L^p-CONJECTURE FOR LOCALLY COMPACT GROUPS. I

BY M. RAJAGOPALAN

Let G be a locally compact group with a left Haar measure ' μ '. Let 'p' and 'r' be two real numbers > 1. By $L^{r,p}$ conjecture we mean the following assertion: whenever $f \in L^r(G)$ and $g \in L^p(G)$ we have that the convolution product f * g of f and g is defined and belongs to $L^p(G)$ again if and only if G is compact. By L^p conjecture we mean the assertion above with r=p. Both the conjectures were widely believed to be true though there was no written statement about these conjectures until recently. But in 1960, Kunze and Stein [3] showed that the $L^{r,p}$ conjecture is false for the unimodular group of 2×2 real matrices. This naturally raises the question whether the L^p -conjecture is true in general. The first published result on the L^p -conjecture is by Zelazko [9] and Urbanik [7] in 1961. They proved the conjecture to be true for the abelian case. Then in [5] the author established the truth of the L^p -conjecture for discrete groups when $p \ge 2$. The author announced in that paper that the conjecture is true for all groups when p>2 and presented this result to Amer. Math. Soc. in August of 1963 at the Boulder meeting. At the same time Zelazko [10] established the conjecture for all p > 2 for all unimodular groups. He claims to have established the conjecture for p > 2 for all groups in that paper but his crucial Lemma 1 of that paper contains a gap in the proof. In a private communication, Zelazko agreed to this gap. The problem is still open in general when p > 1.

In this paper we prove the following:

The L^p -conjecture is true for all locally compact groups when p > 2.

The L^p -conjecture is true for totally disconnected groups when p=2.

The methods used in this paper yield the truth of the conjecture for all nilpotent groups, and all unimodular C-groups of Iwasawa when p > 1. But this result will appear elsewhere.

This is a portion of the author's doctoral dissertation submitted to Yale University in 1963 under the guidance of Professor C. E. Rickart. The author had a grant AFOSR 62–20 from the Air Force when this work was done. The author thanks Professor C. Ionescu-Tulcea for having brought the paper [9] of Zelazko to his attention.

Notations and conventions. All purely topological notions are taken from [2]. All topological spaces occurring in this paper are taken to be Hausdorff. All notions in topological groups and integration on locally compact groups are

taken in general from [8]. By a normal algebra we mean a Banach space which is also a ring where multiplication is bicontinuous. A Banach algebra is a normed algebra where we have further the inequality $||xy|| \le ||x|| ||y||$ for all elements 'x' and 'y' of the algebra. The symbols μ , ν , θ are used for measures. When only one left Haar measure μ is used on a locally compact group G we write sometimes $\int_G f(x) dx$ or $\int f(x) dx$ instead of $\int_G f(x) d\mu(x)$. If $H \subset G$ is a subset of a group G, then $\chi_H(x)$ will denote the characteristic function of H. L(G) will denote the class of complex valued continuous functions on G with compact support.

If G is a locally compact group with a left Haar measure ' μ ' and $1 \le p < \infty$ then $L^p(G)$ will denote the equivalence classes of Borel measurable functions f on G with complex values such that $\int |f(x)|^p dx < \infty$. If $f \in L^p(G)$ then $||f||_p$ will denote $(\int_G |f|^p dx)^{1/p}$ when $1 \le p \le \infty$.

1. L^p -conjecture for the case p > 2, and some general results.

DEFINITION 1.1. Let G be a locally compact group with a left Haar measure ' μ '. Let f and g be two Borel measurable complex valued functions on G. Then the convolution f * g of 'f' and 'g' is said to exist if the integral $\int_G |f(y)g(y^{-1}x)| dy$ exists for almost all $x \in G$. In this case f * g(x) is defined to be $\int_G f(y)g(y^{-1}x) dy$. If $1 \le p < \infty$, we say that $L^p(G)$ is closed under convolution if whenever f and g belong to $L^p(G)$ we have that f * g exists and again belongs to $L^p(G)$.

 L^p -conjecture 1.2. This is the following statement: Let G be a locally compact group with a left Haar measure μ . Then $L^p(G)$ is closed under convolution for some p such that 1 if and only if <math>G is compact.

REMARK. The "if" part of the L^p -conjecture is trivial to establish. So we consider the "only if" part in this paper.

Theorem 1.3. Let G be a locally compact group with a left Haar measure ' μ '. Let $L^p(G)$ be closed under convolution for some p > 1 and $< \infty$. Then $L^p(G)$ is a normed algebra with convolution as multiplication. Moreover, in this case we can choose a suitable left Haar measure μ_1 such that $L^p(\mu_1)$ is a Banach algebra.

Proof. Let 1/p+1/q=1 and $\Delta(x)$ the modular function of G. Let $f, g \in L^p(G)$ and $h \in L^q(G)$. Let $(f, h) = \int_G f(x)h(x) dx$ and let T_f be the operator $g \to f * g$ in $L^p(G)$. Let $\tilde{f}(x) = f(x^{-1}) \Delta(x^{-1})$. Then by a routine calculation it follows that $(T_f(g), h) = (f * g, h) = (g, \tilde{f} * h)$ for all $f, g \in L^p(G)$ and $h \in L^q(G)$. So by an easy application of the closed graph theorem we get that T_f is continuous in $L^p(G)$. Similarly we get that the right multiplication is continuous in $L^p(G)$. So by an application of the principle of uniform boundedness we get $L^p(G)$ is a normed algebra. So there is a constant K such that $||f * g||_p \le K ||f||_p ||g||_p$ for all $f, g \in L^p(G)$. Now choose a left Haar measure μ_1 on G by the relation $d\mu_1(x) = K^p d\mu(x)$. Then $L^p(\mu_1)$ will be a Banach algebra under convolution.

LEMMA 1.4. Let G be a locally compact group with a left Haar measure μ . Let $H \subseteq G$ be an open subgroup of G. Let $L^p(G)$ be closed under convolution for some p > 1. Then $L^p(H)$ is also closed under convolution. If G is the direct product $G_1 \times G_2$ of two closed subgroups G_1 and G_2 with left Haar measures μ_1 and μ_2 respectively and if $L^p(G)$ is closed under convolution then $L^p(G_1)$ and $L^p(G_2)$ are also closed under convolution.

Proof. Obvious.

LEMMA 1.5. Let G be a locally compact group with a left Haar measure μ . Let 'p' be a number such that $1 . Let <math>H \subseteq G$ be a compact normal subgroup of G. Let $L^p(G)$ be closed under convolution. Then $L^p(G/H)$ is also closed under convolution.

Proof. Let ν be the normalized Haar measure of H and $\varphi: G \to G/H$ be the canonical map from G onto G/H. Let θ be a left Haar measure on G/H such that the relation $\int_G f(x) \ d\mu(x) = [\int_{G/H} \left(\int_H f(tx) \ d\nu(t) \right) \ d\theta(\tilde{x})]$ holds for all $f \in L(G)$ where $\varphi(x) = \tilde{x}$. Then the following relations are easily deduced: If $T(f) = \int_H f(tx) \ d\nu(t)$ where $f \in L(G)$ then

- 1. $Tf \in L(G/H)$ whenever $f \in L(G)$.
- 2. T is linear from L(G) onto L(G/H).
- 3. T(f * g) = T(f) * T(g) for all $f, g \in L(G)$.
- 4. $||Tf||_p = ||f||_p$ for all $f \in L(G)$.

Now $L^p(G)$ is closed under convolution. So there is a constant K such that $||f * g||_p < K||f||_p ||g||_p$ from Theorem 1.3. So we have that $||\tilde{f} * \tilde{g}||_p \le K||\tilde{f}||_p ||\tilde{g}||_p$ for all \tilde{f} and $\tilde{g} \in L(G/H)$ from 1, 2, 3, and 4 above. Since $p < \infty$, we have that L(G/H) is dense in $L^p(G/H)$. Then we get by repeated use of Fatou's lemma, Fubini's theorem and monotone convergence theorem that if \tilde{f} and \tilde{g} belong to $L^p(G/H)$ then $\tilde{f} * \tilde{g}$ is defined and again belongs to $L^p(G/H)$.

Lemma 1.6. Suppose that the L^p -conjecture is true for a number p (1 for all totally disconnected locally compact groups and all connected lie groups. Then the conjecture is true for that 'p' for all locally compact groups.

Proof. By a theorem of Yamabe [4] every locally compact group G contains an open subgroup H and a compact normal subgroup $N \subset H$ such that H/N is a connected lie group (N) is normal with respect to H). So if $L^p(G)$ is closed under convolution then $L^p(H)$ is closed under convolution by Lemma 1.4. So $L^p(H/N)$ is closed under convolution by Lemma 1.5. So H/N is compact by hypothesis of the lemma. So the connected component G_0 of the identity e of G is compact. So $L^p(G/G_0)$ is closed under convolution by Lemma 1.5. So G/G_0 is compact by hypothesis of the lemma. So G is compact.

LEMMA 1.7. Let G be a locally compact group with a left Haar measure μ . Let V be a compact symmetric neighborhood of the identity e of G such that the group generated by V is not compact. Then the following are true:

- (i) If the set $\{u(V^{n+1})/\mu(V^n) \mid n=1,2,\ldots\}$ is bounded then $L^p(G)$ is not closed under convolution for any p>2.
- (ii) If the set $\{\mu(V^{2n})/\mu(V^n) \mid n=1, 2, 3, ...\}$ is bounded then $L^p(G)$ is not closed under convolution for any p>1.

Proof. Let there be a constant k>0 such that $\mu(V^{n+1})/\mu(V^n) \le k$ for all $n=1,2,3,\ldots$ Let $\chi_{V^n}(x)$ be the characteristic function of V^n for $n=1,2,3,\ldots$ Then

$$\chi_{V^n} * \chi_{V^{n+1}}(x) = \int_G \chi_{V^n}(y) \chi_{V^{n+1}}(y^{-1}x) \, d\mu(y)$$

$$\ge \mu(V^n) \chi_V(x) \quad \text{for all } x \in G \text{ and } n = 1, 2, \dots$$

So $\|\chi_{V^n} * \chi_{V^{n+1}}\|_p \ge \mu(V^n)(\mu(V))^{1/p}$. So

$$\frac{\|\chi_{V^n} * \chi_{V^{n+1}}\|_p}{\|\chi_{V^n}\|_p \|\chi_{V^{n+1}}\|_p} \ge \frac{\mu(V^n)(\mu(V))^{1/p}}{(\mu(V^n))^{1/p}(\mu(V^{n+1}))^{1/p}}$$

$$= \left(\frac{\mu(V^n)}{\mu(V^{n+1})}\right)^{1/p}(\mu(V))^{1/p}(\mu(V^n))^{1-(2/p)}$$

$$\ge \left(\frac{\mu(V)}{k}\right)^{1/p}(\mu(V^n))^{1-(2/p)}.$$

Thus $\lim_{n\to\infty} (\|\chi_{V^n} * \chi_{V^{n+1}}\|_p/\|\chi_{V^n}\|_p\|\chi_{V^{n+1}}\|_p) = \infty$ if p>2. Thus (i) follows from Theorem 1.3. The statement (ii) can be proved likewise.

LEMMA 1.8. Let G be a totally disconnected locally compact group with a left Haar measure μ . Let $L^p(G)$ be closed under convolution for a real number p (1 . Then there is a maximal compact open subgroup H of G. (That is H is a compact, open subgroup of G and any open compact subgroup of G containing H is H itself.)

Proof. Since G is totally disconnected, there are compact open subgroups in G (see p. 54 of [4]). Suppose there is an ascending sequence $H_1 \subset H_2 \subset \cdots \subset H_n \subset \cdots$ of compact open subgroups $H_1, H_2, \ldots, H_n, \ldots$ of G. Let $\chi_{H_n}(x) = 1$ if $x \in H_n$ and 0 if $x \in G - H_n$. Put $\varphi_n(x) = (\chi_{H_n}(x)/\mu(H_n))$ for $n = 1, 2, 3, \ldots$ Then $\varphi_n * \varphi_n = \varphi_n$ for all $n = 1, 2, 3, \ldots$ So

$$\frac{\|\varphi_n * \varphi_n\|_p}{\|\varphi_n\|_p^2} = \frac{\|\varphi_n\|_p}{\|\varphi_n\|_p^2} = \frac{1}{\|\varphi_n\|_p} = \frac{\mu(H_n)}{(\mu(H_n))^{1/p}} = (\mu(H_n))^{1-(1/p)}.$$

By Theorem 1.3 the set $\{\mu(H_n) \mid n=1, 2, 3, \ldots\}$ is bounded. Hence there is an n_0 such that $H_{n_0} = H_{n_0+1} = \cdots$. So every ascending sequence of compact, open subgroups of G is finite. Hence the lemma.

LEMMA 1.9. Let G be a totally disconnected locally compact group with a left Haar measure μ . Let p be a real number $(2 . Let <math>L^p(G)$ be closed under convolution. Then G contains an open compact normal subgroup.

Proof. By Lemma 1.8 there is a maximal, compact, open subgroup H. Now take any element 'a' $\in G-H$ and consider the group generated by $H \cup a^{-1}Ha$. This group should be compact. If not put $V = H \cup a^{-1}Ha$. Then V is a compact symmetric open neighborhood of the identity $e \in G$. Since V^2 is compact there is a finite number of elements a_1, a_2, \ldots, a_k of G such that $V^2 \subset (a_1V) \cup (a_2V) \cup \cdots \cup a_kV$. So $V^{n+1} \subset \bigcup_{i=1}^k a_iV^n$ for $n=1,2,3,\ldots$ So $\mu(V^{n+1}) \leq k\mu(V^n)$ for all $n=1,2,3,\ldots$ So $(\mu(V^{n+1})/\mu(V^n)) \leq k$ for all $n=1,2,3,\ldots$ Then $L^p(G)$ cannot be closed under convolution by Lemma 1.7 and Lemma 1.4 which contradicts our hypothesis on G. Since H is a maximal open compact subgroup of G we get that $H \cup a^{-1}Ha \subset H$. So $a^{-1}Ha \subset H$ for all 'a' $\in G$. So H is a compact, open, normal subgroup of G.

Theorem 1.10. Let G be a locally compact group with a left Haar measure μ . Let $L^p(G)$ be closed under convolution for a real number p (2). Then G must be compact.

Proof. Let us assume first that G is connected. Let V be a compact symmetric neighborhood of the identity e. Then adopting the proof of Lemma 1.9 we get that the set $\{(\mu(V^{n+1})/\mu(V^n)) \mid n=1,2,3,\ldots\}$ is bounded. Then by the connectedness of G and by Lemma 1.7 we get that G is compact. Now let us assume that G is totally disconnected. Then by Lemma 1.9 there exists a compact, open, normal subgroup H of G. Then G/H is a discrete group and $L^p(G/H)$ is closed under convolution by Lemma 1.5. So G/H is finite by Theorem 3 of [5]. Then G must be compact. So if G is either connected or totally disconnected the theorem is true. Now the result follows from Lemma 1.6.

2. The case p=2 of the L^p -conjecture.

DEFINITION 2.1. An involution * in an algebra A over complex numbers is a one-to-one map from A onto A such that the following hold:

- (i) $(x^*)^* = x$ for all $x \in A$.
- (ii) $(\lambda x + \mu y)^* = \bar{\lambda} x^* + \bar{\mu} y^*$ for all complex numbers λ and μ and $x, y \in A$.
- (iii) $(xy)^* = y^*x^*$ for all $x, y \in A$.

An A^* -algebra is a Banach algebra B with an involution * and an auxiliary norm $\|\cdot\|\cdot\|$ such that $\|\|xy\|\| \le \|\|x\|\| + \|\|y\|\|$ and $\|\|xx^*\|\| = \|\|x\|\|\|^2$ for all $x, y \in B$.

Let B be a Banach algebra over the complex numbers. An element x is said to be in the radical of B if there is an ideal $I \subseteq B$ such that $x \in I$ and $|t_{n \to \infty}| (||y^n||)^{1/n} \to 0$ as $n \to \infty$ for all $y \in I$. The algebra B is said to be semisimple if 0 is the only element in the radical of B.

Lemma 2.2. Let G be a unimodular locally compact group with a left Haar measure μ . Let $L^p(G)$ be closed under convolution for some p $(1 . Then <math>L^p(G)$ is a semisimple Banach algebra assuming that μ was properly chosen to make $L^p(G)$ a Banach algebra.

Proof. Let 1/p+1/q=1. Let $f^*(x)=\overline{f(x^{-1})}$ for all $f\in L^p(G)$. Then, from the fact that G is unimodular, one can check that $f\to f^*$ is an involution in $L^p(G)$. Moreover, by using standard theorems on integration one can show that $(f*g,h)=(g,f^**h)=(f,h*g^*)$ for all $f,g\in L^p(G)$ and $h\in L^q(G)$ where $(f,h)=\int_G f(x)\overline{h(x)}\ dx$. From this it follows easily that if $f\in L^p(G)$ and $g\in L^q(G)$ then $f*g\in L^q(G)$ and $\|f*g\|_q\leq \|f\|_p\|g\|_q$. From this and the fact that $L^p(G)$ is a Banach algebra and the Riesz convexity theorem it follows that $f*g\in L^2(G)$, and $\|f*g\|_2\leq \|f\|_p\|g\|_2$ for all $f\in L^p(G)$ and $g\in L^2(G)$. Now put $\|f\|\|=\sup\{\|f*g\|_2\|g\in L^2(G)\}$ and $\|g\|_2=1\}$. Then it easily follows that $\|f*g\|\|=\sup\{\|f*g\|_2\|g\in L^p(G)\}$ and $\|f*g\|\|=\sup\{\|f*g\|\|g\|_2\}$ for all $\|f*g\|\|\leq \|f\|\|g\|$ for all $\|f*g\|=1$. So $\|f*g\|=1$. So it is semisimple by a theorem of Rickart (Theorem 4.1.15 of [6]).

Theorem 2.3. Let G be a totally disconnected locally compact group with a left Haar measure μ . Let $L^2(G)$ be closed under convolution. Then G is compact.

Proof. Assume for the moment that G is unimodular. We may as well assume that ' μ ' was properly chosen so as to make $L^2(G)$ a Banach algebra. Let $f^*(x) = f(x^{-1})$ for all $f \in L^2(G)$. Then, as was shown in the proof of Lemma 2.2, * is an involution in $L^2(G)$ and $(f * g, h) = (g, f^* * h)$ $(f, h * g^*)$ for all $f, g, h \in L^2(G)$ where (f, g) is the inner product in $L^2(G)$. By Lemma 2.2 we have that $L^2(G)$ is semisimple and hence it is a semisimple H^* -algebra of Ambrose (see [1]). Now let K be a compact, open subgroup of G and let $\varphi(x) = \chi_K(x)/\mu(K)$ where $\chi_K(x)$ is the characteristic function of K.

Then $\varphi = \varphi^*$ and $\varphi * \varphi = \varphi$ and $\varphi \in L^2(G)$. So $\varphi * L^2(G) * \varphi$ is a semisimple H^* -algebra with an identity element and hence is finite dimensional (see [1]). But $\varphi * L^2(G) * \varphi$ consists exactly of those functions in $L^2(G)$ which are constant on double cosets modulo K. So the number of such cosets has to be finite and hence G must be compact.

In the general case let $\Delta(x)$ be the modular function of G and let

$$H = \{x \mid \Delta(x) = 1; x \in G\}.$$

Then H contains all compact, open subgroups of G. So H is an open subgroup of G. So $L^2(H)$ is closed under convolution by Lemma 1.4. Clearly H is unimodular. So H is compact by what was shown above. So $L^2(G/H)$ is closed under convolution, by Lemma 1.5. But G/H is a discrete subgroup of the reals. So it is finite by Theorem 2 of [5]. So G is compact again.

REFERENCES

- 1. W. Ambrose, Structure theorems for a class of Banach algebras, Trans. Amer. Math. Soc. 57 (1945), 364-368.
 - 2. J. L. Kelley, General topology, Van Nostrand, New York, 1955.
- 3. R. Kunze and E. Stein, Uniformly bounded representations and harmonic analysis of the 2×2 real unimodular group, Amer. J. Math. 82 (1960), 1-62.
- 4. D. Montgomery and L. Zippin, Topological transformation groups, Wiley, New York, 1955.
 - 5. M. Rajagopalan, On the l^p-spaces of a discrete group, Colloq. Math. 10 (1963), 49-52.
 - 6. C. E. Rickart, Banach algebras, Van Nostrand, New York, 1960.
- 7. K. Urbanik, A proof of a theorem of Zelazko on L^p-algebras, Colloq. Math. 8 (1961), 121-123.
 - 8. Andre Weil, L'integration dans les groupes topologiques, Hermann, Paris, 1953.
- 9. W. Zelazko, On the algebras L^p of a locally compact group, Colloq. Math. 8 (1961), 115-120.
 - 10. ——, A note on L^p-algebras, Colloq. Math. 10 (1963), 53-56.

Banaras Hindu University Varanasi, India University of Illinois Urbana, Illinois