FUNCTIONS SATISFYING A WEIGHTED AVERAGE PROPERTY. II (1)

BY ANIL KUMAR BOSE

Introduction. In the previous paper [1] we were interested in characterizing the class of functions, defined in a given region (open connected set) R of the n-dimensional euclidean space E_n , which satisfy the following Weighted Average Property (W.A.P.):

(0.1)
$$u(P) = \frac{\int_{B(P,r)} uwd\rho}{\int_{B(P,r)} wd\rho}, \quad P \in R,$$

$$\int uwd\sigma$$

(0.2)
$$u(P) = \frac{\int_{S(P,r)} uwd\sigma}{\int_{S(P,r)} wd\sigma},$$

where B(P,r) and S(P,r) denote any ball and its surface with the point

$$P=P(x_1,x_2,\cdots,x_n),$$

for its center and radius r which lies in R; $d\rho$ and $d\sigma$ stand for the usual Lebesgue measure of B and S and w is a weight function (W.F.) defined in R.

For convenience we state here again the definitions of weight functions and functions satisfying a W.A.P.

DEFINITION. w is a W.F. in R means that

- (a) w is a nonnegative, real-valued function defined in R, and
- (b) w is locally summable in R, i.e., if $P \in R$ and 0 < r < d(P, T), T being the boundary of R, then the Lebesgue integral $\int_{B(P,r)} w d\rho$ over B(P,r) exists and $\int_{B(P,r)} w d\rho > 0$.

DEFINITION. A real-valued function u is said to satisfy the W.A.P. with respect to a W.F., w in R provided uw is locally summable in R and u satisfies the property (0.1) for each ball B(P, r) whose closure lies in R.

DEFINITION.

$$R^* = \{(P, r) : P \in R \text{ and } 0 < r < d(P, T)\}.$$

Received by the editors November 6, 1965.

⁽¹⁾ This research was supported, in part, by the U.S. Army Research Office, Durham, N.C.

Suppose now that R be a region in E_n and w be a W.F. defined in R. Let S(w, R) denote the class of all functions satisfying W.A.P. with respect to w in R.

In the previous paper [1] we proved the following theorems and corollaries:

THEOREM 2*.

- (i) If the W.F. w belongs to class $C^m(R)$, where m is a nonnegative integer and $u \in S(w, R)$, then $u \in C^{m+1}(R)$.
- (ii) If w be infinitely differentiable in R and $u \in S(w, R)$, then u is infinitely differentiable in R.
 - (iii) If w be analytic in R and $u \in S(w, R)$, then u is analytic in R.

REMARK 1*.

- (0.3) Constant functions belong to S(w, R).
- (0.4) S(w, R) is a linear space over the reals and dim $S(w, R) \ge 1$.
- (0.5) If w be a nonzero constant, then S(w, R) is the class of all harmonic functions defined on R.

REMARK 2*. In proving Theorem 2* the following was shown:

If $w \in C^1(R)$ and $u \in S(w, R)$, then

$$(0.6) u_{x_i}(P) = \frac{\displaystyle \int_{B(P,r)} u_{x_i} w d\rho}{\displaystyle \int_{B(P,r)} w d\rho} + \frac{\displaystyle \int_{B(P,r)} u w_{x_i} d\rho - u(P) \int_{B(P,r)} w_{x_i} d\rho}{\displaystyle \int_{B(P,r)} w d\rho},$$

 $i = 1, 2, \dots, n$, for all $(P, r) \in \mathbb{R}^*$

THEOREM 4*. If the W.F. $w \in C^1(R)$ and $u \in S(w, R)$, then u satisfies the second order elliptic differential equation

$$(0.7) w\Delta u + 2\sum_{i=1}^{n} w_{x_i} u_{x_i} = 0$$

in R, where Δu is the Laplacian of u.

REMARK 3*. In proving Theorem 4* incidentally the following was shown: If the W.F. $w \in C^1(R)$ and $u \in S(w, R)$, then

(0.8)
$$\Delta u(P) \cdot \int_{B(P,r)} w d\rho + 2 \sum_{i=1}^{n} u_{x_i}(P) \cdot \int_{B(P,r)} w_{x_i} d\rho = 0$$

for each $(P, r) \in \mathbb{R}^*$.

THEOREM 5*. Let w be a W.F. defined in R and λ be a real number such that $w \in C^2(R)$ and is a solution of the differential equation

$$(0.9) \Delta F + \lambda F = 0$$

in R. Then a necessary and sufficient condition that $u \in S(w,R)$ is that

- (i) $u \in C^2(R)$ and
- (ii) u satisfies the differential equation

$$(0.10) w\Delta u + 2\sum_{i=1}^{n} u_{x_i} w_{x_i} = 0$$

in R.

REMARK 4*. In proving Theorem 5* incidentally the following was shown: If the W.F. $w \in C^2(R)$ and is a solution of (0.9), then w(P) > 0 for all P in R.

COROLLARY 1*. Let w be a W.F. defined in R and λ be a real number such that $w \in C^2(R)$ and is a solution of the differential equation

$$(0.11) \Delta F + \lambda F = 0.$$

in R. Then the following are true:

- (a) If $f \in C^2(R)$ and is a solution of (0.11), then $f/w \in S(w, R)$.
- (b) If $u \in S(w, R)$, then $uw \in C^2(R)$ and is a solution of (0.11).

COROLLARY 2*. Let w be a W.F. defined in a region R of E_n (n>1) and λ a real number such that $w \in C^2(R)$, and is a solution of the equation

$$\Delta F + \lambda F = 0$$

in R. Then S(w, R) is infinite dimensional.

REMARK 5*. In E_1 the following can be proved easily:

If the W.F. $w \in C^1(R)$, then

- (i) $1 \leq \dim S(w, R) \leq 2$
- (ii) dim S(w, R) = 2 if and only if $w \in C^2(R)$ and is a solution of

$$\frac{d^2w}{dx^2} + \lambda \, \frac{dw}{dx} = 0$$

in R, for some real constant λ .

The importance of the weight functions which are solutions of the equation

$$(0.13) \Delta w + \lambda w = 0$$

has been demonstrated in the previous paper [1].

In this paper we propose to deduce in terms of the W.A.P. a necessary and sufficient condition for a W.F. to be a solution of (0.13). From this result we will prove our main theorem of $\S I$, namely, "S(w,R) is infinite dimensional if and only if w is a solution of (0.13)."(2)

In §II we will consider derivatives of functions belonging to S(w, R) and deduce necessary and sufficient conditions for these derivatives to belong to S(w, R).

⁽²⁾ Added in proof. True only in E_2 . See also footnote (3).

Here again we will emphasize the role of weight functions which are solutions of (0.13), specially the exponential weight functions $\exp \{\sum_{i=1}^{n} a_i x_i\}$.

I. The differential equation $\Delta w + \lambda w = 0$.

THEOREM 1. Let w be a W.F. belonging to class $C^1(R)$. A necessary and sufficient condition that $w \in C^2(R)$ and is a solution of

$$(1.0) \Delta w + \lambda w = 0$$

in R, where λ is some real constant, is that

- (i) w(P) > 0 for all $P(x_1, x_2, \dots, x_n)$ in R and
- (ii) $w_{x_i}/w \in S(w,R)$ for $i = 1, 2, \dots, n$.

Proof. Necessity. Let $w \in C^2(R)$ and be a solution of (1.0). Then w is analytic in R and each of the partial derivatives w_{x_i} , $i = 1, 2, \dots, n$, is also a solution of (1.0). Again by Remark 4*, w(P) > 0 for all $P = P(x_1, x_2, \dots, x_n)$ in R. Hence by Corollary 1*, $w_{x_i}/w \in S(w, R)$ for $i = 1, 2, \dots, n$.

Sufficiency. Suppose that w(P) > 0 for all $P = P(x_1, x_2, \dots, x_n)$ in R and $w_{x_i}/w \in S(w,R)$ for $i=1,2,\cdots,n$. $w_{x_i}/w=F^i \in S(w,R)$ implies by Theorem 2* that $F^i \in C^2(R)$ and $w \in C^3(R)$. Also by Theorem 4*, F^i is a solution of the differential equation

(1.1)
$$w\Delta F^{i} + 2\sum_{i=1}^{n} F_{x}^{i} w_{x_{j}} = 0,$$

 $i = 1, 2, \dots, n$. Again $F^i w = w_{x_i}$ implies that

$$(1.2) \Delta w + \lambda w = 0,$$

where

$$\lambda = -\sum_{i=1}^{n} \{F_{x_i}^i + (F^i)^2\}.$$

Clearly λ belongs to class $C^1(R)$ and

$$\frac{\partial \lambda}{\partial x_i} = \lambda_{x_j} = -\sum_{i=1}^n \left\{ F_{x_i x_j}^i + 2F^i F_{x_j}^i \right\}, \qquad j = 1, 2, \dots, n.$$

Using

$$F_{x_i}^i = F_{x_i}^j, F_{x_i x_i}^i = F_{x_i x_i}^j, \quad i, j = 1, 2, \dots, n;$$

we have

$$w\lambda_{x_j} = -\sum_{i=1}^n \left\{ wF_{x_ix_i}^j + 2F_{x_i}^j w_{x_i} \right\} = -\left\{ w\Delta F^j + 2\sum_{i=1}^n F_{x_i}^j W_{x_i} \right\} = 0.$$

Since

$$w \neq 0$$
 in R, $\lambda_{x_j} = 0$ in R for $j = 1, 2, \dots, n$.

Therefore λ is a constant. This completes the proof.

Dimension of S(w, R).

THEOREM 2. Let R be a region in E_2 and w be a positive W.F. belonging to class $C^1(R)$. Then S(w,R) is infinite dimensional if and only if w belongs to class $C^2(R)$ and is a solution of

$$(1.3) \Delta w + \lambda w = 0$$

in R for some real constant λ . Furthermore, if S(w,R) is finite dimensional then $1 \le \dim S(w,R) \le 2$.

Proof. If $w \in C^2(R)$ and is a solution of (1.3) then S(w, R) is infinite dimensional by Corollary 2*. So now suppose that w be a positive W.F. belonging to class $C^1(R)$ such that $\dim S(w, R) > 2$. Then there exists two nonconstant functions u_1 and u_2 both belonging to S(w, R) such that $1, u_1, u_2$, are linearly independent over R. By Theorem 4* and Remark 3* we have

(1.4)
$$w\Delta u_i + 2(w_x u_{ix} + w_y u_{iy}) = 0, \ i = 1, 2,.$$

in R and

(1.5)
$$\Delta u_i(P) + 2u_{ix}(P) \left[\frac{\int_{B(P,r)} w_x d\rho}{\int_{B(P,r)} w d\rho} \right] + 2u_{iy}(P) \left[\frac{\int_{B(P,r)} w_y d\rho}{\int_{B(P,r)} w d\rho} \right] = 0$$

for each $(P,r) \in \mathbb{R}^*$. Therefore we have

$$(1.6) \quad u_{ix}(P) \left[\frac{w_{x}(P)}{w(P)} - \frac{\int_{B(P,r)} w_{x} d\rho}{\int_{B(P,r)} w d\rho} \right] + u_{iy}(P) \left[\frac{w_{y}(P)}{w(P)} - \frac{\int_{B(P,r)} w_{y} d\rho}{\int_{B(P,r)} w d\rho} \right] = 0,$$

for each $(P, r) \in R^*$, i = 1, 2.

Let R_1 be the subset of R to which a point P belongs if and only if the Jacobian

$$J_{12} = \frac{D(u_1, u_2)}{D(x, y)} = \begin{vmatrix} u_{1x} & u_{1y} \\ u_{2x} & u_{2y} \end{vmatrix}$$

does not vanish at P. R_1 is a dense subset of R. For, if not, then there exists a point P in $R - R_1$ and a neighborhood N(P) of the point P lying in R such that the Jacobian J_{12} vanishes identically in N(P). If at least one of the minors, say u_{1x} , is not identically zero in N(P), then there is a point Q and a neighborhood N(Q) of the point Q lying in N(P) such that $u_{1x} \neq 0$ in N(Q). Hence there exists a functional relation $u_2 = \phi(u_1)$ valid in N(Q). Since each of u_1 and u_2 belong

to $C^2(R)$ and $u_{1x} \neq 0$ in N(Q), ϕ is twice continuously differentiable and we have

$$w\Delta u_2 + 2u_{2x}w_x + 2u_{2y}w_y = w \cdot \frac{d^2\phi}{du^2} \{(u_{1x})^2 + (u_{1y})^2\} = 0$$

or

$$\frac{d^2\phi}{du^2} = 0.$$

Hence $u_2 = c_1 u_1 + c_2$, in N(Q), where c_1 and c_2 are real constants. This means by the maximum principle of the elliptic equation

$$w\Delta u + 2w_x u_x + 2w_y u_y = 0$$

that $u_2 = c_1 u_1 + c_2$ in R, contradicting the linear independence assumption. Therefore every minor of J_{12} is identically zero in N(P) implying that each of u_1 and u_2 is constant in N(P) and hence in R contradicting again our hypothesis. Therefore R_1 is a dense subset of R. Now to prove our theorem consider the equations (1.6). Clearly

(1.8)
$$\int_{B(P,r)} w_x d\rho / \int_{B(P,r)} w d\rho = w_x(P)/w(P)$$

(1.9)
$$\int_{B(P,r)} w_y d\rho / \int_{B(P,r)} w d\rho = w_y(P)/w(P)$$

for each point P in R_1 and each r satisfying 0 < r < d(P, T). Since R_1 is dense, we conclude that the relations (1.8) and (1.9) are true for each $(P, r) \in R^*$. This means that each of the functions w_x/w and w_y/w belongs to S(w, R). Hence by Theorem 1 there exists a real constant λ such that $w \in C^2(R)$ and is a solution of (1.3). Therefore S(w, R) is infinite dimensional by Corollary 2^* .

It is clear also that if S(w, R) is finite dimensional then $1 \le \dim S(w, R) \le 2$.

THEOREM $3(^3)$. Let R be a region in $E_n(n>2)$ and w be a positive W.F. belonging to class $C^1(R)$. Then S(w,R) is infinite dimensional if and only if w belongs to class $C^2(R)$ and is a solution of

$$\Lambda w + \lambda w = 0$$

in R, for some real constant λ . If S(w,R) is finite dimensional then

$$1 \leq \dim S(w,R) \leq 2n-1$$
.

Proof. For simplicity we will give the proof for n = 4. Proof for the general case is quite similar.

⁽³⁾ Added in proof. Theorem 3 is not possibly true. Mr. David Stanford of Denison University, Granville, Ohio, seems to have a counterexample. The author hopes to clarify this point in a future paper.

If $w \in C^2(R)$ and is a solution of $\Delta w + \lambda w = 0$, for some real constant λ , then by Corollary 2*, S(w,R) is infinite dimensional. So now suppose that w be a positive W.F. belonging to class $C^1(R)$ such that $\dim S(w,R) > 2 \cdot 4 - 1 = 7$. Then there exists nonconstant functions u_1, u_2, \dots, u_7 all belonging to S(w,R) such that $1, u_1, u_2, \dots, u_7$ are linearly independent over R. As in Theorem 2, we have by Theorem 4* and Remark 3* the system of 7 equations:

(1.10)
$$\sum_{i=1}^{n} u_{jx_{i}}(P) \left[w_{x_{i}}(P)/w(P) - \int_{B(P,r)} w_{x_{i}} d\rho / \int_{B(P,r)} w d\rho \right] = 0,$$

 $j = 1, 2, \dots, 7$; for each $(P, r) \in R^*$.

Let (j_1, j_2, j_3, j_4) be a combination of four distinct integers taken from the seven positive integers $1, 2, \dots, 7$. The system of equations (1.10) gives rise to ${}_{7}C_{4} = 35$ Jacobians of the form

$$J_{j_1j_2j_3j_4} = \frac{D(u_{j_1}, u_{j_2}, u_{j_3}, u_{j_4})}{D(x_1, x_2, x_3, x_4)}.$$

Let R_1 be the subset of R to which a point P belongs if and only if at least one of the ${}_{7}C_4=35$ Jacobians $\{J_{j_1j_2j_3j_4}\}$ does not vanish at P. R_1 is a dense subset of R. For, if not, then there exists a point P and a neighborhood N(P) of the point P lying in R such that each of the 35 Jacobians $\{J_{j_1j_2j_3j_4}\}$ vanishes identically in N(P). This again means that every first, second, and third minor of each of the 35 Jacobians $\{J_{j_1j_2j_3j_4}\}$ vanishes identically in N(P). For, if possible, let one of the first minors of J_{1234} , say $D(u_1, u_2, u_3)/D(x_1, x_2, x_3)$, does not vanish identically in N(P). Then there is a point Q and a neighborhood N(Q) of the point Q lying in N(P) such that $D(u_1, u_2, u_3)/D(x_1, x_2, x_3) \neq 0$ in N(Q). Hence considering also the Jacobians J_{1235} , J_{1236} , J_{1237} , there exists functional relations

(1.11)
$$u_4 = \phi_4(u_1, u_2, u_3), \ u_5 = \phi_5(u_1, u_2, u_3), \\ u_6 = \phi_6(u_1, u_2, u_3), \ u_7 = \phi_7(u_1, u_2, u_3)$$

each valid in N(Q). Also there is a functional relation

$$\phi(u_4, u_5, u_6, u_7) = 0,$$

valid in N(P).

Therefore (1.11) and (1.12) imply that there is a functional relation

$$\psi(u_1,u_2,u_3) = 0,$$

valid in N(Q) contradicting the fact that $D(u_1, u_2, u_3)/D(x_1, x_2, x_3) \neq 0$ in N(Q). Hence every first minor of each of the 35 Jacobians vanishes identically in N(P). If possible, suppose now that one of the second minors of J_{1234} , say, $D(u_1, u_2)/D(x_1, x_2)$, is not identically zero in N(P). Then there exists a point Q and a neighborhood N(Q) of the point Q lying in N(P) such that $D(u_1, u_2)/D(x_1, x_2)$

 $\neq 0$ in N(Q). Hence, considering also the Jacobian J_{1256} , there exists functional relations

$$(1.13) u_3 = \phi_3(u_1, u_2), \ u_4 = \phi_4(u_1, u_2), \ u_5 = \phi_5(u_1, u_2), \ u_6 = \phi_6(u_1, u_2)$$

valid in N(Q). (1.12) and (1.13) lead to functional relation $\psi(u_1, u_2) = 0$ valid in N(Q), contradicting the nonvanishing of $D(u_1, u_2)/D(x_1, x_2)$ in N(Q). Hence every second minor of each of the 35 Jacobians $\{J_{j_1j_2j_3j_4}\}$ vanishes identically in N(P). Finally suppose that one of the third minors of J_{1234} , say $\partial u_1/\partial x_1$ is not identically zero in N(P). Then there exists functional relations of the form

$$u_2 = \phi_2(u_1), \quad u_3 = \phi_3(u_1), \quad u_4 = \phi_4(u_1),$$

valid in some neighborhood N(Q) of a point Q lying in N(P). Now applying similar arguments as in Theorem 2, we get a relationship $u_2 = c_1u_1 + c_2$ valid in R, where c_1 and c_2 are real constants which contradicts the linear independence assumption. Therefore every third minor of each of the 35 Jacobians $\{J_{j_1j_2j_3j_4}\}$ vanishes identically in N(P), which means that each of the functions $u_1, u_2, u \cdots, u_7$ is constant in N(Q) and hence, by the maximum principle of the elliptic equation (0.10), in R, implying again a contradiction. Therefore R_1 is a dense subset of R.

Now arguing similarly as in Theorem 2, we conclude that each of the functions w_{x_i}/w , i=1,2,3,4, belong to S(w,R). Hence by Theorem 1, there exists a real constant λ such that $w \in C^2(R)$. and is a solution of (1.0) in R. Hence S(w,R) is infinite dimensional by Corollary 2^* . It is also clear that if S(w,R) is finite dimensional then $1 \le \dim S(w,R) \le 2 \cdot 4 - 1 = 7$.

II. Derivatives of functions satisfying W.A.P. It is known that derivatives of harmonic functions, defined in a given region R of E_n , are also harmonic in that region. But this is not, in general, true for functions satisfying W.A.P. unless they satisfy a similar W.A.P. with respect to the derivatives of the W.F. For example, consider the W.F., w(x, y) = x + y, defined in R, where R is the first quadrant of the plane E_2 . The function $u(x, y) = x^2 - 4xy + y^2$ is a solution of

$$(2.0) w\Delta u + 2(w_{x}u_{x} + w_{y}u_{y}) = 0$$

in R. Also $u \in C^2(R)$. Since $w \in C^2(R)$ and is a solution of $\Delta w = 0$ in R, by Theorem 5*, $u \in S(w, R)$. But $u_x = 2x - 4y$ and $u_y = -4x + 2y$, do not satisfy (2.0) and hence cannot satisfy W.A.P. with respect to w in R.

On the other hand $w(x, y) = \exp(x + y)$ is a W.F. in E_2 . $w \in C^2(E_2)$ and is a solution of

$$\Delta w - 2w = 0$$

in E_2 . The function $u(x, y) = x^2 - 2xy + y^2 - x - y$ belongs to class $C^2(E_2)$ and is a solution of

$$w\Delta u + 2w_x u_x + 2w_y u_y = 0$$

in E_2 . Hence by Theorem 5*, $u \in S(w, E_2)$. Also each of the derivatives $u_x = 2x - 2y - 1$, $u_y = -2x + 2y - 1$ belongs to class $C^2(E_2)$ and is a solution of (2.0). Therefore each of the derivatives u_x and u_y belongs to $S(w, E_2)$.

THEOREM 4. Let R be a region in E_n and w be a W.F. belonging to class $C^1(R)$. If $u \in S(w,R)$, then a necessary and sufficient condition that the partial derivative $\partial u/\partial x_i = u_{x_i}$, $1 \le i \le n$, will belong to S(w,R) is that

(2.1)
$$\int_{B(P,r)} u w_{x_i} d\rho = u(P) \int_{B(P,r)} w_{x_i} d\rho$$

for each $(P,r) \in R^*$.

Proof. By Remark 2*, the partial derivative u_x , satisfies the relation

$$(2.2) \ u_{x_i}(P) \int_{B(P,r)} w d\rho = \int_{B(P,r)} u_{x_i} w d\rho + \left[\int_{B(P,r)} u w_{x_i} d\rho - u(P) \int_{B(P,r)} w_{x_i} d\rho \right]$$

for each $(P, r) \in \mathbb{R}^*$. It is clear from (2.2) that the theorem is true.

REMARK 1. If w be a positive constant, then S(w, R) is the class of all harmonic functions defined in R and $w_{x_i} = 0$, for $i = 1, 2, \dots, n$, implies that the relation (2.1) is true for constant W.F., which simply means that derivatives of harmonic functions are also harmonic as is well known.

THEOREM 5. Let the W.F. w belong to class $C^2(R)$ and be solution of

$$(2.3) \Delta w + \lambda w = 0$$

in R, where λ is a real constant. If $u \in S(w, R)$ then these are equivalent:

- (i) u_{x_i} , $1 \le i \le n$, belongs to S(w, R)
- (ii) uw_{x}/w belongs to S(w,R)
- (iii) uw_{x_i} is a solution of (2.3) in R
- (iv) u_{x_i} w is a solution of (2.3) in R
- (v) u is a solution of

(2.4)
$$w_{x_i} \Delta u + 2 \sum_{j=1}^n u_{x_j} w_{x_i x_j} = 0$$

in R.

Proof. By hypothesis and from Theorem 2^* , each of u and w is analytic in R. Also, by Theorem 1, w(P) > 0 for each point $P = P(x_1, x_2, \dots, x_n)$ in R and each of the functions w_{x_i}/w , $i = 1, 2, \dots, n$, belongs to S(w, R).

Now suppose that (i) is true. Using Remark 3* we can write

$$u_{x_i}(P) \int_{B(P,r)} w d\rho = \int_{B(P,r)} \{u_{x_i} + (uw_{x_i})/w\} w d\rho - u(P) \int_{B(P,r)} \{w_{x_i}/w\} w d\rho,$$

$$\{u_{x_i}(P) + u(P)w_{x_i}(P)/w(P)\} \int_{B(P,r)} w d\rho = \int_{B(P,r)} \{u_{x_i} + (uw_{x_i})/w\} w d\rho$$

for each $(P,r) \in R^*$ which implies that $u_{x_i} + uw_{x_i}/w \in S(w,R)$. Since S(w,R) is a linear space, $uw_{x_i}/w \in S(w,R)$. Hence (i) implies (ii). Next suppose that (ii) is true. Then by Corollary 1^* , uw_{x_i} is a solution of (2.3). Therefore (ii) implies (iii). Now suppose that (iii) is true. By hypothesis and from Corollary 1^* , uw is a solution of (2.3) and hence $(uw)_{x_i} = u_{x_i}w + uw_{x_i}$ is also a solution of (2.3). We conclude from the linearity of (2.3) that $u_{x_i}w$ is a solution of (2.3). Thus (iii) implies (iv).

Next suppose that (iv) is true. We have

$$\Delta(u_{x},w) + \lambda(u_{x},w) = 0.$$

Also by hypothesis $\Delta w + \lambda w = 0$ and

(2.6)
$$w\Delta u + 2\sum_{j=1}^{n} u_{x_{j}} w_{x_{j}} = 0.$$

Differentiation of (2.6) with respect to x_i yields

$$\left\{ w_{x_i} \Delta u + 2 \sum_{j=1}^{n} u_{x_j} w_{x_i x_j} \right\} + \left\{ \Delta (u_{x_i} w) + \lambda (u_{x_i} w) \right\} = 0$$

or

$$w_{x_i}\Delta u + 2\sum_{j=1}^n u_{x_j}w_{x_ix_j} = 0.$$

Therefore (iv) implies (v).

Finally suppose that (v) is true. Now differentiation of (2.6) with respect to x_i gives

$$\left\{ w_{x_i} \Delta u + 2 \sum_{i=1}^{n} u_{x_j} w_{x_i x_j} \right\} + \left\{ w \Delta u_{x_i} + 2 \sum_{i=1}^{n} u_{x_i x_j} w_{x_j} \right\} = 0.$$

Therefore we have $w\Delta u_{x_i} + 2\sum_{j=1}^n u_{x_ix_j}w_{x_j} = 0$, which by Theorem 5* means that $u_i \in S(w, R)$. This completes the cycle.

Exponential Weight Functions, Definition. Weight functions of the form

$$w(x_1, x_2, \dots, x_n) = k \exp(a_1 x_1 + a_2 x_2 + \dots + a_n x_n),$$

 $(x_1, x_2, \dots, x_n) \in E_n$, where a_i 's are real constants and k is a positive real constant, are called exponential weight functions.

Properties of exponential weight functions. If w be an exponential W.F., then

- (2.7) w is an analytic W.F. in any subregion R of E_n ,
- (2.8) w is a solution of $\Delta w + \lambda w = 0$ in E_n , where $\lambda = -\sum_{i=1}^n a_i^2$.
- (2.9) $w_{x_i}/w = a_i$, $i = 1, 2, \dots, n$.

The differential equation $\Delta u + 2 \sum_{i=1}^{n} a_i u_{x_i} = 0$.

THEOREM 6. For an exponential W.F. $w(x_1, x_2, \dots, x_n) = k \exp(\sum_{i=1}^n a_i x_i)$, a necessary and sufficient condition that $u \in S(w, R)$ is that $u \in C^2(R)$ and is a solution of

(2.10)
$$\Delta u + 2 \sum_{i=1}^{n} a_i u_{x_i} = 0,$$

in R.

Proof. The theorem follows at once from Theorem 5*.

THEOREM 7. Let $w(x_1, x_2, \dots, x_n) = k \exp(\sum_{i=1}^n a_i x_i)$ be an exponential W.F. If $u \in S(w, R)$, then

- (i) u is analytic in R and
- (ii) if m be a positive integer and $D^m u$ be any mth order partial derivative of u, then $D^m u \in S(w, R)$.

Proof. Part (i) is an immediate consequence of Theorem 2*. Again S(w, R) is a linear space and $u \in S(w, R)$ implies that each of the functions $uw_{x_i}/w = a_i u$, $i = 1, 2, \dots, n$, also belongs to S(w, R). Hence by Theorem 5 each of the derivatives u_{x_i} , $i = 1, 2, \dots, n$, belongs to S(w, R). Applying mathematical induction, we see that the theorem is true.

Characterisation of exponential W.F. Property (2.9) and part (ii) of Theorem 7 characterises exponential weight function in the sense of the following theorem:

THEOREM 8. Let w be a W.F. belonging to class $C^2(R)$ and is a solution of $\Delta w + \lambda w = 0$ for some real constant. Then the following are equivalent:

- (i) If $u \in S(w, R)$, then each of the derivatives u_{x_i} , $i = 1, 2, \dots, n$, also belongs to S(w, R).
 - (ii) w is an exponential W.F.

Proof. By Theorem 1, $w(P) = w(x_1, x_2, \dots, x_n) > 0$ for all $P(x_1, x_2, \dots, x_n)$ in R and each of the functions $w_{x_i}/w \in S(w, R)$, $i = 1, 2, \dots, n$. Suppose that (i) is true. Then each of the partial derivatives $(\partial/\partial x_i)(w_{x_i}/w)$, $i = 1, 2, \dots, n$, also belongs to S(w, R). Therefore by Theorem 5 each of the functions $(w_{x_i}/w)^2$ belongs to S(w, R). Let $P_0 \in R$. Since S(w, R) is a linear space, each of the functions $F_i = \{w_{x_i}/w - w_{x_i}(P_0)/w(p_0)\}^2$, $i = 1, 2, \dots, n$, also belongs to S(w, R). Since F_i has a minimum (zero) at P_0 in R, it follows from the minimum-principle of the differential equation

$$w\Delta u + 2\sum_{i=1}^{n} w_{x_i}u_{x_i} = 0$$

that $w_{x_i} = a_i w$, $i = 1, 2, \dots, n$, where a_i 's are real constants. Hence $w(x_1, x_2, \dots, x_n)$

= $k \exp(\sum_{i=1}^{n} a_i x_i)$, for each $(x_1, x_2, \dots, x_n) \in R$, where k is a positive real constant. Therefore (i) implies (ii). Now suppose that (ii) is true. Let $w(x_1, x_2, \dots, x_n) = k \exp(\sum_{i=1}^{n} a_i x_i)$ and $u \in S(w, R)$. Then by Theorem 7 each of the derivatives u_{x_i} , $i = 1, 2, \dots, n$, belongs to S(w, R). Hence (ii) implies (i). This completes the proof.

BIBLIOGRAPHY

- 1. Anil K. Bose, Functions satisfying a weighted average property, Trans. Amer. Math. Soc. 118 (1965), 472-487.
 - 2. Edouard Goursat, A course in mathematical analysis, Vol. I, Dover, New York, 1904.

University of Alabama,
Tuscaloosa, Alabama
University of North Carolina
Chapel Hill, North Carolina