COBORDISM OPERATIONS AND HOPF ALGEBRAS

BY P. S. LANDWEBER

1. Introduction. This paper is concerned with the stable operations of the unoriented, complex and symplectic cobordism theories $H^*(\ ; MO)$, $H^*(\ ; MU)$ and $H^*(\ ; MSp)$ on the category of finite CW-pairs (see [5], [6], [15]). The starting point is Theorem (3.1): the algebra (under composition) $\mathscr{A}^*(G)$ of stable operations of $H^*(\ ; MG)$ is additively isomorphic to the algebra $\mathscr{C}^*(G)$ of stable characteristic classes of G-bundles with values in G-cobordism; this is true not only for O, U and Sp but also for the other stable groups which give rise to cobordism theories. For G = O, U or Sp, Conner and Floyd introduced in [5], [7] characteristic classes $E_i(\xi) \in H^{di}(X; MG)$ for G-bundles $\xi \to X$ (see §4); here d = 1, 2 or 4 for G = O, U or Sp, resp. The E_i generate a polynomial subalgebra $C^*(G)$ of $\mathscr{C}^*(G)$, to which there corresponds a submodule $A^*(G) = \sum A^i(G)$ ($i \ge 0$) of $\mathscr{A}^*(G)$.

It is shown in §5 that $A^*(G)$ is a graded Hopf algebra, over the integers for G = U or Sp and over Z_2 in the unoriented case. In particular $A^*(G)$ is closed under the composition of operations; this product is studied in §6 with the help of the dual Hopf algebra $A_*(G)$. In §7 minimal generating sets are found for $A^*(G) \otimes Z_p$ (G = U or Sp, p a prime) and $A^*(O)$, and in the following section these Hopf algebras are shown to contain quotients of the Steenrod algebras $\mathscr{S}^*(p)$. For example, $A^*(U) \otimes Z_p$ contains an isomorphic copy of $\mathscr{S}^*(p)/(\beta_p)$ with β_p the Bockstein and $A^*(O)$ contains a copy of the mod 2 Steenrod algebra $\mathscr{S}^*(2)$.

In the final section some comments are made concerning the action

$$A^{i}(G) \otimes \Omega_{n}^{G} \to \Omega_{n-i}^{G}$$

of $A^*(G)$ on the G-bordism ring Ω_*^G , obtained via the identification of Ω_*^G with the coefficient ring $H^*(pt; MG)$. Although this action provided the motivation for the present study, it remains quite obscure even in the unoriented case.

2. Notation and preliminary results. Let G be O, U or Sp. When dealing with cohomology, Z_2 will be understood as coefficients if G = O and the integers in the other cases. We assume familiarity with the Stiefel-Whitney classes $w_i(\xi)$ of real bundles and the Chern classes $c_i(\xi)$ of complex bundles. For ξ a right quaternionic bundle, which may also be regarded as a complex bundle, the symplectic Pontrjagin class $p_i(\xi)$ is by definition $(-1)^i c_{2i}(\xi)$; these satisfy the Whitney sum formula (see [4, §9]). Thus in all cases, for $\xi \to X$ a G-bundle over a finite CW-complex there are characteristic classes $e_i(\xi) \in H^{ai}(X)$, with d=1, 2 or 4 for G=O, U or Sp, resp.

Presented to the Society, September 1, 1965 under the title *Cobordism operations*; received by the editors December 21, 1965 and, in revised form, October 14, 1966.

For any stable group G, BG(r) can be approximated by finite subcomplexes. If G=O, U or Sp we may make this explicit as follows. Let K denote the field R, C or H corresponding to the choice of G, and denote by $G_{r,s}(K)$ the Grassmann manifold of r-planes in the (right) vector space K^{r+s} . Thus $G_{r,\infty}(K)=BG(r)$ is the classifying space of G(r), and $G_{r,s}(K)$ approximates BG(r) as $s\to\infty$. In addition to the standard r-plane bundle $\xi_{r,s}$ over $G_{r,s}(K)$, there is an s-plane bundle $\eta_{r,s}$, with $\xi \oplus \eta$ trivial. Let $e_i = e_i(\xi) \in H^{di}(G_{r,s}(K))$ and $\bar{e}_i = e_i(\eta)$ be the characteristic classes of ξ and η . The Whitney sum formula implies that

$$\sum_{i+j=k} e_i \bar{e}_j = 0 \quad (0 < k \le r+s).$$

In fact, these generate all relations on the e_i and \bar{e}_i (see [2], [3]):

(2.1) $H^*(G_{r,s}(K))$ is generated by e_1, \ldots, e_r and $\bar{e}_1, \ldots, \bar{e}_s$ subject to the above relations.

Moreover, $H^*(G_{r,s}(K))$ is generated by e_1, \ldots, e_r since the \bar{e}_j can be expressed in terms of the e_i . $H^*(G_{r,s}(K))$ is a polynomial algebra on e_1, \ldots, e_r up to dimension ds.

Several points of cobordism theory will now be reviewed; greater detail may be found in [5], [6], [7]. We maintain the convention throughout that d=1, 2 or 4 according as G=0, U or Sp. For (X, A) a finite CW-pair,

$$H^{n}(X, A; MG) = [S^{dk-n}(X/A), MG(k)]$$

for k large. Let $\xi \to X$ be a G(n)-bundle over a finite CW-complex. There is a classifying map $X \to BG(n)$, which gives rise to a map $M(\xi) \to MG(n)$ of Thom spaces, and so to an element u_{ξ} of $\overline{H}^{dn}(M(\xi); MG)$, the G-cobordism Thom class of ξ . It follows from Dold's theorem [8] that there is a Thom isomorphism

$$\phi: H^k(X; MG) \to \overline{H}^{k+dn}(M(\xi); MG)$$

given by $\phi(x) = u_{\varepsilon} \cdot x$.

There is a natural transformation $\mu: H^*(\ ; MG) \to H^*(\)$ to cohomology, mod 2 in the unoriented case and integral otherwise. Various forms of the following result may be found in [5], [6, §18].

(2.2) Let (X, A) be a finite CW-pair, with $H^*(X, A)$ free abelian if G = U or Sp. Suppose that $K^* \subset H^*(X, A; MG)$ is mapped isomorphically onto $H^*(X, A)$ by μ . Then $\Omega^*_{\sigma} \otimes K^* \to H^*(X, A; MG)$ is an isomorphism of Ω^*_{σ} -modules.

Here $\Omega_G^* = H^*(pt; MG)$ is the coefficient ring, and the conclusion states that $H^*(X, A; MG)$ is a free Ω_G^* -module.

Let $M^* = \sum_{i \le 0} M^i$ and $N^* = \sum_{j \ge 0} N^j$ be graded abelian groups. The *completed* tensor product of M^* and N^* is the graded group $M^* \otimes N^* = \sum_{k=-\infty}^{\infty} (M^* \otimes N^*)^k$, with

$$(M^* \widehat{\otimes} N^*)^k = \prod_{i+j=k} M^i \otimes N^j.$$

Thus if $M^i = 0$ for $i < i_0$ or $N^j = 0$ for $j > j_0$, then $M^* \otimes N^*$ is simply the graded tensor product $M^* \otimes N^*$. Elements of $(M^* \otimes N^*)^k$ will be written as infinite sums $\sum m_i \otimes n_i$, with the understanding that the degrees of the m_i tend to $+\infty$ (and those of the n_i to $-\infty$). The following easily proved result will be used in §4.

(2.3) Let $M^* = \sum_{i \le 0} M^i$ and $N^* = \sum_{j \ge 0} N^j$ be graded abelian groups, with the N^* forming an inverse system. If all the M^i are free abelian of finite rank, then

$$\lim \operatorname{inv} (M^* \widehat{\otimes} N_{\alpha}^*) \approx M^* \widehat{\otimes} (\lim \operatorname{inv} N_{\alpha}^*).$$

3. Cobordism operations and characteristic classes. Throughout this section G will denote a fixed stable group such as O, U, Sp or one of the other groups giving rise to a cobordism theory. Thus there is a Thom spectrum MG and the notion of G-bundle.

By a G-cobordism operation θ of degree i is meant a family of linear mappings

$$\theta: H^k(X, A; MG) \to H^{k+i}(X, A; MG),$$

defined for all CW-pairs, which commutes with induced maps and suspensions. The totality of these operations is denoted $\mathscr{A}^{\iota}(G)$. Thus $\mathscr{A}^{*}(G) = \sum_{i=-\infty}^{\infty} \mathscr{A}^{\iota}(G)$ is a graded algebra with addition "pointwise" and multiplication given by the composition of operations.

Since $H^*(X, A; MG)$ is a left graded module over the coefficient ring

$$\Omega_G^* = H^*(pt; MG),$$

 Ω_G^* may be regarded as a subalgebra of $\mathscr{A}^*(G)$.

A G-cobordism characteristic class γ of degree i is a functor which assigns to each G-bundle $\xi \to X$ over a finite CW-complex a cobordism class $\gamma(\xi) \in H^i(X; MG)$, and which is natural with respect to G-bundle maps and is stable: $\gamma(\xi \oplus 1) = \gamma(\xi)$. Let $\mathscr{C}^i(G)$ denote these characteristic classes, and put $\mathscr{C}^*(G) = \sum_{i=-\infty}^{\infty} \mathscr{C}^i(G)$. Thus $\mathscr{C}^*(G)$ is a graded algebra with pointwise operations. For $n \in \Omega^i_G$,

$$\xi \to n \cdot 1 \in H^i(X; MG)$$

is an element of $\mathscr{C}^i(G)$, so Ω_G^* is trivially a subalgebra of $\mathscr{C}^*(G)$.

The rest of this section is devoted to showing that $\mathscr{A}^*(G)$ and $\mathscr{C}^*(G)$ are isomorphic additively. Let $\Psi \colon \mathscr{A}^*(G) \to \mathscr{C}^*(G)$ be defined in the following familiar manner. For $\theta \in \mathscr{A}^*(G)$ and $\xi \to X$ a G-bundle, put

$$\Psi(\theta)(\xi) = \phi^{-1} \theta \phi(1),$$

where ϕ is the G-cobordism Thom isomorphism of ξ .

(3.1) THEOREM. $\Psi: \mathscr{A}^*(G) \to \mathscr{C}^*(G)$ is an isomorphism of graded abelian groups.

Proof. It suffices to define an inverse Φ for Ψ , Let $\gamma \in \mathscr{C}^*(G)$ be given. If u_{ξ} is the G-cobordism Thom class of a G-bundle ξ , put $\Phi(\gamma) \cdot u_{\xi} = \phi(\gamma(\xi))$, to assure that Φ be an inverse for Ψ . If now $\alpha \in H^n(X, A; MG)$ is any cobordism class, represent α by a map $f: S^{dk-n}(X/A) \to MG(k)$, and assume MG(k) replaced by a finite

approximation. Thus the suspension $\sigma^{dk-n}(\alpha)$ equals $f^*(u_k)$, with u_k the G-cobordism Thom class of the (finite) universal G-bundle over BG(k). Then put

$$\Phi(\gamma) \cdot \alpha = (\sigma^{dk-n})^{-1} f^*(\Phi(\gamma) \cdot u_k).$$

It is easily checked that Φ is well defined, linear and degree preserving, and it was constructed to be an inverse for Ψ . This completes the proof.

More generally, if \mathscr{H}^* is a generalized cohomology theory with a functorial Thom isomorphism for G-bundles, then there is an analogous correspondence between the stable operations $H^*(\ ; MG) \to \mathscr{H}^*(\)$ and the stable \mathscr{H}^* -characteristic classes of G-bundles. Notice that a G-cobordism operation is determined by its values on the Thom classes of G-bundles, in fact by its values on the Thom classes of the finite universal G-bundles.

- 4. Construction of characteristic classes. Let G = O, U or Sp and d = 1, 2 or 4 accordingly. For $\xi \to X$ a G(1)-bundle over a finite complex, define $E_1(\xi)$ in $H^d(X; MG)$ as follows. Choose a classifying map $X \to BG(1)$ and compose it with the inclusion $BG(1) \subset MG(1)$ to obtain a map $X \to MG(1)$, which gives rise to an element $E_1(\xi)$ of $H^d(X; MG)$. It is easily seen that $\mu(E_1(\xi)) = e_1(\xi) \in H^d(X)$, with μ the natural transformation from G-cobordism to cohomology. Thus the hypotheses of [7, (7.5)] and its analogues for the real and complex case are satisfied, so we obtain
- (4.1) THEOREM. For G = O, U or Sp, there are unique G-cobordism classes $E_i \in \mathscr{C}^{di}(G)$ with $E_0 = 1$ satisfying
 - (1) $E_k(\xi \oplus \eta) = \sum_{i+j=k} E_i(\xi)E_j(\eta);$
 - (2) for ξ a G(1)-bundle, $E_1(\xi)$ is defined as above and $E_i(\xi) = 0$, i > 1.

Moreover, $\mu(E_i(\xi)) = e_i(\xi) \in H^{4i}(X)$ for $\xi \to X$ a G-bundle over a finite CW-complex.

Let $C^*(G) \subseteq \mathscr{C}^*(G)$ be the subalgebra generated by the E_i . Applying μ , we see that $C^*(G)$ is a polynomial algebra on the E_i . Recall the definition of the completed tensor product (§2).

(4.2) THEOREM. $\mathscr{C}^*(G) \approx \Omega_G^* \otimes C^*(G)$ additively.

Proof. Since Ω_G^* and $C^* = C^*(G)$ are contained in $\mathscr{C}^* = \mathscr{C}^*(G)$, there is a map $\rho \colon \Omega_G^* \otimes C^* \to \mathscr{C}^*$ defined on the completed tensor product, given by

$$\rho\left(\sum n_{i}\otimes c_{i}\right)=\sum n_{i}c_{i};$$

these are infinite sums with the convention (§2) that the degrees of the c_i tend to $+\infty$. In fact, if ξ is a G-bundle over a finite complex then $c_i(\xi)=0$ for all but a finite number of the c_i , so $(\sum n_i c_i)(\xi) = \sum n_i \cdot c_i(\xi)$ is essentially a finite sum.

There is a map $\sigma: \mathscr{C}^* \to \lim \text{ inv } H^*(G_{r,s}; MG) \ (r, s \to \infty)$, which associates to $\gamma \in \mathscr{C}^*$ the element $(\gamma(\xi_{r,s}))$ of the inverse limit; here $\xi_{r,s} \to G_{r,s}(K)$ is the universal r-plane bundle with K = R, C or H depending on G. Since the $\xi_{r,s}$ are approximations to universal bundles, it is clear that σ is an isomorphism.

In $H^*(G_{\tau,s}; MG)$, let $K_{\tau,s}$ be the subalgebra generated by the cobordism characteristic classes E_1, \ldots, E_τ of the bundle $\xi_{\tau,s}$. According to (2.1), $H^*(G_{\tau,s})$ is

generated by the cohomology characteristic classes e_1, \ldots, e_r of $\xi_{r,s}$, and all the relations on the generators are consequences of relations expressed by the Whitney sum formula applied to the Whitney sum $\xi \oplus \eta$. According to (4.1), these same relations hold among the E_i . Thus the assignment $e_i \to E_i$ extends to an algebra homomorphism $\nu \colon H^*(G_{r,s}) \to H^*(G_{r,s}; MG)$ with $\mu \circ \nu = \text{identity}$ and

$$\nu\{H^*(G_{r,s})\} = K_{r,s}.$$

So by (2.2), the natural map $\Omega_G^* \otimes K_{r,s} \to H^*(G_{r,s}; MG)$ is an isomorphism. By virtue of the naturality of the E_i , for $r \le r'$ and $s \le s'$ the induced map

$$H^*(G_{r',s'};MG) \rightarrow H^*(G_{r,s};MG)$$

restricts to a map $K_{r',s'} \to K_{r,s}$. Thus the graded modules $K_{r,s}$ form an inverse system, and the homomorphisms $C^* \to K_{r,s}$ sending E_i to $E_i(\xi_{r,s})$ give rise to a homomorphism $C^* \to \lim \operatorname{inv} K_{r,s}$. It follows from (2.1) that this is an isomorphism. We now make use of (2.3) to obtain an isomorphism of $\Omega_g^* \otimes C^*$ with

$$\lim \operatorname{inv} H^*(G_{r,s}; MG),$$

which is just the composite $\sigma \circ \rho$. Hence ρ is an isomorphism, as was to be shown.

- 5. The Hopf algebra $A^*(G)$. Under the additive isomorphism Ψ of $\mathscr{A}^*(G)$ with $\mathscr{C}^*(G)$, there corresponds to $C^*(G)$ a graded submodule $A^*(G) = \sum_{i \geq 0} A^i$ of $\mathscr{A}^*(G)$. The elements of $A^*(G)$ will be called basic G-cobordism operations. Theorem (4.2) has an immediate corollary.
 - (5.1) THEOREM. $\mathscr{A}^*(G) \approx \Omega_G^* \otimes A^*(G)$ additively.

Under this isomorphism $\sum n_i \otimes \theta_i$ corresponds to $\sum n_i \theta_i$, with the usual convention concerning infinite sums. In fact, if $\alpha \in H^*(X, A; MG)$ is a cobordism class of a finite CW-pair, then $(\sum n_i \theta_i)\alpha = \sum n_i(\theta_i\alpha)$ is essentially a finite sum since $\theta_i\alpha = 0$ for almost all i.

A basis for $A^*(G)$ is obtained as follows. For $\omega = (i_1, \ldots, i_r)$ a partition with $i_1 + \cdots + i_r = i$, let $S_{\omega} = S_{\omega}(E)$ be the S_{ω} -symmetric function (or symmetrized monomial; see [9, §1]) of the E_i . Thus $S_{\omega} \in C^{di}(G)$, and as ω runs through all partitions we obtain a basis for $C^*(G)$. The Whitney sum formula for these characteristic classes is

$$S_{\omega}(\xi \oplus \eta) = \sum_{\omega_1 \omega_2 = \omega} S_{\omega_1}(\xi) S_{\omega_2}(\eta).$$

We shall identify $A^*(G)$ and $C^*(G)$ additively, and so $\{S_{\omega}\}$ is a basis for $A^*(G)$.

In order to determine the action on products of cobordism classes, we define a coproduct $\psi^*: A^* \to A^* \otimes A^*$ by

$$\psi^*(S_\omega) = \sum_{\omega_1 \omega_1 = \omega} S_{\omega_1} \otimes S_{\omega_2};$$

as a map $C^* \to C^* \otimes C^*$ this is the algebra homomorphism sending E_k to

$$\sum_{i+j=k} E_i \otimes E_j.$$

Let $A^* \otimes A^*$ act on $H^*(X, A; MG) \otimes H^*(Y, B; MG)$ with values in

$$H^*(X \times Y, X \times B \cup A \times Y; MG)$$

by the formula

$$\left(\sum \theta'_{i} \otimes \theta''_{i}\right) (\alpha \otimes \beta) = \sum (\theta'_{i} \alpha) (\theta''_{i} \beta).$$

(5.2) For $\theta \in A^*$ and α , β G-cobordism classes, $\theta(\alpha \cdot \beta) = \psi^*(\theta) \cdot (\alpha \otimes \beta)$.

Proof. It is sufficient to verify this for $\theta = S_{\omega}$ and $\alpha = u_{\xi}$, $\beta = u_{\eta}$ cobordism Thom classes of G-bundles $\xi \to X$ and $\eta \to Y$ over finite CW-complexes. Let

$$\xi \times \eta \rightarrow X \times Y$$

be the Cartesian product of ξ and η ; this is a G-bundle with Thom space

$$M(\xi \times \eta) = M(\xi) \wedge M(\eta)$$

and G-cobordism Thom class $u_{\xi \times \eta} = u_{\xi} \cdot u_{\eta}$ (see [6, §11]). One may now easily check that $S_{\omega}(u_{\xi} \cdot u_{\eta}) = \psi^*(S_{\omega}) \cdot (u_{\xi} \otimes u_{\eta})$ to complete the proof.

In particular, for X a finite complex $H^*(X; MG)$ is a graded algebra over the co-algebras (A^*, ψ^*) , i.e. (5.2) holds for all α and β in $H^*(X; MG)$; see [13]. By an algebra over A^* we shall mean, throughout this section, an algebra over the co-algebra (A^*, ψ^*) .

The rest of this section is devoted to showing that $A^*(G)$ is a subalgebra of $\mathcal{A}^*(G)$, and that it is in fact a Hopf algebra.

(5.3) THEOREM. $A^*(G)$ is a subalgebra of $\mathscr{A}^*(G)$.

Assuming this proved, let ϕ^* : $A^* \otimes A^* \to A^*$ denote the product homomorphism. It will be left for the reader to convince himself that the coproduct

$$\psi^* \colon A^* \to A^* \otimes A^*$$

is an algebra homomorphism, i.e., to check the formula

$$\psi^*(S_{\omega} \circ S_{\omega'})(\alpha \otimes \beta) = (\psi^*S_{\omega} \cdot \psi^*S_{\omega'})(\alpha \otimes \beta)$$

for every pair of cobordism classes α , β . Thus we obtain

(5.4) THEOREM. $(A^*(G), \phi^*, \psi^*)$ is a graded connected Hopf algebra with commutative coproduct. The ground ring is \mathbb{Z}_2 in the unoriented case and the integers if G = U or Sp.

Before turning to the proof of (5.3), we describe the action of $A^*(G)$ on

$$H^*(P^n(K); MG);$$

this information will also be used in the following section. Let $\xi \to P^n(K)$ be the Hopf G(1)-bundle, and put $\alpha = E_1(\xi) \in H^d(P^n(K); MG)$. It follows from (4.1) and (2.2) that as an Ω_G^* -module, $H^*(P^n(K); MG)$ is free on the basis $\{1, \alpha, \ldots, \alpha^n\}$ and that $\alpha^{n+1} = 0$. Thus it will suffice to determine the action of S_ω on α . It is first of all immediate that:

(5.5) If ξ is a G(1)-bundle with characteristic class $E_1(\xi)$, then the G-cobordism classes $S_{\omega}(\xi)$ are given by

$$S_k(\xi) = (E_1(\xi))^k$$
, $S_{\omega}(\xi) = 0$ otherwise.

(5.6) LEMMA. Let $\alpha \in H^d(P^n(K); MG)$ be the generator. The action of the basic cobordism operations S_{ω} on α is

$$S_k \alpha = \alpha^{k+1}$$
, $S_{\omega} \alpha = 0$ otherwise.

Proof. It is well known that the Thom space of the Hopf G(1)-bundle $\xi \to P^n(K)$ may be identified with $P^{n+1}(K)$, and that the inclusion of $P^n(K)$ in this Thom space is the usual inclusion $P^n(K) \subset P^{n+1}(K)$. Thus the Thom class $u \in \overline{H}^d(P^{n+1}(K); MG)$ of ξ is carried onto $\alpha = E_1(\xi)$ in $H^d(P^n(K); MG)$. The conclusion now follows directly from (5.5), in view of the isomorphism of §3.

(5.7) COROLLARY. Let ξ be a G(1)-bundle. Then $S_k \cdot E_1(\xi) = (E_1(\xi))^{k+1}$ and $S_{\omega} \cdot E_1(\xi) = 0$ otherwise.

Proof of (5.3). Let θ , $\theta' \in A^*$ and put $\psi^*(\theta') = \sum \theta'_i \otimes \theta''_i$. Let γ and γ'_i in C^* correspond to θ and θ'_i under the isomorphism $\Psi \colon C^* \approx A^*$. If u_ξ is the G-cobordism Thom class of a G-bundle $\xi \to X$ and $\pi \colon D(\xi) \to X$ the associated disk bundle, then $\theta u_\xi = u_\xi \cdot \pi^*(\gamma(\xi))$, and a computation yields

$$(\theta' \circ \theta)u_{\xi} = u_{\xi} \cdot \pi^* \Big\{ \sum \gamma_i'(\xi) \cdot \theta_i'' \gamma(\xi) \Big\}.$$

Thus in order to show that A^* is closed under composition it suffices to prove the following statement.

(5.8) If $\theta \in A^*(G)$ and $\gamma \in C^*(G)$, then there exists $\gamma' \in C^*(G)$ so that for all G-bundles ξ , $\theta \cdot \gamma(\xi) = \gamma'(\xi)$.

Moreover, in view of the splitting principle and (2.2) it is enough to prove (5.8) under the assumption that ξ splits into a Whitney sum of G(1)-bundles.

Let R = Z if G = U or Sp and Z_2 if G = O. Consider a graded polynomial algebra $R[\alpha_1, \ldots, \alpha_n]$ on generators of degree d, and identify the G-cobordism classes E_1, \ldots, E_n with the elementary symmetric functions of the α_i . Make $R[\alpha_1, \ldots, \alpha_n]$ an algebra over (the coalgebra) $A^*(G)$ by requiring that for $i = 1, \ldots, n$

$$S_k \cdot \alpha_i = \alpha_i^{k+1}, \quad S_\omega \cdot \alpha_i = 0$$
 otherwise;

together with the condition $\theta(\beta_1 \cdot \beta_2) = \psi^* \theta \cdot (\beta_1 \otimes \beta_2)$ for $\theta \in A^*$ and β_1, β_2 in

$$R[\alpha_1,\ldots,\alpha_n],$$

this specifies the action of A^* . It is obvious that if β is a symmetric polynomial in the α_i , so is $S_{\omega}\beta$. Thus the subalgebra $R[E_1, \ldots, E_n]$ is also an algebra over A^* .

Now let $\xi = \xi_1 \oplus \cdots \oplus \xi_n$ be a Whitney sum of G(1)-bundles over a finite CW-complex X. We define an algebra homomorphism $f_{\xi} \colon R[\alpha_1, \ldots, \alpha_n] \to H^*(X; MG)$ by setting $f_{\xi}(\alpha_i) = E_1(\xi_i)$. In virtue of (5.7), f_{ξ} is a homomorphism of algebras over A^* ; so is the restriction $f_{\xi} \colon R[E_1, \ldots, E_n] \to H^*(X; MG)$, and $f_{\xi}(E_i) = E_i(\xi)$. It follows that $f_{\xi}(\gamma) = \gamma(\xi)$ for each $\gamma \in R[E_1, \ldots, E_n]$. Hence

$$(\theta \cdot \gamma)(\xi) = \theta \cdot \gamma(\xi)$$

for $\theta \in A^*$ and $\gamma \in R[E_1, ..., E_n]$.

It remains to be shown that the actions of A^* on $R[E_1, \ldots, E_n]$ combine to make $C^* = R[E_1, E_2, \ldots]$ an algebra over A^* . For $n \le m$, the homomorphism

$$R[\alpha_1,\ldots,\alpha_m] \to R[\alpha_1,\ldots,\alpha_n]$$

sending $\alpha_i \to \alpha_i$ $(i \le n)$ and $\alpha_i \to 0$ (i > n) restricts to a homomorphism

$$R[E_1,\ldots,E_m] \rightarrow R[E_1,\ldots,E_n]$$

of algebras over A^* , sending $E_i \to E_i$ $(i \le n)$, $E_i \to 0$ (i > n). Taking the inverse limit, we see that C^* becomes an algebra over the co-algebra A^* .

Now let $\theta \in A^*$ and $\gamma \in C^*$. For ξ a Whitney sum of n G(1)-bundles let

$$\gamma_1 \in Z_2[E_1,\ldots,E_n]$$

be the projection of γ . Then also $\theta \gamma_1$ is the projection of $\theta \gamma$, and so

$$(\theta \cdot \gamma)(\xi) = (\theta \cdot \gamma_1)(\xi) = \theta \cdot \gamma_1(\xi) = \theta \cdot \gamma(\xi).$$

Thus (5.8) is proved for ξ a Whitney sum of G(1)-bundles, which completes the proof of Theorem (5.3).

6. Computation of products in $A^*(G)$. It was shown in the previous section that $(A^*(G), \phi^*, \psi^*)$ is a graded connected Hopf algebra with commutative coproduct. The product ϕ^* is given by the composition of basic G-cobordism operations, and ψ^* is given in terms of the basis $\{S_{\omega}\}$ by

$$\psi^*S_{\omega} = \sum_{\omega_1\omega_2 = \omega} S_{\omega_1} \otimes S_{\omega_2}.$$

The product in $A^*(G)$ is complicated, but with the help of the dual Hopf algebra $A_*(G)$ and the methods of [11] we can compute products in $A^*(G)$.

Let (A_*, ψ_*, ϕ_*) denote the Hopf algebra dual to $A^* = A^*(G)$. Thus $A_* = \sum_{i \ge 0} A_i$ and $A_i = \text{Hom } (A^i, R)$, with $R = \mathbb{Z}$ for G = U or Sp and $R = \mathbb{Z}_2$ for G = 0. Let $\{\sigma_\omega\}$ be the basis of A_* dual to the basis $\{S_\omega\}$ of A^* . It is clear that $\psi_*(\sigma_\omega \otimes \sigma_{\omega'}) = \sigma_{\omega\omega'}$, and so A_* is a polynomial algebra $R[\sigma_1, \sigma_2, \dots]$ on generators σ_k of degree dk. The coproduct $\phi_* \colon A_* \to A_* \otimes A_*$ is an algebra homomorphism, so is determined by its values on the algebra generators σ_k . We shall obtain a formula for $\phi_*(\sigma_k)$.

In order to state this formula, we introduce some notation. If $\omega = (i_1, \ldots, i_r)$ is a partition, let r_p denote the number of occurrences of the integer p in ω and put $R = (r_1, r_2, \ldots)$. Thus there is a correspondence $\omega \leftrightarrow R$ between partitions and finitely nonzero sequences of nonnegative integers. We write $S_{\omega} = S^R$ and $\sigma_{\omega} = \sigma^R$ if $\omega \leftrightarrow R$. Sequences are added component-wise; denote by Δ_k the sequence

$$(r_1, r_2, \ldots)$$

with $r_k = 1$ and $r_p = 0$ for $p \neq k$. In terms of the S^R , the coproduct of A^* is given by

$$\psi^*S_R = \sum_{R_1+R_2=R} S^{R_1} \otimes S^{R_2}.$$

We make the definitions

$$||R|| = \sum pr_p, \qquad |R| = \sum r_p,$$

$$\binom{m}{R} = \frac{m!}{r_1! r_2! \cdots (m-|R|)!} \qquad (|R| \le m).$$

Thus S^R has degree d||R|| and |R| is the number of terms of the partition which corresponds to the sequence R.

(6.1) THEOREM.

$$\phi_*(\sigma_k) = \sum \binom{m+1}{R} \sigma_R \otimes \sigma_m$$

over all pairs (R, m) with ||R|| + m = k and $|R| \le m + 1$.

For example, we have

$$\phi_*\sigma_1 = \sigma_1 \otimes 1 + 1 \otimes \sigma_1,$$

$$\phi_*\sigma_2 = \sigma_2 \otimes 1 + 2\sigma_1 \otimes \sigma_1 + 1 \otimes \sigma_2,$$

hence

$$\phi_*(\sigma_1)^2 = (\sigma_1)^2 \otimes 1 + 2\sigma_1 \otimes \sigma_1 + 1 \otimes (\sigma_1)^2.$$

Thus σ_1 and $\sigma_2 - (\sigma_1)^2$ are primitive elements of A_* (see §7).

The proof of (6.1) will be preceded by several lemmas. Let $M^* = \sum_{i \geq 0} M^i$ be a graded algebra over the Hopf algebra A^* , with each M^i free and finitely generated over $R (= \mathbb{Z} \text{ or } \mathbb{Z}_2)$. The action of A^* on M^* induces an action on the graded dual M_* of M^* . Hence there is a homomorphism $M_* \otimes A^* \to M_*$, which we dualize to obtain a homomorphism

$$\lambda: M^* \to M^* \otimes A_*$$

The following results may be proved as in [11].

- (6.2) LEMMA. For $\alpha \in M^*$ we have $(\lambda \otimes 1)\lambda(\alpha) = (1 \otimes \phi_*)\lambda(\alpha)$ in $M^* \otimes A_* \otimes A_*$.
- (6.3) Lemma. $\lambda: M^* \to M^* \otimes A_*$ is an algebra homomorphism.
- (6.4) LEMMA. If $\lambda(\alpha) = \sum \alpha_i \otimes \tau_i$ ($\alpha, \alpha_i \in M^*, \tau_i \in A_*$), then for any $\theta \in A^*$

$$\theta \cdot \alpha = \sum \langle \theta, \tau_i \rangle \alpha_i$$
.

Proof of (6.1). Let $\alpha \in H^d(P^n(K); MG)$ be the canonical generator of

$$H^*(P^n(K); MG),$$

as in §5. Let $M^* \subset H^*(P^n(K); MG)$ be the submodule with basis 1, α, \ldots, α^n . By (5.6), M^* is an algebra over the Hopf algebra A^* , and with (6.4) this gives

$$\lambda \alpha = \alpha \otimes 1 + \alpha^2 \otimes \sigma_1 + \cdots + \alpha^n \otimes \sigma_{n-1}.$$

Hence

$$(\lambda \otimes 1)\lambda \alpha = \sum_{m} (\lambda \alpha)^{m+1} \otimes \sigma_{m}$$

$$= \sum_{m} \left\{ \sum_{|R| \leq m+1} {m+1 \choose R} \alpha^{\|R\|+m+1} \otimes \sigma^{R} \right\} \otimes \sigma_{m}$$

$$= \sum_{k} \alpha^{k-1} \otimes \left\{ \sum_{m} {m+1 \choose R} \sigma^{R} \otimes \sigma_{m} \right\},$$

the final sum over all pairs (R, m) with ||R|| + m = k and $|R| \le m + 1$. On the other hand,

$$(1 \otimes \phi_*)\lambda \alpha = \sum_k \alpha^{k+1} \otimes \phi_* \sigma_k,$$

and so for k < n we obtain the desired formula for $\phi_*(\sigma_k)$. Letting $n \to \infty$, the formula holds for all k and the proof is complete.

Notice that $A^*(U)$ and $A^*(Sp)$ are therefore isomorphic Hopf algebras, although the degrees are doubled. Similarly, $A^*(O)$ and $A^*(U) \otimes Z_2$ are isomorphic Hopf algebras, doubling degrees. In the unoriented case, the binomial coefficients in (6.1) are to be taken mod 2.

We shall have occasion to use the following computations:

(6.5)
$$S_{n} \circ S_{n} = (n+1)S_{2n} + 2S_{n,n},$$

$$S_{m} \circ S_{n} = (n+1)S_{m+n} + S_{m,n} \quad (m \neq n),$$

$$S_{2} \circ S_{2n,2n} \equiv S_{2,2n,2n} + S_{2n,2n+2} \quad (\text{mod } 2),$$

$$S_{2n,2n} \circ S_{2} \equiv S_{2,2n,2n} + S_{2n,2n+2} + S_{4n+2} \quad (\text{mod } 2).$$

For example, consider $S_2 \circ S_{2n,2n}$. We write $S_2 \circ S_{2n,2n} = \sum_{\omega} a_{\omega} S_{\omega}$ and must determine the coefficients a_{ω} . Notice that

$$a_{\omega} = \langle S_2 \otimes S_{2n,2n}, \phi_* \sigma_{\omega} \rangle.$$

Now $\phi_*\sigma_{2,2n,2n} = (\phi_*\sigma_2)(\phi_*\sigma_{2n})^2$ contains the term

$$(\sigma_2 \otimes 1)(1 \otimes \sigma_{2n})^2 = \sigma_2 \otimes \sigma_{2n,2n}$$

once if n>1 and three times if n=1; thus $a_{2,2n,2n}\equiv 1\pmod{2}$. Also $\phi_*\sigma_{2n,2n+2}=(\phi_*\sigma_{2n})(\phi_*\sigma_{2n+2})$ contains the term $(1\otimes\sigma_{2n})(\sigma_2\otimes\sigma_{2n})=\sigma_2\otimes\sigma_{2n,2n}$ an odd number of times, namely 2n+1, so $a_{2n,2n+2}\equiv 1\pmod{2}$. It may be seen that $a_{\omega}=0$ for any other ω , so $S_2\circ S_{2n,2n}$ is as stated.

7. Generators of $A^*(G) \otimes Z_p$. Let $A^* = A^*(G)$ for G = U or Sp, and let p be a prime. Thus $A^* \otimes Z_p$ is a Hopf algebra over the field Z_p , isomorphic to $A^*(O)$ if p = 2. In this section we shall obtain a minimal set of generators of the algebra $A^* \otimes Z_p$, selected from the basis $\{S_p^R\} = \{S_\omega\}$.

(7.1) THEOREM. A minimal set of generators of $A^* \otimes Z_n$ is provided by

$$\{S^{p^k\Delta_1}, S^{p^k\Delta_2}\}_{k\geq 0}.$$

We remark that if p is odd, another minimal set of generators is $\{S^{p^k\Delta_1}, S^{2p^k\Delta_1}\}_{k\geq 0}$. If p=2, then among the elements of the basis $\{S^R\}$ only the members of the minimal generating set $\{S^{2^k\Delta_1}, S^{2^k\Delta_2}\}_{k\geq 0}$ are indecomposable; all others are decomposable in $A^*\otimes Z_2$.

For the rest of this section we shall fix a prime p and write A^* for $A^* \otimes Z_p$. Thus A^* is regarded as a Hopf algebra over Z_p .

An element τ of the dual Hopf algebra A_* is called *primitive* if

$$\phi_*(\tau) = \tau \otimes 1 + 1 \otimes \tau.$$

For example, it was shown after the statement of (6.1) that σ_1 and $\sigma_2 - (\sigma_1)^2$ are primitive. We denote by $P(A_*)$ the space of primitive elements of A_* . If A_+^* denotes the ideal of elements of positive degree in A^* , then $A_+^* \cdot A_+^*$ is the ideal of decomposable elements of A^* . $Q(A^*) = A_+^* / A_+^* \cdot A_+^*$ is called the space of indecomposable elements of A^* . The following results are proved in [13] and [14] respectively.

- (7.2) LEMMA. $A_+^* \cdot A_+^*$ is the annihilator of $P(A_*)$ in A_+^* , hence $P(A_*)$ is canonically isomorphic to the dual of $Q(A^*)$.
- (7.3) LEMMA. Any set of algebra generators of A^* contains a subset whose image in $Q(A^*)$ is a vector space basis; such a subset is minimal and generates A^* .

As was just mentioned, σ_1 and $\sigma_2 - (\sigma_1)^2$ are primitive elements of A_* . It follows that for all $k \ge 0$, the powers $(\sigma_1)^{p^k}$ and $(\sigma_2 - (\sigma_1)^2)^{p^k} = (\sigma_2)^{p^k} - (\sigma_1)^{2p^k}$ are also primitive. In fact, we shall prove

(7.4) LEMMA. $P(A_*)$ has as a basis the set $\{(\sigma_1)^{p^k}, (\sigma_2)^{p^k} - (\sigma_1)^{2p^k}\}_{k \ge 1}$.

Theorem (7.1) follows directly from these lemmas. In fact, the image of the set $\{S^{p^k\Delta_1}, S^{p^k\Delta_2}\}_{k\geq 0}$ in $Q(A^*)$ is a vector space basis by virtue of (7.2) and (7.4), so this set is a minimal set of generators of A^* according to (7.3). Notice that if p=2, $P(A_*)$ also has as basis the set $\{(\sigma_1)^{2^k}, (\sigma_2)^{2^k}\}$. Thus the remarks following the statement of the theorem follow just as easily.

Thus it remains to prove (7.4). We first show that among the elements S_k of A^* , only S_1 and S_2 are indecomposable.

(7.5) LEMMA. S_k is decomposable if k > 2.

Proof. To begin with, notice that the computations (6.5) imply that for $m \neq n$,

$$[S_m, S_n] = S_m S_n - S_n S_m = (n-m) S_{m+n}$$

Suppose first that p is an odd prime. If k=2j>2, then $[S_{j-1}, S_{j+1}]=2S_k$ so S_k is decomposable since (2, p)=1. If k=2j+1>2, then $[S_j, S_{j+1}]=S_k$ so S_k is again decomposable. Now take k=2 and consider three cases: k odd, $k\equiv 0 \pmod 4$ and $k\equiv 2 \pmod 4$. For k=2j+1>2, $[S_j, S_{j+1}]=S_k$. For k=4j>2, it follows from (6.5) that $S_{2j}, S_{2j}=S_k \pmod 2$. Finally for k=4j+2>0, (6.5) implies that $[S_{2j,2j}, S_2]\equiv S_k \pmod 2$. Thus the lemma is proved in all cases.

We now borrow a result from [13]. Let $\xi: A_* \to A_*$ be defined by $\xi(a) = a^p$; this is a homomorphism of Hopf algebras which multiplies degrees by p. There is a natural map $\chi: P(A_*) \to Q(A_*)$, namely the composition

$$P(A_*) \to A_*^+ \to A_*^+/A_*^+ \cdot A_*^+$$

Since $A_* = Z_p[\sigma_1, \sigma_2, ...]$, $Q(A_*)$ has a basis $\{\bar{\sigma}_k\}$, where $\bar{\sigma}_k \in Q(A_*)$ denotes the image of $\sigma_k \in A_*^+$. We remark that $P(A_*)$ is closed under the map $\xi \colon A_* \to A_*$ and that $P(\xi A^*) = \xi P(A^*)$. As a consequence of [13, (4.21)] we have:

(7.6) LEMMA. There is an exact sequence

$$0 \longrightarrow \xi P(A_*) \longrightarrow P(A_*) \xrightarrow{\chi} Q(A_*).$$

We now study the map $\chi: P(A_*) \to Q(A_*)$. Recall that $Q(A_*)$ has a basis $\{\bar{\sigma}_k\}$; since σ_1 and $\sigma_2 - (\sigma_1)^2$ lie in $P(A_*)$, $\bar{\sigma}_1$ and $\bar{\sigma}_2$ are in the image of χ .

(7.7) LEMMA. For $k > 2 \bar{\sigma}_k$ is not in the image of χ .

Proof. Suppose $\bar{\sigma}_k \in Q(A_*)$ were in the image of χ . Then there would be an element $\tau \in P(A_*)$ of degree k with $\tau \equiv \sigma_k$ modulo decomposable elements of A_* . Now $S_k \in A^*$ is clearly a primitive element of A^* , and so $\langle S_k, \rho \rangle = 0$ for all decomposable elements ρ of A_* by (7.2). Thus $\langle S_k, \tau \rangle = \langle S_k, \sigma_k \rangle = 1$. But if k > 2 (7.5) states that S_k is decomposable, and so by (7.2) again $\langle S_k, \tau \rangle = 0$ since $\tau \in P(A_*)$. This is a contradiction, which completes the proof.

Proof of (7.4). We write $P = P(A_*)$ and let $P' \subseteq P$ be the subspace with σ_1 and $\sigma_2 - (\sigma_1)^2$ as basis. It follows from (7.6) and (7.7) that $P = \xi P \oplus P'$. We may apply ξ repeatedly to obtain for $k \ge 0$

$$P = \xi^{k+1} P \oplus (\xi^k P' \oplus \cdots \oplus \xi P' + P').$$

Since $\bigcap_k \xi^k P = (0)$, it follows that $P = \bigoplus_{k=0}^{\infty} \xi^k P'$. Now $\xi^k \sigma_1 = (\sigma_1)^{p^k}$ and

$$\xi^k(\sigma_2-(\sigma_1)^2)=(\sigma_2)^{p^k}-(\sigma_1)^{2p^k},$$

hence the lemma, and with it Theorem (7.1), is proved.

- 8. Subalgebras of $A^*(G) \otimes Z_p$. In this section we shall show that the Hopf algebras $A^*(G) \otimes Z_p$, G = U or Sp, and $A^*(O)$ contain as Hopf subalgebras suitable quotients of the mod p Steenrod algebras $\mathcal{S}^*(p)$. In addition, we determine the primitively generated subalgebras of $A^*(G) \otimes Z_p$ and $A^*(O)$.
- (8.1) THEOREM. There are degree-preserving homomorphisms of Hopf algebras $\Gamma: \mathscr{S}^*(p) \to A^*(G) \otimes Z_p$ for G = U or Sp, and $\Gamma: \mathscr{S}^*(2) \to A^*(0)$, such that for $\theta \in \mathscr{S}^*(p)$ and $\theta' \in A^*(G)$ the diagrams

$$H^*(X, A; MG) \xrightarrow{\theta'} H^*(X, A; MG)$$

$$\downarrow^{\mu} \qquad \qquad \downarrow^{\mu}$$

$$H^*(X, A; Z_p) \xrightarrow{\theta} H^*(X, A; Z_p)$$

are commutative for all finite CW-pairs if and only if $\Gamma(\theta) = \theta' \otimes 1$.

Let (β_p) denote the two-sided ideal generated by the Bockstein in $\mathscr{S}^*(p)$. Let $\xi \colon \mathscr{S}^*(2) \to \mathscr{S}^*(2)$ be the dual of the squaring map in the dual Hopf algebra $\mathscr{S}_*(2)$. Thus ξ and $\xi^2 = \xi \circ \xi$ are Hopf algebra homomorphisms of $\mathscr{S}^*(2)$ into itself, so their kernels are Hopf ideals in $\mathscr{S}^*(2)$ (see Liulevicius [10]). Notice that $\beta_2 = Sq^1$ and $(\beta_2) = \ker(\xi)$ in $\mathscr{S}^*(2)$, by Milnor [12].

(8.2) THEOREM. The kernel of Γ for G = U or Sp and p an odd prime is exactly (β_p) . For p = 2 and G = O, U or Sp, the kernel of Γ is (0), ker (ξ) or ker (ξ^2) respectively.

It is convenient to introduce the stable operations from G-cobordism to cohomology. Let $R = \mathbb{Z}$ or \mathbb{Z}_p , p a prime, for G = U or \mathbb{S}_p , and $R = \mathbb{Z}_2$ if G = 0. We denote by $\mathscr{A}^1(G; R)$ the set of linear operations

$$\nu: H^k(X, A; MG) \rightarrow H^{k+i}(X, A; R)$$

defined for all finite CW-pairs, which commute with induced maps and suspensions. Under addition of operations, $\mathscr{A}^*(G;R) = \sum_{i\geq 0} \mathscr{A}^i(G;R)$ is a graded R-module. Using finite approximations to the Thom spaces MG(n) as in §4, it is easily shown that $\mathscr{A}^*(G;R)$ is naturally isomorphic to $H^*(MG;R)$. Moreover, there is an isomorphism $\Psi: \mathscr{A}^*(G;R) \approx R[e_1,e_2,\ldots]$ entirely analogous to the isomorphism Ψ of §3 (see the concluding remarks of §3).

There is a linear degree-preserving map $\mu^L: A^*(G) \to \mathscr{A}^*(G; R)$ defined as follows. Let $\mu: H^*(\ ; MG) \to H^*(\ ; R)$ be the natural transformation. For $\theta \in A^*(G)$, put $\mu^L(\theta) = \mu \circ \theta$, composition with μ on the left. It is clear that there is a commutative diagram

$$A^*(G) \otimes R \xrightarrow{\mu^L \otimes 1} \mathscr{A}^*(G; R)$$

$$\downarrow \Psi \otimes 1 \qquad \qquad \downarrow \Psi$$

$$R[E_1, E_2, \dots] \xrightarrow{\mu} R[e_1, e_2, \dots]$$

hence,

(8.3) LEMMA. $\mu^L \otimes 1$: $A^*(G) \otimes R \to \mathscr{A}^*(G; R)$ is an additive isomorphism.

In addition, there are linear maps $\mu^R \colon \mathscr{S}^*(p) \to \mathscr{A}^*(G; \mathbb{Z}_p)$, defined by putting $\mu^R(\theta) = \theta \circ \mu$ for $\theta \in \mathscr{S}^*(p)$ (p=2) if G=0. In fact, there is a map

$$\mathscr{S}^*(p) \otimes \mathscr{A}^*(G; Z_p) \to \mathscr{A}^*(G; Z_p)$$

sending $\theta \otimes \nu$ to the composition $\theta \circ \nu$, thereby making $\mathscr{A}^*(G, Z_p)$ a graded module over $\mathscr{S}^*(p)$. Since $\mu \in \mathscr{A}^*(G; Z_p)$, the homomorphism μ^R is given by the action of $\mathscr{S}^*(p)$ on μ . Under the natural isomorphism of $\mathscr{A}^*(G; Z_p)$ with $H^*(MG; Z_p)$, μ corresponds to the "unit class" in $H^*(MG; Z_p)$, and the action (by composition) of $\mathscr{S}^*(p)$ on $\mathscr{A}^*(G; Z_p)$ is seen to correspond to the usual module structure of $H^*(MG; Z_p)$ over $\mathscr{S}^*(p)$.

Proof of (8.1). Let $\Gamma: \mathscr{S}^*(p) \to A^*(G) \otimes Z_p$ denote the composition

$$(\mu^L \otimes 1)^{-1} \circ \mu^R$$
.

Thus Γ is linear and degree-preserving, and for $\theta \in \mathscr{S}^*(p)$ we have $(\mu^L \otimes 1)\Gamma(\theta) = \mu^R(\theta)$. In view of the definitions of μ^L and μ^R , for $\theta' \in A^*(G)$ we have $\Gamma(\theta) = \theta' \otimes 1$ if and only if $\mu \circ \theta' = \theta \circ \mu$.

To show that Γ is an algebra homomorphism, let θ_1 , $\theta_2 \in \mathscr{S}^*(p)$ with $\Gamma(\theta_1) = \theta_1' \otimes 1$ and $\Gamma(\theta_2) = \theta_2' \otimes 1$. Then $\mu \circ \theta_i' = \theta_i \circ \mu$ (i = 1, 2), from which it follows that $\mu \circ (\theta_1' \circ \theta_2') = (\theta_1 \circ \theta_2) \circ \mu$, hence $\Gamma(\theta_1 \circ \theta_2) = \Gamma(\theta_1)\Gamma(\theta_2)$. In a more tedious fashion, it may be shown that Γ commutes with the coproducts; recall that the coproduct in $\mathscr{S}^*(p)$ satisfies an analogue of (5.2). Thus Γ is a homomorphism of Hopf algebras.

Proof of (8.2). From the definition of Γ , we see that it has the same kernel as $\mu^R: \mathscr{S}^*(p) \to \mathscr{A}^*(G; \mathbb{Z}_p)$. Hence ker (Γ) is the annihilator in the Steenrod algebra $\mathscr{S}^*(p)$ of the unit class in $H^*(MG; \mathbb{Z}_p)$. Thus (8.2) follows from results of Milnor [12]; for p=2 see Liulevicius [10].

REMARK. Unless G = Sp and p is odd, the image of Γ in $A^*(G) \otimes Z_p$ has as a Z_p -basis the elements S_{ω} for ω a partition involving only integers of the form $p^k - 1$.

For example, let G = U. Milnor [12] has shown, in slightly different notation, that $\mathscr{S}^*(p)/(\beta_p)$ has a basis $\{t_\omega\}$ over Z_p , $\omega = (i_1, \ldots, i_r)$ running through partitions involving only integers of the form $p^k - 1$, such that

- (a) t_{ω} has degrees $2(i_1 + \cdots + i_r)$;
- (b) the coproduct sends t_{ω} to $\sum_{\omega_1 \omega_2 = \omega} t_{\omega_1} \otimes t_{\omega_2}$;
- (c) if $x \in H^2(X; \mathbb{Z}_p)$, then $t_{p^k-1}x = x^{p^k}$ and $t_{\omega}x = 0$ otherwise.

Thus if $\alpha \in H^2(P^n(C); MU)$ is the generator and ω involves only integers of the form $p^k - 1$, $\mu(S_{\omega}(\alpha)) = t_{\omega}\mu(\alpha)$ in $H^*(P^n(C); Z_p)$. It follows easily from the splitting principle and universality that $\mu(S_{\omega}(u_{\xi})) = t_{\omega}\mu(u_{\xi})$ whenever u_{ξ} is the *U*-cobordism Thom class of a *U*-bundle $\xi \to X$ over a finite complex, hence

$$\mu \circ S_{\omega} = t_{\omega} \circ \mu \in \mathscr{A}^*(U; Z_p).$$

But this says exactly that $\Gamma(t_{\omega}) = S_{\omega}$, verifying the statement.

Let $A^* = A^*(G) \otimes Z_p$ for fixed G and p (p = 2 if G = O). The nonzero primitive elements of A^* are evidently the S_k for k > 0. Let B^* denote the subalgebra generated by these elements and the identity. In fact, since the S_k are primitive, B^* is a Hopf subalgebra of A^* .

(8.4) THEOREM. A basis for B^* consists of the elements S_{ω} for which no integer has $\geq p$ occurrences in ω .

Proof. Let \overline{B}^* be the submodule of A^* with the basis described in the theorem. We first show that \overline{B}^* is a Hopf subalgebra of A^* . It is clear that $\psi^*(\overline{B}^*) \subset \overline{B}^* \otimes \overline{B}^*$.

The annihilator of \bar{B}^* in the dual Hopf algebra $A_* = Z_p[\sigma_1, \sigma_2, ...]$ is the ideal I_* generated by $\sigma_1^p, \sigma_2^p, ...$ It follows from (6.1) that

$$\phi_*(\sigma_k^p) = \sum {m+1 \choose R} (\sigma^R)^p \otimes \sigma_m^p,$$

summed over certain pairs (R, m); hence $\phi_*(\sigma_k^p) \in I_* \otimes A_* + A_* \otimes I_*$. Thus

$$\phi_*(I_*) \subset I_* \otimes A_* + A_* \otimes I_*$$

which means that \bar{B}^* is a subalgebra of A^* . Since $S_k \in \bar{B}^*$ for all k, $B^* \subseteq \bar{B}^*$. Hence it remains to show that $\bar{B}^* \subseteq B^*$.

We shall show that each basis element $S_{i_1,i_2,\ldots,i_r} \in \overline{B}^*$ belongs to B^* by induction on the number of terms r. If r=1, then S_{i_1} is a generator of B^* . If r>1, suppose that $i_1 \le i_2 \le \cdots \le i_r$ and notice that the number m of occurrences of i_r is less than p. A judicious application of (6.1) now shows that

$$S_{i_r} \circ S_{i_1,\ldots,i_{r-1}} = mS_{i_1,\ldots,i_r} + \sum a_{\omega}S_{\omega}, a_{\omega} \in Z_p,$$

with the sum over partitions of the form

$$\omega = (i_1, \ldots, i_{n-1}, i_{n+1}, \ldots, i_{r-1}, i_n + i_r),$$

for $1 \le n \le r-1$, having (r-1) terms. Since m is prime to p and the basis elements $S_{i_1,\ldots,i_{r-1}}$ and the S_{ω} of the sum belong to \overline{B}^* , so to B^* by hypothesis of the induction, the proof is complete.

9. Operations on the bordism rings. The coefficient ring $\Omega_G^* = H^*(pt; MG)$ of the G-cobordism theory is a graded module over the Hopf algebra $A^*(G)$. Recall that $\Omega_G^{-n} = \pi_{dk+n}(MG(k))$ for k large; in particular $\Omega_G^n = 0$ for n > 0. Since the bordism group Ω_n^G of n-dimensional G-manifolds is also naturally isomorphic to this stable homotopy group, we may identify Ω_n^G with Ω_G^{-n} for $n \ge 0$. There results an action

$$A^i(G) \otimes \Omega_n^G \to \Omega_{n-i}^G$$

on the G-bordism ring. Thus $\theta(\theta'[M]) = (\theta \circ \theta')[M]$ and if $\psi^*(\theta) = \sum \theta'_i \otimes \theta''_i$ then $\theta([M] \cdot [N]) = \sum (\theta'_i[M])(\theta''_i[N])$.

REMARK. This action may also be given the following description; the proof of the equivalence of the two definitions is omitted. Let M^n be an *n*-dimensional G-manifold and let $\theta \in A^i(G)$ correspond to the G-cobordism characteristic class γ . Thus if $\xi \to M^n$ denotes the stable normal G-bundle of M, $\gamma(\xi) \in H^i(M^n; MG)$. By Poincaré duality [6, §13; 16] there results a G-bordism class in $H_{n-i}(M^n; MG)$; such a class has a representative (V^{n-i}, f) consisting of a G-manifold V^{n-i} and a continuous map $f: V^{n-i} \to M^n$. Put $\theta[M^n] = [V^{n-i}]$.

The remainder of the discussion will be restricted to the complex case. If $[M^{2n}] \in \Omega_{2n}^U$ and $\theta \in A^{2n}(U)$, the result of the action is $\theta[M^{2n}] \in \Omega_0^U = Z$. Thus we obtain characteristic numbers of the bordism class, which may be easily identified

with the dual Chern numbers. Hence there is a homomorphism $\Delta \colon \Omega_{2n}^U \to A_{2n}(U)$ so that $\langle \theta, \Delta[M^{2n}] \rangle = \theta[M^{2n}]$ for all $\theta \in A^{2n}(U)$. In fact, $\Delta \colon \Omega_*^U \to A_*(U)$ is an algebra homomorphism into the dual of $A^*(U)$, by virtue of the coproduct formula for $\theta([M] \cdot [N])$.

Now fix a prime p and put $A^* = A^*(U) \otimes Z_p$. Let S^* denote the image of Γ in A^* . There is a ring homomorphism $\Delta \otimes 1$: $\Omega^U_* \otimes Z_p \to A_*(U) \otimes Z_p = A_*$, whose image we shall study. The following result is due to Atiyah and Hirzebruch [1, §5], and is essentially the determination of the relations on mod p Chern numbers.

(9.1) THEOREM. The image of $\Delta \otimes 1$ in A_* has for annihilator in A_* the right ideal $S_*^*A^*$ generated by the set S_*^* of elements of S^* with positive degree.

Proof. Let $\theta \in \mathcal{S}^{2n}(p)$, n > 0, so that $\Gamma(\theta) = \theta' \otimes 1$ with $\theta' \in A^{2n}(U)$. By (8.1), if $[M^{2n}] \in \Omega_{2n}^U \approx \Omega_U^{-2n}$ then $\mu \theta'[M^{2n}] = \theta \mu [M^{2n}] = 0$ since $\mu [M^{2n}] \in H^{-2n}(pt; \mathbb{Z}p)$. Thus $\theta'[M^{2n}]$ is divisible by p, so $\langle \Gamma(\theta), \Delta[M^{2n}] \otimes 1 \rangle = \Gamma(\theta)([M^{2n}] \otimes 1) = 0$. Hence S_+^* annihilates the image of $\Delta \otimes 1$, and so does $S_+^*A^*$ since the annihilator is easily seen to be a right ideal in A^* . By Milnor [12], the image of $\Delta \otimes 1$ in $A_* \approx H_*(MU; \mathbb{Z}_p)$ is a polynomial algebra over \mathbb{Z}_p with one generator in each dimension 2k not of the form $2p^t-2$; moreover, $A^* \approx H^*(MU; \mathbb{Z}_p)$ is a free left module over

$$S^* \approx \mathscr{S}^*(p)/(\beta_p),$$

with a basis consisting of the S_{ω} for which ω involves no integers of the form $p^t - 1$. A dimension count shows that $S_+^*A^*$ is exactly the annihilator of the image of $\Delta \otimes 1$.

REMARK. In the unoriented case, put $I^* = \sum I^n$ with I^n consisting of all $\theta \in A^n(O)$ for which $\theta[M^n] = 0 \ \forall [M^n] \in \Omega_n^O$. It is easily seen that I^* is a right ideal in $A^*(O)$, and the argument just given shows that I^* is the right ideal generated by the elements of the image of $\Gamma: \mathcal{S}^*(2) \to A^*(O)$ of positive degree. In the symplectic case, there is an analogue of (9.1) for P odd but not for P = 2.

Conjecture. The right ideal $S_+^*A^*$ in $A^*=A^*(U)\otimes Z_p$ (see (9.1)) contains no nontrivial left ideals. The analogous assertion in the unoriented case implies that the action of $A^*(O)$ on Ω_*^O is effective, i.e., if $\theta \in A^*(O)$ satisfies $\theta[M]=0 \ \forall [M] \in \Omega_*^O$ then $\theta=0$.

Added in proof. The present paper has considerable overlap with recent work of S. P. Novikov and J. M. Boardman. Novikov studies the Adams spectral sequence for *U*-cobordism; an announcement has appeared in Dokl. Akad. Nauk SSSR 172 (1967), 33–36. Boardman studies the nonoriented case, with applications to smooth involutions; see Bull. Amer. Math. Soc. 73 (1967), 136–138, and Chapter VI of his Warwick notes "Stable Homotopy Theory."

REFERENCES

- 1. M. F. Atiyah and F. Hirzebruch, Cohomologie-Operationen und characteristische Klassen, Math. Z. 77 (1961), 149-187.
- 2. A. Borel, La cohomologie mod 2 de certains espaces homogènes, Comment. Math. Helv. 27 (1953), 165-197.

- 3. ——, Sur la cohomologie des espaces fibrés principaux et des espaces homogènes des groupes de Lie compacts, Ann. of Math. 57 (1953), 115-207.
- 4. A. Borel and F. Hirzebruch, Characteristic classes and homogeneous spaces. I, Amer. J. Math. 80 (1958), 458-538.
- 5. P. E. Conner and E. E. Floyd, *Cobordism theories*, Seattle Topology Conference, 1963 (mimeographed).
- 6. ——, Differentiable periodic maps, Ergebnisse der Math., Vol. 33, Springer-Verlag, Berlin, 1964.
- 7. ——, Relations between cobordism and K-theory, Springer Lecture Notes in Mathematics, 1967.
- 8. A. Dold, Relations between ordinary and extraordinary cohomology, Colloquium on Algebraic Topology, Aarhus Universitet, 1962, pp. 1-9.
- 9. F. Hirzebruch, Neue topologische Methoden in der algebraischen Geometrie, Ergebnisse der Math., Vol. 9, Springer-Verlag, Berlin, 1956.
 - 10. A Liulevicius, Notes on homotopy of Thom spectra, Amer. J. Math. 86 (1964), 1-16.
 - 11. J. Milnor, The Steenrod algebra and its dual, Ann. of Math. 67 (1958), 150-171.
- 12. —, On the cobordism ring Ω^* and a complex analogue, Amer. J. Math. 82 (1960), 505-521.
- 13. J. Milnor and J. C. Moore, On the structure of Hopf algebras, Ann. of Math. 81 (1965), 211-264.
- 14. N. W. Steenrod and D. Epstein, *Cohomology operations*, Annals of Mathematics Studies, No. 50, Princeton Univ. Press, Princeton, N. J., 1962.
- 15. R. Thom, Quelques propriétés globales des variétés différentiables, Comment. Math. Helv. 28 (1954), 17-86.
- 16. G. W. Whitehead, Generalized homology theories, Trans. Amer. Math. Soc. 102 (1962), 227-283.

University of Virginia, Charlottesville, Virginia