \infty$ we can take $\lambda \to 0$ so

$$\dim \left(\phi\left(\lim_{l\to\infty}E_N'(\varepsilon,l)\right)\geq \dim\left(\lim_{l\to\infty}E_N'(\varepsilon,l)\right).$$

The first part of the proof is now completed by letting $\varepsilon \to 0$.

Next we will show that $\dim L(\gamma) \leq \dim(E_{N+2})$ and this plus Jarnik's theorem (see [2]) that

$$\dim(E_N) \le 1 - \frac{1}{8N \log N}, \ N > 8$$

will complete the proof.

Clearly if $\xi = [x_1, x_2, \cdots]$ has infinitely many $x_i \ge N + 3$ then $M(\xi) > N + 3$ so $\xi \notin L(\gamma)$. Thus $L(\gamma) \subset \bigcup_{k \in K} G_k$ where K is the set of all finite vectors $k = (k_i, k_2, \cdots, k_{2n})$, each k_i being a positive integer, and G_k is the set of all $\xi = [x_1, x_2, \cdots]$ with

$$x_i = k_i$$
, $1 \le i \le 2n$, $x_i \le N + 2$, $2n < i$.

Since K is countable it will be sufficient to show that $\dim(G_{\bar{k}}) \leq \dim(E_{N+2})$ for each \bar{k} . We define an order preserving map Ψ of E_{N+2} onto $G_{\bar{k}}$ by setting, for $\xi = [x_1, x_2, \cdots]$ in E_{N+2} , $\Psi(\xi) = [k_i, k_2, \cdots, k_{2n}, x_1, x_2, \cdots]$. If also $\xi' = [x'_1, x'_2, \cdots]$ is in E_{N+2} and $x_i = x'_i$ for i < l but $x_l \neq x'_l$ then, letting $N' = \max(k_1, \cdots, k_{2n}, N+2)$,

$$\begin{aligned} \left| \xi - \xi' \right| &\geq \frac{1 - (l_{N+2} - s_{N+2})}{4Q_l(\xi)Q_l(\xi')} \geq A \frac{N'}{Q_l(\xi)Q_l(\xi')} \\ &\geq A \frac{N'}{Q_{2n+l}(\Psi(\xi))Q_{2n+l}(\Psi(\xi'))} \\ &\geq A \left| \Psi(\xi) - \Psi(\xi') \right|. \end{aligned}$$

We have used here Lemma 4, the fact that $Q_l(\eta) \leq Q_{2n+l}(\Psi(\eta))$, and (1) in that order. If (I_i) is a covering of E_{N+2} of norm δ , each I_i being the smallest interval containing $I_i \cap E_{N+2}$, then $(\Psi(I_i))$ is a covering of G_k of norm at most δ/A . For any λ less than dim (G_k) and for small enough δ we have

$$\sum |I_i|^{\lambda} \ge A^{\lambda} \sum |\Psi(I_i)|^{\lambda} > 1$$

so $\dim(E_{N+2}) \ge \dim(G_k)$.

BIBLIOGRAPHY

- 1. M. Hall, On the sum and product of continued fractions, Ann. of Math. 48(1947), 966-993.
- 2. V. Jarnik, Zur Metrischen Theorie der Diophantischen Approximationen, Prace Mat. Fix. 36 (1928), 91-106.
 - 3. A. Ja. Khintchine, Continued fractions, Noordhoff, Groningen, The Netherlands, 1963.
- 4. J. Kinney and T. Pitcher, *The dimension of some sets defined in terms of F-expansions*, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 4 (1966), 293-315.
- 5. O. Perron, Über die Approximation Irrationaler Zahlen durch Rationale, S.-B. Heidelberger Akad. Wiss. Math. Nat. Kl. (1921), 3-17.

MICHIGAN STATE UNIVERSITY,
EAST LANSING, MICHIGAN
UNIVERSITY OF SOUTHERN CALIFORNIA,
LOS ANGELES, CALIFORNIA
JET PROPULSION LABORATORY,
PASADENA, CALIFORNIA