SIMPLE-CONNECTIVITY AND THE BROWDER-NOVIKOV THEOREM(1)

BY M. KERVAIRE AND A. VASQUEZ

In this note we construct a family of odd-dimensional, closed, combinatorial manifolds, none of which has the homotopy type of a closed differentiable manifold. These manifolds all have an infinite cyclic fundamental group.

W. Browder [1] and S. P. Novikov [9] have proved that a *simply-connected* finite complex, K, satisfying Poincaré duality with respect to an odd-dimensional fundamental class $u \in H_{2n+1}(K)$, $(n \ge 2)$ has the homotopy type of a closed (2n+1)-dimensional differential manifold provided there exists a vector bundle, ξ , over K whose Thom space $T(\xi)$ has a spherical top homology class (i.e., $\pi_q T(\xi) \to H_q T(\xi)$ is surjective for $q = 2n + 1 + \dim \xi$).

Denoting one of our combinatorial manifolds by M, we prove that SM, the suspension of M, has a spherical top homology class, so that the trivial real line bundle over M satisfies the Browder-Novikov hypothesis. The manifolds, M, show that the Browder-Novikov theorem cannot be extended to the nonsimply-connected case, at least not without additional hypotheses on K. (Recall that the Thom space of the trivial real line bundle over a space X has the homotopy type of $S^1 \vee SX$.)

The manifolds M^{2n+1} are constructed from certain knotted homotopy (2n-1)-spheres in S^{2n+1} (n is odd). Let A be (the space of) the tangent unit disk bundle over S^n , and W the differential manifold with boundary obtained by plumbing together two copies A_1 , A_2 of A. (See [4], [5], or [8].) The images S_1 , S_2 in W of the zero cross-sections in A_1 and A_2 respectively have a single (transversal) intersection point. Denote by Σ^{2n-1} the boundary of W. It was proved in [8], or more generally follows from Smale theory, that Σ^{2n-1} is combinatorially equivalent to S^{2n-1} .

We now imbed W into S^{2n+1} . It is well known, and easy to see, that W can be differentiably imbedded into S^{2n+1} so that if ν denotes a normal vector-field on W in S^{2n+1} , and if S'_1 , S'_2 are the translates of S_1 , S_2 by a small positive amount ε along ν , then $\lambda_i = L(S_i, S'_i)$ for i = 1, 2, are *odd* integers, where $L(\cdot, \cdot)$ denotes the linking coefficient in S^{2n+1} . (For further remarks on this see the lemma on normal bundles at the end of this paper.)

Received by the editors August 16, 1966.

⁽¹⁾ This paper represents results obtained under the sponsorship of the Office of Naval Research, Contract NONR-285 (46) at the Courant Institute of Mathematical Sciences, New York University, and the National Science Foundation, Contract NSF-GP 4598 at Brandeis University.

Let $\phi: \Sigma^{2n-1} \times D^2 \to S^{2n+1}$ be a tubular neighborhood of bW, the boundary of W, and let $h: S^{2n-1} \to \Sigma^{2n-1}$ be a combinatorial equivalence. Then

$$\psi: S^{2n-1} \times D^2 \rightarrow S^{2n+1}$$

given by $\phi \circ (h \times id)$ is a combinatorial imbedding. Let $M^{2n+1} = \chi(S^{2n+1}, \psi)$ be the combinatorial manifold obtained from S^{2n+1} by spherical modification:

$$M^{2n+1} = (S^{2n+1} - \psi(S^{2n-1} \times B^2)) \cup D^{2n} \times S^1.$$

where $B^2 = \text{int } D^2$, and $(x, y) \in S^{2n-1} \times S^1 \subset D^{2n} \times S^1$ is identified with $\psi(x, y)$. As usual we denote by $\psi': D^{2n} \times S^1 \to M$ the imbedding induced by the inclusion.

PROPOSITION. The manifolds M^{2n+1} constructed above for odd n have the following properties for n > 1:

- (1) $\pi_i M \cong \pi_i(S^1)$ for i < n;
- (2) $\pi_n M$ as a Z[J]-module, where $J = \pi_1(S^1)$ generated by t, is isomorphic to the Z[J]-module with presentation

$$\{x_1, x_2; \lambda_1(t-1)x_1 + (\lambda(t-1)+1)x_2, (\lambda(t-1)-t)x_1 + \lambda_2(t-1)x_2\}.$$

(Here λ is an integer depending on the imbedding $W \to S^{2n+1}$, and can be chosen arbitrarily.)

- (3) $H_*(M) \cong H_*(S^1 \times S^{2n});$
- (4) $\pi_{2n+2}(SM) \to H_{2n+2}(SM)$ is surjective, where SM denotes the suspension of M.
- (5) For n=3, 7 the combinatorial equivalence $h: \Sigma^{2n-1} \to S^{2n-1}$ can be taken to be a diffeomorphism so that the manifold M^{2n+1} has a differential structure. For n=4k+1, M^{2n+1} does not have the homotopy type of any closed differential manifold.

REMARK. Since isomorphic Z[J]-modules have identical elementary ideals, and the 0th elementary ideal of the module under (2), i.e., the ideal generated by the determinant of the relation matrix, is $(\lambda_1\lambda_2-\lambda^2+\lambda)(t-1)^2+t$ it follows that by varying the coefficients λ_1 , λ_2 , λ we can get infinitely many distinct homotopy types for the manifold M^{2n+1} .

The proofs of (1) and (2) rely on the method for calculating the homotopy groups of the complement of a knot, exposed in [4]. It is clear that

$$M-\psi'(D^{2n}\times S^1) = S^{2n+1}-\psi(S^{2n-1}\times D^2).$$

Hence $\pi_i M = \pi_i (S^{2n+1} - bW)$ for i < 2n-1. Now, a homomorphism

$$I: \pi_1(S^{2n+1}-bW) \to Z$$

is given by assigning to $\alpha \in \pi_1(S^{2n+1}-bW)$ the intersection coefficient with W of a representative curve $f: S^1 \to S^{2n+1}-bW$. Clearly, I is surjective. To prove that I is injective, let U be a tubular neighborhood of W and let $Y = S^{2n+1} - U$. Then first, $\pi_1 Y = \{1\}$ by the van Kampen theorem, since W and hence bY are simply connected. Secondly, $\pi_1(Y, bY) = \{1\}$ by the homotopy exact sequence of (Y, bY).

An element $\alpha \in \operatorname{Ker} I$ can be represented by a differentiably imbedded curve $[0, 1] \to S^{2n+1} - bW$ which intersects W transversally in a finite number of interior points. Since $I(\alpha) = 0$, there will be a pair of consecutive intersection points with W having oppositive intersection coefficients. The arc joining these points represents an element of $\pi_1(Y, bY)$ and thus is homotopic to an arc in U which can then be pushed away from W, reducing the number of intersection points by 2. Eventually, we get a representative of the given element α whose image is contained in Y. Since Y is simply connected, $\alpha = 1$.

To calculate $\pi_i M$ for $i \le n$, denote by W_+ and W_- the two copies of W in bU=bY. Let $X_1=S^{2n+1}-bW$. Following Seifert, we construct the universal covering X of X_1 as the union of countably many copies of Y which we denote by Y^k , $k \in Z$, with W_+^k identified with W_-^{k+1} for every k. Then $\pi_i(S^{2n+1}-bW)=0$ for $2 \le i < n$ follows immediately from $H_iY=0$ for i < n. The module $\pi_n(S^{2n+1}-bW)$ is isomorphic to $H_n(X)$ for which we get a presentation by the Mayer-Vietoris theorem. If we denote by ξ_1 , ξ_2 the generators of H_nW represented by S_1 , S_2 respectively, ν_+ and ν_- the obvious mappings of W onto W_+ and W_- , then a presentation for $H_n(X)$ is obtained from a presentation of H_nY (as an abelian group) by adjoining the relations $t\nu_+(\xi_i)=\nu_-(\xi_i)$. Now, it is easy to see that H_nY is free abelian on 2 generators x_1 , x_2 , and if S is a sphere in Y, the class of S is given by

$$(S) = L(S, S_1)x_1 + L(S, S_2)x_2.$$

The presentation for $H_n(X) \cong \pi_n M$ claimed in (2) follows readily, with $\lambda = L(S_1, S_2)$. The proof of (3) is immediate.

To prove (4) we first observe that M has the homotopy type of a cell complex of the form

$$K = (S^1 \vee S_1^n \vee \cdots \vee S_n^n) \cup e_1^{n+1} \cup \cdots \cup e_n^{n+1} \cup e^{2n} \cup e^{2n+1}$$

(In fact, it can be proved using Smale theory that M has a handle decomposition inducing the above cell structure. See [4].) Since $H_nM=0$, we have, up to homotopy type

$$SM = (S^2 \cup_f e^{2n+1}) \cup_g e^{2n+2}.$$

Now, since $H^1M=Z$, there is a map $M\to S^1$ whose composition with the inclusion $S^1\to M$ is homotopic to the identity $S^1\to S^1$. Taking the suspension of these maps we see that S^2 is a retract of M. It follows that the attaching map f is trivial, and thus

$$SM = (S^2 \vee S^{2n+1}) \cup_a e^{2n+2},$$

up to homotopy type. Since $H_{2n+2}M=Z$, it follows that g must have degree 0 (on S^{2n+1}), and since $\pi_{2n+1}(S^2\vee S^{2n+1})=\pi_{2n+1}(S^2)+\pi_{2n+1}(S^{2n+1})$, g is homotopic to a mapping h into S^2 . Thus SM has the homotopy type of

$$S^{2n+1} \vee (S^2 \cup_{ah} e^{2n+2}).$$

Using again the retraction SM $\rightarrow S^2$, we see that h is trivial. So SM has the homotopy type of

$$S^2 \vee S^{2n+1} \vee S^{2n+2}$$

(4) is now obvious.

The proof of (5) will rely essentially on recent results of E. Brown and F. Peterson [2]. Suppose M^{2n+1} is a closed differential manifold $(n \text{ odd}, \neq 3, 7)$ with the properties (1), (2), and (3). We construct a knot as follows. Let $\phi: S^1 \times D^{2n} \to M$ be a differentiable imbedding representing the generator $t \in \pi_1 M$. Performing a spherical modification we obtain a manifold $\Sigma^{2n+1} = \chi(M, \phi)$ which is easily seen to be a differential homotopy sphere. Replacing M^{2n+1} by the connected sum $(M \# (-\Sigma))$ if necessary, we may assume that Σ^{2n+1} is diffeomorphic to S^{2n+1} . (This operation is not in fact really necessary for what follows.) Since

$$S^{2n+1} = (M - \phi(S^1 \times B^{2n})) \cup D^2 \times S^{2n-1},$$

we have an imbedding $f: S^{2n-1} \to S^{2n+1}$. (It is however essential that S^{2n-1} here be the sphere with the usual differential structure.) An argument similar to the one used in the proof of (1) and (2) shows that $\pi_i(S^{2n+1} - f(S^{2n-1})) = \pi_i(S^1)$ for i < n, and $\pi_n(S^{2n+1}-f(S^{2n-1}))$ is the Z[J]-module whose presentation is given in (3). It is well known that $f(S^{2n-1})$ is the boundary of an orientable submanifold V of S^{2n+1} . Moreover J. Levine has proved that the manifold V can be taken to be (n-1)-connected as a consequence of $\pi_i(S^{2n+1}-f(S^{2n-1}))=\pi_i(S^1)$ for i < n. It follows from Poincaré duality (for V) that we may find a basis, $\{\xi_1, \ldots, \xi_s, \eta_1, \ldots, \eta_s\}$, for $H_n(V)$ having the intersection numbers $\delta_{ij} = I(\xi_i, \eta_i)$, $O = I(\xi_i, \xi_i) = I(\eta_i, \eta_i)$. Using a normal vector field along V we may imbed $V \times [-\varepsilon, +\varepsilon]$ in S^{2n+1} in such a way that V corresponds to $V \times \{0\}$. If $\alpha \in H_n(V)$ we denote by α^{\pm} the elements of $H_n(S^{2n+1}-V)$ represented by the corresponding class in $V \times \{\pm \epsilon\} \subset S^{2n+1}-V$. Since any $\alpha \in H_n(V)$ can be represented by an imbedded sphere and any two such can be put in general position it is clear that $L(\alpha^+, \beta) - L(\alpha^-, \beta) = L(\alpha^+ - \alpha^-, \beta)$ = the intersection number of the chain $[-\varepsilon, \varepsilon] \times \alpha$ with $\beta = I(\alpha, \beta)$. It now follows from the methods used to establish (3) that there is a presentation of $\pi_n(S^{2n+1}-\partial V)$ with 2s generators and the relation matrix

$$R = \begin{pmatrix} (t-1)A & (t-1)B+E \\ (t-1)B'-tE & (t-1)C \end{pmatrix}$$

where E is the $s \times s$ identity matrix, B' is the transpose of B and $A = ||L(\xi_i^+, \xi_j)||$, $B = ||L(\xi_i^+, \eta_j)||$ and $C = ||C_{ij}|| = ||L(\eta_i^+, \eta_j)||$. (We remark that the matrices A and C are symmetric (because n is odd).) Using the lemma below we recognize $a_{ii} \mod 2$ as the obstruction to trivializing the normal bundle in V to an imbedded sphere representing ξ_i . A similar relation holds between c_{ii} and s_{ij} and so

$$c(V) = \sum_{i=1}^{s} a_{ii}c_{ii} \bmod 2$$

is the Arf invariant of the quadratic form of V as defined in [6].

Now, det R is the 0th elementary ideal of $\pi_n(M) = \pi_n(S_{2n+1} - f(S^{2n-1}))$ and hence det R and $(\lambda_1\lambda_2 - \lambda^2 + \lambda)(t-1)^2 + t$ must generate the same ideal in Z[J]. An argument of Robertello's [10], sketched below for the convenience of the reader, shows that det $R = t^{s-1}(c(V)(t^2+1)+t)$ modulo the ideal generated by 2 and $(t-1)^4$. Since $(\lambda_1\lambda_2 - \lambda^2 + \lambda)(t-1)^2 + t = (t^2+1) + t \mod 2$, it follows that $C(V) = 1 \mod 2$ but since ∂V is diffeomorphic to S^{2n-1} this contradicts the Brown-Peterson result [2] when n = 4k+1, $k \ge 1$.

Robertello's argument in brief is this. Let $R = (x_{ij})$ —thus x_{ij} is divisible by t-1 except if $1 \le i \le s$ and j = i + s or $1 \le j \le s$ and i = j + s. Let $S_{\alpha,\beta}$ be the set of permutations (i_1, \ldots, i_{2s}) for which $i_k \ne s + k$ for exactly α values of $k \in [1, s]$ and $i_{s+k} \ne k$ for exactly β values of $k \in [1, s]$. Thus

$$\det R = \sum_{0 \le \alpha, \beta \le k} \sum_{S_{\alpha, \beta}} x_{1, i_1} x_{2, i_2} \cdots x_{2s, i_2s}.$$

Now the individual terms in $s_{\alpha\beta}$ for α , $\beta \in [2, s]$ are divisible by $(t-1)^4$ so that we need only consider the first few $S_{\alpha,\beta}$'s. $S_{0,0}$ contains only the permutation $(s+1,\ldots,2s,1,2,\ldots,s-1,s)$ which gives rise to the term

$$\prod_{i=1}^{s} [(t-1)b_{ii}t][(t-1)b_{ii}+1] = t^{s} \mod 2.$$

The sets $S_{0,1}$ and $S_{1,0}$ are empty. The sum $\sum_{S_{1,1}}$ is

$$\sum_{i,k} \left\{ \prod_{j=1;j\neq i}^{s} ((t-1)b_{jj}-t) \right\} \left\{ \prod_{j=1;j\neq k}^{s} ((t-1)b_{jj}+1) \right\} (t-1)^{2} a_{ik} c_{ki}$$

which mod $\{2, (t-1)^4\}$ is $t^{s-1}(1+t^2)c(V)$. Further similar calculation shows that $\sum_{S_{2,1}} + \sum_{S_{1,2}} = 0$. (Essential use is made of the fact that A and C are symmetric.) Before stating the lemma on normal bundles, recall that an n-dimensional bundle, ξ^n , over an n-sphere determines an element $[\xi^n] \in \pi_n(B_{SOn})$ —where B_{SOn} is a classifying space for the group SOn. We denote by T_n the tangent bundle of S^n .

LEMMA ON NORMAL BUNDLES. Let $S^n \subset S^{2n+1}$ be a differentiable imbedding, ν a never vanishing normal field, $\bar{S}^n \subset S^{2n+1}$ a disjointly imbedded sphere obtained by "pushing" S^n along ν and finally η , the complementary normal bundle—i.e., $\eta(x)$ = the vectors normal to S^n at x but perpendicular to $\nu(x)$. Then

$$[\eta] = L(S^n, \overline{S}^n)[T_n] \in \pi_n(B_{SOn}).$$

Proof. There is no loss in generality (see [3]) in assuming that the imbedding is the usual one—to wit $S^n \subset S^n \times R \subset R^{n+1} = R^{n+1} \times 0 \subset R^{n+1} \times R^n = S^{2n+1} - \infty$. Thus we may refer the normal vector field, ν , to the *standard* framing of this normal bundle—thus ν and η are described completely by a function $f_{\nu} \colon S^n \to R^{n+1} - 0$. Since the entities involved in our assertion are unchanged if we vary ν (through never-zero normal fields) we may assume that f_{ν} is a differentiable map to S^n having the south pole as a regular value. Then it is clear that \bar{S}^n intersects $D^{n+1} \times 0$

transversally once for each inverse image of the south pole and in fact $L(S^n, \overline{S}^n)$ = the (algebraic) number of such inverse images = the degree of f_v . On the other hand, we clearly now have $\eta = \{(x, v) \in S^n \times R^{n+1} \mid f_v(x) \perp v\}$ and this is obviously the "pull-back" under f_v of the tangent bundle of S^n . Thus $[\eta] = \deg f_v[T_n]$.

BIBLIOGRAPHY

- 1. W. Browder, *Homotopy type of differentiable manifolds*, pp. 42-46, Colloq. Algebraic Topology, Aarhus University, 1962.
- 2. E. H. Brown, Jr. and F. P. Peterson, *The Kervaire invariant of* (8k+2)-manifolds, Bull. Amer. Math. Soc. 71 (1965), 190-193.
- 3. A. Haeflinger, *Plongements différentiables de variétés dans variétés*, Comment Math. Helv. **36** (1961), 47-82.
- 4. M. A. Kervaire, Les noeuds de dimensions supérieures, Bull. Soc. Math. France 93 (1965), 225-271.
- 5. ——, The Browder-Novikov theorem, Lecture Notes, Tata Institute of Fundamental Research, Bombay, 1967.
- 6. M. A. Kervaire and J. Milnor, Groups of homotopy spheres, Ann. of Math. 77 (1963), 504-537.
 - 7. J. Levine, Unknotting spheres in codimension two, Topology 4 (1965), 9-16.
 - 8. J. Milnor, Differentiable structures on spheres, Amer. J. Math. 81 (1959), 962-972.
- 9. S. P. Novikov, Diffeomorphisms of simply connected manifolds, Soviet Math. Dokl. 3 (1962), 540-543.
- 10. R. Robertello, An invariant of knot cobordism, Comm. Pure Appl. Math. 18 (1965), 543-555.

New York University,
New York, New York
Brandeis University,
Waltham, Massachusetts