A STUDY OF METRIC-DEPENDENT DIMENSION FUNCTIONS(1)

RY

KEIÔ NAGAMI AND J. H. ROBERTS

1. Introduction. This paper is a study of metric-dependent dimension functions for metric spaces. Let X be a metric space with metric ρ . We introduced in a previous paper [15] two dimension functions d_1 and d_2 of (X, ρ) which by definition appear to depend on ρ . We showed however, that $d_1(X, \rho) = \dim X$ (the covering dimension of X). On the other hand d_2 does depend on the particular metric ρ , and there exists (X, ρ) with $d_2(X, \rho) < \dim X$.

DEFINITION 1. The empty set \emptyset has $d_2\emptyset = -1$. $d_2(X, \rho) \le n$ if (X, ρ) satisfies the condition:

(D₂) For any n+1 pairs of closed sets $C_1, C'_1, \ldots; C_{n+1}, C'_{n+1}$ with $\rho(C_i, C'_i) > 0$, $i=1,\ldots,n+1$, there exist closed sets B_i , $i=1,\ldots,n+1$, such that (i) B_i separates C_i and C'_i for each i and (ii) $\bigcap_{i=1}^{n+1} B_i = \emptyset$.

If $d_2(X, \rho) \le n$ and the statement $d_2(X, \rho) \le n-1$ is false, we set $d_2(X, \rho) = n$.

This definition stems from Eilenberg-Otto's characterization of dimension [3]:

A metric space X has dim $X \le n$ if and only if the following condition is satisfied:

(D'₂) For any n+1 pairs of closed sets $C_1, C'_1; \ldots; C_{n+1}, C'_{n+1}$ with $C_i \cap C'_i = \emptyset$, $i=1,\ldots,n+1$, there exist closed sets B_i , $i=1,\ldots,n+1$, such that (i) B_i separates C_i and C'_i for each i and (ii) $\bigcap_{i=1}^{n+1} B_i = \emptyset$.

This characterization of (covering) dimension is still true even when X is only a normal space (cf. Hemmingsen [5, Theorem 6.1] or Morita [10, Theorem 3.1]). All spaces considered in this paper are T_1 . To clarify the situation of d_2 we introduce the following two apparently metric-dependent dimension functions which are similar to d_2 .

DEFINITION 2. First we set $d_3 \varnothing = -1$. $d_3(X, \rho) \le n$ if (X, ρ) satisfies the condition: (D₃) For any finite number m of pairs of closed sets $C_1, C'_1; \ldots; C_m, C'_m$ with $\rho(C_i, C'_i) > 0$, $i = 1, \ldots, m$, there exist closed sets $B_i, i = 1, \ldots, m$, such that (i) B_i separates C_i and C'_i for each i and (ii) the order of $\{B_i : i = 1, \ldots, m\}$, ord $\{B_i\}$, is at most n.

If $d_3(X, \rho) \le n$ and the statement $d_3(X, \rho) \le n-1$ is false, then we set $d_3(X, \rho) = n$. DEFINITION 3. First we set $d_4 \varnothing = -1$. $d_4(X, \rho) \le n$ if (X, ρ) satisfies the condition:

 (D_4) For any countable number of pairs of closed sets $C_1, C_1'; C_2, C_2'; \ldots$ with $\rho(C_i, C_i') > 0$, $i = 1, 2, \ldots$, there exist closed sets B_i , $i = 1, 2, \ldots$, such that (i) B_i separates C_i and C_i' for each i and (ii) ord $\{B_i : i = 1, 2, \cdots\} \le n$.

Received by the editors January 13, 1966.

⁽¹⁾ This research was supported in part by the National Science Foundation Grant GP-2065.

If $d_4(X, \rho) \leq n$ and the statement $d_4(X, \rho) \leq n-1$ is false, then we set $d_4(X, \rho) = n$. Let (D_3') (respectively (D_4')) be the condition which is obtained from (D_3) (resp. from (D_4)) when " $\rho(C_i, C_i') > 0$ " is replaced by " $C_i \cap C_i' = \emptyset$ ". It is evident that (D_4') implies (D_3') , say $(D_4') \to (D_3')$, and $(D_3') \to (D_2')$. It is also true that $(D_4) \to (D_3) \to (D_2)$. Morita [10] proved that $(D_2') \to (D_3') \to (D_4')$ even when X is only a normal space. Then it is natural to ask whether or not $(D_2) \to (D_3) \to (D_4)$. The answer is no for each implication. It will be shown that $d_4(X, \rho) = \dim X$ for any (X, ρ) (Theorem 2 below). Moreover we shall construct in this paper a space (R, ρ) such that $d_2(R, \rho) = 2$, $d_3(R, \rho) = 3$ and $d_4(R, \rho) = 4$. It is to be noticed that (R, ρ) is topologically complete and ρ is totally bounded. Our dimension functions are closely related to so-called metric dimension which is defined as follows:

DEFINITION 4. First we set μ dim $\emptyset = -1$. μ dim $(X, \rho) \le n$ if (X, ρ) satisfies the condition:

(D₀) There exists a sequence of open coverings \mathcal{U}_i of X such that (i) ord $\mathcal{U}_i \leq n+1$ for each i and (ii) mesh \mathcal{U}_i (= $\sup \{\rho(U) : U \in \mathcal{U}_i\}$) converges to zero.

If $\mu \dim (X, \rho) \le n$ and the statement $\mu \dim (X, \rho) \le n-1$ is false, then we set $\mu \dim (X, \rho) = n$.

Here we note that whether $\mu \dim (X, \rho) = \dim X$ or not had been a serious problem in dimension theory and that the gap between μ dim and dim played an important role when the study of dimension theory moved to general metric spaces from separable metric spaces (cf. Sitnikov [19], Nagata [17], [18], Nagami [13], Vopěnka [22], Dowker-Hurewicz [2] and Katětov [8]).

We prove that $d_3(X, \rho) \leq \mu \dim(X, \rho)$ for any (X, ρ) and that $d_3(X, \rho) = \mu \dim(X, \rho)$ when ρ is totally bounded (Theorems 4 and 5 below). Thus the space (R, ρ) mentioned before offers an example such that $d_2(R, \rho) < \mu \dim(R, \rho) < \dim R$. Sitnikov [19] was the first to construct a space (Y, ρ) such that $\mu \dim(Y, \rho) < \dim Y$.

In every Cantor *n*-manifold (K_n, ρ) , $n \ge 3$, we shall construct subspaces (X_n, ρ) and (Y_n, ρ) such that

- (i) dim $X_n = \dim Y_n \ge n-1$ and
- (ii) $d_2(X_n, \rho) = \mu \dim (Y_n, \rho) = [n/2].$

To prove dim X_n or dim $Y_n \ge n-1$ we need the following theorem (Theorem 1 below) which is interesting in itself:

If A_i , $i=1, 2, \ldots$, are disjoint closed sets of K_n with dim $A_i \le n-1$ for every i, then dim $(K_n - \bigcup A_i) \ge n-1$.

Sitnikov [20] proved that dim $(K_n - \bigcup A_i) \ge n-1$ if $K_n = I^n$ (n-cube) without the condition dim $A_i \le n-1$ and with $A_i \ne I^n$ for $i=1, 2, \ldots$. Then it is natural to ask whether our present theorem for K_n is still true without any hypothesis on dim A_i , and with $A_i \ne K_n$ for $i=1, 2, \ldots$ We give a negative answer for this question. (See Figure 2.)

We give for each $n \ge 2$ a metric space Z_n which allows equivalent metrics ρ_m , $m = [(n+1)/2], [(n+1)/2] + 1, \ldots, n$, such that $d_2(Z_n, \rho_m) = \mu \dim(Z_n, \rho_m) = m$. This

space not only illustrates the dependence of μ dim and d_2 on the metric but plays a role in the construction of our final example R which is mentioned above.

The final section lists four unsolved problems.

2. Dimension of the complement of a disjoint collection of sets.

LEMMA 1. Let X be a hereditarily normal space and Y a subset of X with $\dim(X-Y) < n$. Then for any n pairs of disjoint closed sets of X, C_1 , C_1' ; ...; C_n , C_n' , there exist closed sets of X, B_1 ,..., B_n , such that $\bigcap B_i \subseteq Y$ and B_i separates C_i and C_i' for each i.

Proof. Let $D_1, D'_1; \ldots; D_n, D'_n$ be open sets of X such that $C_i \subset D_i, C'_i \subset D'_i$ and $\overline{D}_i \cap \overline{D}'_i = \emptyset$ for each i. By Hemmingsen [5, Theorem 6.1] or Morita [10, Theorem 3.1] there exist relatively open sets U_1, \ldots, U_n of X - Y such that

- (i) $\overline{D}_i Y \subset U_i \subset \overline{U}_i Y \subset (X \overline{D}_i') Y, i = 1, ..., n,$
- (ii) $\bigcap (\overline{U}_i U_i) \subset Y$.

If we set $G_i = C_i \cup U_i$ and $H_i = C'_i \cup ((X - Y) - \overline{U_i})$, then $\overline{G_i} \cap H_i = G_i \cap \overline{H_i} = \emptyset$. By the hereditary normality of X there exists an open set V_i of X such that $G_i \subset V_i \subset \overline{V_i} \subset X - H_i$. Set $B_i = \overline{V_i} - V_i$. Then B_i , i = 1, ..., n, satisfy the required condition.

LEMMA 2. Let X be a compact Hausdorff space and let H and K be disjoint closed sets of X such that no connected set meets both H and K. Then there exist disjoint open sets H_1 and K_1 such that $H \subseteq H_1$, $K \subseteq K_1$ and $H_1 \cup K_1 = X$.

This can be proved by a method analogous to the one in Moore [9, Theorem 44, p. 15] with the consideration of Hocking-Young [6, Theorem 2-9, p. 44].

LEMMA 3. A connected compact Hausdorff space cannot be decomposed into a countably infinite or finite (but more than one) union of disjoint closed subsets.

This can be proved by a method analogous to the one in Moore [9, Theorem 56, p. 23] with the aid of Lemma 2.

DEFINITION 5. Let X be a normal space. A system of pairs $C_1, C'_1; \ldots; C_n, C'_n$ is called a *defining* system of X if (i) C_i and C'_i are disjoint closed sets of X for each i and (ii) for arbitrary closed sets B_i , $i=1,\ldots,n$, separating C_i and C'_i we have $\bigcap B_i \neq \emptyset$.

LEMMA 4. Let X be a compact Hausdorff space, F a closed set of X and f a mapping (continuous transformation) of F into the (n-1)-sphere S^{n-1} . Consider S^{n-1} as the surface of the n-cube $I^n = \{(x_1, \ldots, x_n) : -1 \le x_i \le 1\}$. Let $C_1, C'_1, \ldots, C'_n, C'_n$ be n pairs of opposite faces of I^n defined by:

$$C_i = \{(x_1, \ldots, x_n) : x_i = -1\}, \qquad C'_i = \{(x_1, \ldots, x_n) : x_i = 1\},$$

 $i=1,\ldots,n$. If the system $f^{-1}(C_1),f^{-1}(C_1');\ldots;f^{-1}(C_n),f^{-1}(C_n')$ is not defining, then f has an extension $f^*:X\to S^{n-1}$.

Proof. Let B_1, \ldots, B_n be closed sets of X such that B_i separates $f^{-1}(C_i)$ and $f^{-1}(C_i')$ for every i and such that $\bigcap B_i = \emptyset$. By Morita [10, Lemma 1.2] we can assume that every B_i is a G_δ . Let $f(x) = (f_1(x), \ldots, f_n(x))$, where each f_i is a mapping into [-1, 1]. Let $g_i \colon X \to [-1, 1]$ be an extension of $f_i | f^{-1}(C_i) \cup f^{-1}(C_i')$ such that $g_i(x) = 0$ if and only if $x \in B_i$ and such that $|g_i(x)| = 1$ if and only if $x \in f^{-1}(C_i) \cup f^{-1}(C_i')$. Let $g(x) = (g_1(x), \ldots, g_n(x))$. Then g is a mapping of X into I^n and $g(F) \subseteq S^{n-1}$. If $x \in F$, then f(x) and g(x) cannot be a pair of opposite points on S^{n-1} . Hence f is homotopic to g|F. Let f be the original point f over f in f in f and f in f in

THEOREM 1. Let X be a compact hereditarily normal space with dim X=n, $n \ge 1$, and A_1, A_2, \cdots be a sequence of disjoint closed sets of X such that dim $A_i \le n-1$ for each i. Then

$$\dim (X-\bigcup A_i) \ge n-1.$$

Proof. First step. Since dim X=n there exist by Morita [10, Theorem 5.1] a closed set F of X, a mapping f of F into S^{n-1} and a closed set $Y\supset F$ such that (i) f cannot be extended over Y and (ii) if Z is any proper closed subset of Y with $F\subset Z$, then f is extendable over Z. We may even assume that Y is actually a Cantor n-manifold (cf. Hurewicz-Wallman [7, pp. 99–100]). Since dim $(Y-\bigcup A_i) \ge n-1$ implies dim $(X-\bigcup A_i) \ge n-1$, we assume hereafter X is Y itself with the above minimal property.

Second step. Since dim $A_1 \le n-1$, there exists a mapping $f': F \cup A_1 \to S^{n-1}$ with f'|F=f. Since S^{n-1} is a neighborhood extensor for normal spaces by Hanner [4, Theorem 13.2], there exist an open set U_1 with $U_1 \supset F \cup A_1$ and a mapping $f_1: \overline{U}_1 \to S^{n-1}$ with $f_1|F \cup A_1 = f'$. Continuing such procedure, we have a sequence of open sets U_1, U_2, \cdots and a sequence of mappings $f_i: \overline{U}_i \to S^{n-1}$ such that (i) $F \cup (\bigcup_{j \le i} A_i) \subset U_i$ and $\overline{U}_i \subset U_{i+1}$, for every i and (ii) f_i is an extension of f_{i-1} for every i, where $f_0 = f$.

Define $g: \bigcup U_i \to S^{n-1}$ in such a way that $g|\overline{U}_i = f_i$ for each *i*. Then *g* is an extension of f over $\bigcup U_i$. Let $\varphi: X \to [0, 1]$ be a mapping such that

- (i) $\varphi(x) = 0$ if and only if $x \notin \bigcup U_i$,
- (ii) $\varphi(x) = 1$ if $x \in F$,
- (iii) $\overline{U}_i \subset \{x : \varphi(x) > 2^{-i}\} \subset U_{i+1}$ for every i.

Consider S^{n-1} as the surface of the solid *n*-ball I^n of radius 1 whose center is the origin p. We define $h: X \to I^n$ as follows:

- (i) h(x) = p if $x \notin \bigcup U_i$,
- (ii) $h(x) = \varphi(x)g(x)$ if $x \in \bigcup U_i$, where g(x) is considered as a vector from p to g(x).

Then h is continuous and h|F=f. Moreover $h^{-1}(p) \cap (\bigcup A_i) = \emptyset$, which will be a meaningful fact later.

Third step. Here we reconsider that I^n is the n-cube expressed as

$$\{(x_1,\ldots,x_n): -1 \leq x_i \leq 1, i=1,\ldots,n\}$$

whose surface is S^{n-1} and whose origin $(0, \ldots, 0)$ is p. Consider the solid pyramid P in I^n whose base is $B = \{(x_1, \ldots, x_n) : x_n = -1\}$ and whose apex is p. The n-1 pairs of opposite sides of P may be denoted by (S_i, T_i) , $i = 1, \ldots, n-1$, where S_i is spanned by

$$S'_i = \{(x_1, \ldots, x_n) : x_i = x_n = -1\}$$

and p, and T_i is spanned by

$$T'_i = \{(x_1, \ldots, x_n) : x_i = 1, x_n = -1\}$$

and p. Then

$$C_i = h^{-1}(S_i) - h^{-1}(p), \quad C'_i = h^{-1}(T_i) - h^{-1}(p), \quad i = 1, ..., n-1,$$

are n-1 pairs of disjoint closed sets of $X' = X - h^{-1}(p)$. Figure 1 will help us to treat the situation.

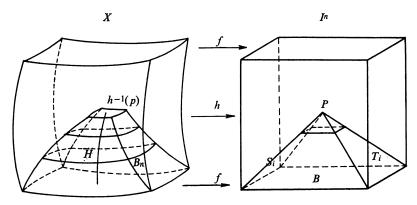


FIGURE 1

Fourth step. Assume that dim $(X-\bigcup A_i) < n-1$. Then

$$\dim (X-((\bigcup A_i) \cup h^{-1}(p))) < n-1,$$

since $h^{-1}(p)$ is a G_{δ} . By Lemma 1 there exist closed sets B_{i} of $X - h^{-1}(p)$, $i = 1, \ldots, n-1$, such that (i) B_{i} separates C_{i} and C'_{i} for each i and (ii)

$$\left(\bigcap_{i=1}^{n-1}B_i\right)\cap (X-\bigcup A_i)=\varnothing.$$

The latter condition implies $H = \bigcap_{i=1}^{n-1} B_i \subset \bigcup A_i$. Let us consider the compact set $H \cup h^{-1}(p)$ and the two disjoint subsets $H \cap h^{-1}(B)$ and $h^{-1}(p)$. Suppose that $H \cap h^{-1}(B) \neq \emptyset$ and there exists a connected closed set $K \subseteq H \cup h^{-1}(p)$ such that

 $K \cap H \cap h^{-1}(B) \neq \emptyset$ and $h^{-1}(p) \cap K \neq \emptyset$. Then for some $i, K \cap A_i \neq \emptyset$. Since $K \subset h^{-1}(p) \cup A_1 \cup A_2 \cup \cdots$, we have a contradiction by Lemma 3.

Fifth step. By Lemma 2 we can now conclude that there exist disjoint compact sets H_1 and H_2 such that (i) $H_1 \cup H_2 = h^{-1}(B) \cup H \cup h^{-1}(p)$, (ii) $h^{-1}(p) \subseteq H_1$ and (iii) $h^{-1}(B) \subseteq H_2$, whether $H \cap h^{-1}(B) = \emptyset$ or not. Hence there exists a closed set B_n of X separating $h^{-1}(p)$ and $h^{-1}(B)$ without touching H. Let c be a number with 0 < c < 1, Q_c the intersection of P and the hyperplane $\{(x_1, \ldots, x_n) : x_n = -c\}$, P_c the intersection of P and $\{(x_1, \ldots, x_n) : x_n \le -c\}$ and R_c the surface of P_c . Then there exists a number p with p with p and p such that

$$h^{-1}(\overline{P-P_b}) \cap B_n = \varnothing.$$

If we confine our attention to the set $h^{-1}(P_b)$, there are closed sets

$$B_1 \cap h^{-1}(P_h), \ldots, B_n \cap h^{-1}(P_h)$$

which separate pairs

$$h^{-1}(S_1 \cap P_b), h^{-1}(T_1 \cap P_b); \dots; h^{-1}(S_{n-1} \cap P_b), h^{-1}(T_{n-1} \cap P_b);$$

 $h^{-1}(B), h^{-1}(Q_b),$

respectively. Denote this system of pairs by α . Since

$$\bigcap_{i=1}^n (B_i \cap h^{-1}(P_b)) \subset \bigcap_{i=1}^n B_i = \emptyset,$$

 α is not defining. Then by Lemma 4 there exists a mapping $k_1: h^{-1}(P_b) \to R_b$ such that $k_1|h^{-1}(R_b)=h|h^{-1}(R_b)$. Let $k: X \to I^n$ be a mapping such that

- (i) $k|X-h^{-1}(P_h)=h|X-h^{-1}(P_h)$,
- (ii) $k|h^{-1}(P_b)=k_1$.

Let s be an inner point of P_b and r a retraction of $I^n - \{s\}$ onto S^{n-1} . Then $rk: X \to S^{n-1}$ is an extension of f, a contradiction. Thus we have dim $(X - \bigcup A_i)$ $\ge n-1$ and the proof is completed.

COROLLARY 1 (SITNIKOV [20]). Let $n \ge 1$. Let A_i , i = 1, 2, ..., be a disjoint sequence of closed sets of I^n at least two of which are not empty. Then

$$\dim (I^n - \bigcup A_i) \ge n-1.$$

Proof. Let S^{n-1} be the surface of $I^n = \{(x_1, \ldots, x_n) : -1 \le x_i \le 1, i = 1, \ldots, n\}$. Let $f: S^{n-1} \to S^{n-1}$ be the identity mapping. Since it is impossible that $I^n - S^{n-1}$ is contained in one A_i , we have one of the following two cases:

- (i) There exists i such that $(I^n S^{n-1}) A_i \neq \emptyset$ and $A_j \subset S^{n-1}$ for any $j \neq i$.
- (ii) There exist i and j with $i \neq j$ such that

$$(I^n - S^{n-1}) \cap A_i \neq \emptyset$$
 and $(I^n - S^{n-1}) \cap A_j \neq \emptyset$.

The first case yields dim $(I^n - \bigcup A_i) = n$. If the second case happens, then there exists a number ε with $0 < \varepsilon < 1$ such that

$$I_{\varepsilon}^{n} = \{(x_1, \ldots, x_n) : |x_i| \leq \varepsilon, i = 1, \ldots, n\}$$

meets A_i and A_f . Then by Lemma 3 there exists a point q in $I_e^n - \bigcup A_i$. Then we can apply the same argument on f and q as in the proof of Theorem 1 and we get dim $(I^n - \bigcup A_i) \ge n-1$.

COROLLARY 2. Let X be a connected metric space such that every point has a neighborhood homeomorphic to I^n , $n \ge 1$. Let A_i , i = 1, 2, ..., be a disjoint sequence of closed sets of X at least two of which are not empty. Then

$$\dim (X-\bigcup A_i) \geq n-1.$$

Proof. Consider a closed covering $\{F_{\alpha}\}$ of X such that each F_{α} is homeomorphic to I^n . If each F_{α} is contained in some A_i , then each A_i has to be open, which contradicts the fact that X is connected. Hence (i) there exists F_{α} which meets at least two of the A_i 's, (ii) there exists F_{β} such that $F_{\beta} \cap A_i \neq \emptyset$, $F_{\beta} - A_i \neq \emptyset$ and $F_{\beta} \cap A_j = \emptyset$ for $j \neq i$, or (iii) there exists F_{γ} such that $F_{\gamma} \cap A_i = \emptyset$ for every i. The first case yields dim $(X - \bigcup A_i) \ge \dim (F_{\alpha} - \bigcup A_i) \ge n - 1$. The second case yields dim $(X - \bigcup A_i) \ge \dim (F_{\beta} - A_i) \ge n - 1$. The third case yields dim $(X - \bigcup A_i) \ge \dim (F_{\gamma} - A_i) \ge n - 1$.

Figure 2 gives a Cantor 2-manifold X such that a proposition for X analogous to Corollary 1 fails. In fact dim X=2, yet dim $(X-\bigcup A_{ij})=0$ since $X-\bigcup A_{ij}$ is a subset of the Cantor discontinuum.

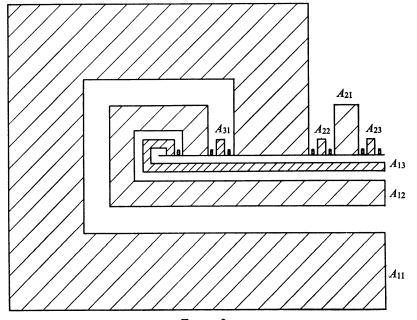


FIGURE 2

3. Relations among the various functions.

LEMMA 5 (MORITA [10, THEOREM 3.4]). Let X be a normal space with dim $X \le n$. Then X satisfies the condition (D'_4) .

LEMMA 6. If a metric space X has a σ -locally finite open base $\mathscr U$ such that ord $\{\overline U-U:U\in\mathscr U\}\leq n$, then dim $X\leq n$. ($\mathscr U$ is called σ -locally finite if $\mathscr U$ can be decomposed into a countable number of locally finite subcollections.)

This is a slight modification of Morita [12, Theorem 8.7].

THEOREM 2. dim $X = d_4(X, \rho)$ for any (X, ρ) .

Proof. By Lemma 5 dim $X \ge d_4(X, \rho)$. To prove dim $X \le d_4(X, \rho)$ assume $d_4(X, \rho) \le n$. Let us show the existence of such \mathscr{U} as in Lemma 6. By Stone [21] there exists an open base $\mathscr{V} = \bigcup_{i=1}^{\infty} \mathscr{V}_i$ of X, $\mathscr{V}_i = \{V_\alpha : \alpha \in \Lambda_i\}$, $i=1, 2, \ldots$, such that each \mathscr{V}_i is discrete. \mathscr{V}_i is called discrete if $\overline{V}_i = \{\overline{V}_\alpha : \alpha \in \Lambda_i\}$ is a locally finite disjoint collection. Set $V_i = \bigcup \{V_\alpha : \alpha \in \Lambda_i\}$, $i=1, 2, \ldots$, and

$$F_{ij} = \{x : \rho(x, X - V_i) \ge 1/j\}, \quad j = 1, 2, \ldots$$

Then by $d_4(X, \rho) \le n$ there exist open sets U_{ij} , i, j = 1, 2, ..., such that

- (i) $V_i \supset \overline{U}_{ij} \supset U_{ij} \supset F_{ij}$ for each i and j and
- (ii) ord $\{\overline{U}_{ij} U_{ij} : i, j = 1, 2, \dots\} \le n$.

Set

$$\mathscr{U}_{ij} = \{ V_{\alpha} \cap U_{ij} : \alpha \in \Lambda_i \}.$$

Then \mathscr{U}_{ij} is discrete and hence locally finite. $\mathscr{U} = \bigcup_{i,j=1}^{\infty} \mathscr{U}_{ij}$ is an open base for X such that ord $\{\overline{U} - U : U \in \mathscr{U}\} \leq n$. Hence by Lemma 6 we have dim $X \leq n$ and the theorem is proved.

LEMMA 7. If $\{F_{\alpha}\}$ is a locally finite closed collection of a paracompact Hausdorff space, then there exists an open collection $\{G_{\alpha}\}$ such that (i) $G_{\alpha} \supset F_{\alpha}$ for each α and (ii) ord $\{F_{\alpha}\}$ = ord $\{G_{\alpha}\}$.

This can easily be seen with the aid of Morita [11, Theorem 1.3].

THEOREM 3 (KATĚTOV [8]). dim $X \leq 2\mu$ dim (X, ρ) for any (X, ρ) .

Proof. Suppose $\mu \dim (X, \rho) \le n$. Let $\mathcal{U}_i = \{U_\alpha : \alpha \in \Lambda_i\}, i = 1, 2, ...,$ be a sequence of open coverings of X such that

- (i) mesh $\mathcal{U}_i < 2^{-i}$ for each i and
- (ii) ord $\mathcal{U}_i \leq n+1$ for each i.

By an easy observation we can assume that each \mathscr{U}_i is locally finite. Let $\mathscr{G} = \{G_1, \ldots, G_m\}$ be an arbitrary finite open covering of X. Set

$$D_i = \bigcup \{\{x : \rho(x, X - G_i) > 2^{-i+1}\} : j = 1, ..., m\}, \quad i = 1, 2, ...$$

Then (i) $D_1 \subseteq \overline{D}_1 \subseteq D_2 \subseteq \overline{D}_2 \subseteq D_3 \cdots$, (ii) each D_i is open and (iii) $\bigcup_{i=1}^{\infty} D_i = X$. Let

 $\mathscr{F}_i = \{F_\alpha : \alpha \in \Lambda_i\}$ be a closed covering of X such that $F_\alpha \subset U_\alpha$ for each $\alpha \in \Lambda_i$. Set

$$\Lambda'_{i} = \{\alpha : F_{\alpha} \cap \overline{D}_{i} = \varnothing\},$$

$$W_{i} = X - \bigcup \{F_{\alpha} : \alpha \in \Lambda'_{i}\}.$$

Then W_i is an open set with $\overline{D}_i \subset W_i \subset \overline{W}_i \subset D_{i+1}$ for every i. Since every point of $\overline{W}_i - W_i$ is contained in some $F_\alpha \in \mathscr{F}_i$ with $\alpha \in \Lambda'_i$, ord $\{F_\alpha \cap (\overline{W}_i - W_i) : \alpha \notin \Lambda'_i\} \leq n$. (This type of argument comes from Morita [10, Theorem 3.3].) Since $\{F_\alpha : \alpha \in \Lambda_i - \Lambda'_i\}$ covers $\overline{W}_i - W_i$, there exists by Lemma 7 an open collection $\mathscr{V}_i = \{V_\alpha : \alpha \in \Lambda_i - \Lambda'_i\}$ of X such that

- (i) $F_{\alpha} \cap (\overline{W}_i W_i) \subseteq V_{\alpha} \subseteq (D_{i+1} \overline{D}_i) \cap U_{\alpha}$ for each $\alpha \in \Lambda_i \Lambda'_i$ and
- (ii) ord $\{V_{\alpha} : \alpha \in \Lambda_i \Lambda_i'\} \leq n$.

Then \mathscr{V}_i refines \mathscr{G} . Moreover $V \in \mathscr{V}_i$, $V' \in \mathscr{V}_j$, $i \neq j$, imply $V \cap V' = \varnothing$. We set

$$\mathscr{H}_i = \{U_\alpha \cap (W_i - \overline{W}_{i-1}) : \alpha \in \Lambda_i\}, \text{ where } W_{-1} = \varnothing.$$

Then $H \in \mathcal{H}_i$, $H' \in \mathcal{H}_i$, $i \neq j$, imply $H \cap H' = \emptyset$. If we set

$$\mathscr{H} = \left(\bigcup_{i=1}^{\infty} \mathscr{H}_{i}\right) \cup \left(\bigcup_{i=1}^{\infty} \mathscr{V}_{i}\right),$$

then it is easy to see that \mathcal{H} is an open covering of X such that (i) \mathcal{H} refines \mathcal{G} and (ii) ord $\mathcal{H} \leq 2n+1$. Thus we have dim $X \leq 2n$ and the theorem is proved.

THEOREM 4. $d_3(X, \rho) \leq \mu \dim(X, \rho)$ for any (X, ρ) .

Proof. Suppose μ dim $(X, \rho) \leq n$. Let $C_1, C'_1; \dots; C_m, C'_m$ be a finite number of pairs of closed sets of X such that there exists a positive number ε such that $\rho(C_i, C'_i) > \varepsilon$ for each i. By μ dim $(X, \rho) \leq n$ there exists a locally finite open covering $\mathscr{U} = \{U_\alpha : \alpha \in \Lambda\}$ of X such that (i) ord $\mathscr{U} \leq n+1$ and (ii) mesh $\mathscr{U} < \varepsilon/2$. Let $\mathscr{F} = \{F_\alpha : \alpha \in \Lambda\}$ be a locally finite closed covering of X such that $F_\alpha \subset U_\alpha$ for each $\alpha \in \Lambda$. Set

$$\Lambda' = \{\alpha : F_{\alpha} \cap C_{1} = \emptyset\},$$

$$W = X - \bigcup \{F_{\alpha} : \alpha \in \Lambda'\},$$

$$B_{1} = \overline{W} - W.$$

Then B_1 separates C_1 and C'_1 and

$$\mathscr{U}_1 = \{U_\alpha : \alpha \in \Lambda - \Lambda'\} \cup \{U_\alpha - B_1 : \alpha \in \Lambda'\}$$

is an open covering of X such that

- (i) \mathcal{U}_1 refines \mathcal{U} ,
- (ii) $\mathscr{U}|X-B_1=\mathscr{U}_1|X-B_1$,
- (iii) ord $(x, \mathcal{U}_1) \leq \text{ord } (x, \mathcal{U}) 1$ for each $x \in B_1$, where ord (x, \mathcal{U}_1) is the order of \mathcal{U}_1 at x.

This can be verified by the same argument as in the proof of the previous theorem. Continuing this procedure, we get closed sets B_i , $i=2,\ldots,m$, separating C_i and C_i' respectively and open coverings $\mathcal{U}_2,\ldots,\mathcal{U}_m$ such that

- (i) \mathcal{U}_{i+1} refines \mathcal{U}_i for $i=1,\ldots,m-1$,
- (ii) $\mathcal{U}_i | X B^i = \mathcal{U}_{i-1} | X B_i$ for each i,
- (iii) ord $(x, \mathcal{U}_i) \leq \text{ord } (x, \mathcal{U}_{i-1}) 1$ for each $x \in B_i$, i = 2, ..., m.

If $x \in B_{i_1} \cap \cdots \cap B_{i_{n+1}}$, $i_1 < i_2 < \cdots < i_{n+1}$, then

$$1 \leq \operatorname{ord}(x, \mathcal{U}_{i_{n+1}}) \leq \operatorname{ord}(x, \mathcal{U}_{i_{n+1}-1}) - 1$$

$$\leq \operatorname{ord}(x, \mathcal{U}_{i_{n}}) - 1 \leq \operatorname{ord}(x, \mathcal{U}_{i_{n}-1}) - 2$$

$$\leq \cdots \leq \operatorname{ord}(x, \mathcal{U}_{i_{1}}) - n \leq \operatorname{ord}(x, \mathcal{U}) - (n+1).$$

Thus we have ord $(x, \mathcal{U}) \ge n+2$, a contradiction. We have therefore

ord
$$\{B_i: i=1,\ldots,m\} \leq n$$
,

and the theorem is proved.

THEOREM 5. $d_3(X, \rho) = \mu \dim(X, \rho)$ for a totally bounded metric space (X, ρ) .

Proof. Suppose that $d_3(X, \rho) \le n$. For an arbitrary positive number ε there exists a finite set of points x_1, \ldots, x_m such that

$$\{U_i = S_{\varepsilon}(x_i) : i = 1, \ldots, m\}$$

covers X. Set

$$V_i = S_{2\varepsilon}(x_i), \qquad i = 1, \ldots, m.$$

Then there exist open sets W_1, \ldots, W_m such that

- (i) $\overline{U}_i \subseteq W_i \subseteq \overline{W}_i \subseteq V_i$ for each i,
- (ii) $B_i = \overline{W}_i W_i$ separates $X V_i$ and \overline{U}_i for each i,
- (iii) ord $\{B_i : i=1,...,m\} \le n$.

By Lemma 7 there exist open sets G_1, \ldots, G_m of X such that (i) $B_i \subseteq G_i \subseteq V_i$ for each i and (ii) ord $\{G_i\} \leq n$. Set

$$\mathcal{W}_{i} = \{W_{i1} = W_{i}, W_{i2} = X - \overline{W}_{i}\},$$

$$\mathcal{W} = \bigwedge_{i=1}^{m} \mathcal{W}_{i} = \{W_{1i_{1}} \cap \cdots \cap W_{mi_{m}} : i_{1}, \ldots, i_{m} = 1, 2\}.$$

Since

$$\bigcap_{i=1}^{m} W_{i2} = \bigcap_{i=1}^{m} (X - \overline{W}_i) = X - \bigcup_{i=1}^{m} \overline{W}_i = X - X = \emptyset,$$

 \mathscr{W} refines $\{W_1, \ldots, W_m\}$ and hence \mathscr{W} refines $\{V_1, \ldots, V_m\}$. Moreover

$$\bigcup \{W: W \in \mathscr{W}\} = X - \bigcup_{i=1}^{m} B_{i}$$

and ord $\mathcal{W} \leq 1$. If we set

$$\mathscr{G} = \mathscr{W} \cup \{G_1, \ldots, G_m\},\$$

then \mathscr{G} is an open covering of X such that (i) mesh $\mathscr{G} \leq 4\varepsilon$ and (ii) ord $\mathscr{G} \leq n+1$. Thus we have μ dim $(X, \rho) \leq n$. If we combine $d_3(X, \rho) \geq \mu$ dim (X, ρ) just proved with Theorem 4, we get $d_3(X, \rho) = \mu$ dim (X, ρ) and the theorem is proved.

Since $d_2(X, \rho) \le d_3(X, \rho) \le d_4(X, \rho)$ are trivially true, we have now $d_2 \le d_3 \le \mu \dim \le d_4 = \dim \le 2\mu \dim$, symbolically.

REMARK 1. When (X, ρ) is locally compact, all of these dimension functions coincide with each other, of course. On the other hand there exists a space (X, ρ) which is not locally compact at any point yet $d_2(X, \rho) = d_3(X, \rho) = \mu \dim(X, \rho) = \dim X$. Let us consider $I^3 = \{(x_1, x_2, x_3) : 0 \le x_i \le 1, i = 1, 2, 3\}$. Let ρ be a metric of I^3 . Set $B = \{(x_1, x_2, x_3) : x_1 = 0\}$. Let C be the set of all points in I^3 whose coordinates are all rational. If we set $X = B \cup C$, then (X, ρ) satisfies the condition as follows: $2 = d_2(B, \rho) \le d_2(X, \rho) \le d_3(X, \rho) \le \mu \dim(X, \rho) \le \dim X = 2$.

REMARK 2. It is to be noticed that even if (X, ρ) is any metric space, (i) dim X=1 implies $d_2(X, \rho)=1$ and (ii) $d_2(X, \rho)=0$ implies dim X=0 (see Nagami-Roberts [15]).

4. Spaces (X_n, ρ) with $d_2 = \lfloor n/2 \rfloor$ and $\dim \ge n-1$.

LEMMA 8. Let F_1, F_2, \ldots be a sequence of closed sets of a metric space X with dim $F_i = n_i$. Let $C_1, C'_1, \ldots, C_m, C'_m$ be m disjoint pairs of closed sets of X. Then there exist closed sets B_1, \ldots, B_m such that

- (i) for each i B_i separates C_i and C'_i ,
- (ii) for each j and for each sequence $1 \le i_1 < i_2 < \cdots < i_t \le \min\{n+1, m\}$,

$$\dim (B_{i_1} \cap \cdots \cap B_{i_t} \cap F_i) \leq n_i - t.$$

See Morita [12, Theorem 9.1].

Construction of (X_n, ρ) . Let (K_n, ρ) be a Cantor *n*-manifold with $n \ge 3$. Put $m = \lfloor n/2 \rfloor + 1$. By compactness of K_n there exists a sequence of m disjoint pairs of closed sets of K_n , say $C_{11}, C'_{11}; \ldots; C_{1m}, C'_{1m} : C_{21}, C'_{21}; \ldots; C_{2m}, C'_{2m} : \ldots$, such that for any m disjoint pairs of closed sets $C_1, C'_1; \ldots; C_m, C'_m$ there exists i with $C_j \subset C_{ij}$ and $C'_j \subset C'_{ij}$ for $j = 1, \ldots, m$. By Lemma 8 there exist closed sets B_{11}, \ldots, B_{1m} such that

- (i) for each $i B_{1i}$ separates C_{1i} and C'_{1i} ,
- (ii) dim $B_1 \leq n-m$ where $B_1 = \bigcap_{j=1}^m B_{1j}$.

By repeated application of Lemma 8 there exist closed sets B_{21}, \ldots, B_{2m} such that

- (i) for each $i B_{2i}$ separates C_{2i} and C'_{2i} ,
- (ii) dim $B_2 \leq n-m$ where $B_2 = \bigcap_{j=1}^m B_{2j}$,
- (iii) $B_1 \cap B_2 = \emptyset$.

Continuing such process we get finally a sequence of closed sets B_{ij} , i=1, 2, ..., j=1, ..., m, which have the following property:

- (i) B_{ij} separates C_{ij} and C'_{ij} for each i and j.
- (ii) dim $B_i \leq n-m$ for $i=1,2,\ldots$, where $B_i = \bigcap_{j=1}^m B_{ij}$.
- (iii) $B_i \cap B_j = \emptyset$ if $i \neq j$.

If we set

$$X_n = K_n - \bigcup_{i=1}^{\infty} B_i,$$

then we have the space (X_n, ρ) .

Assertion 1. $d_2(X_n, \rho) \leq [n/2]$.

Proof. Let $C_1, C'_1; \ldots; C_m, C'_m$ be m pairs of closed sets of X_n such that $\rho(C_i, C'_i) > 0$ for $i = 1, \ldots, m$. Since their closures $\overline{C}_1, \overline{C}_1; \ldots; \overline{C}_m, \overline{C}_m'$ in K_n constitute m disjoint pairs of closed sets of K_n , there exists i such that $\overline{C}_j \subset C_{ij}$ and $\overline{C}_j' \subset C'_{ij}$ for $j = 1, \ldots, m$. Then $B_{i1} \cap X_n, \ldots, B_{im} \cap X_n$ are closed sets of X_n such that $B_{ij} \cap X_n$ separates C_j and C'_j for $j = 1, \ldots, m$.

$$\bigcap_{i=1}^m (B_{ij} \cap X_n) = B_i \cap X_n = \varnothing,$$

and hence we have $d_2(X_n, \rho) \leq m-1 = \lfloor n/2 \rfloor$.

ASSERTION 2. $d_2(X_n, \rho) \ge [n/2]$.

Proof. If G is a nonempty open set of K_n , then dim G = n. Since

$$\dim (\bigcup B_i) \leq n-m < n, \qquad G-(\bigcup B_i) \neq \emptyset$$

and hence $G \cap X_n \neq \emptyset$. Thus X_n is dense in K_n . Assume $d_2(X_n, \rho) = t < \lfloor n/2 \rfloor$. Take a defining system $\overline{D}_1, \overline{D}'_1; \ldots; \overline{D}_{t+1}, \overline{D}'_{t+1}$ of K_n such that

- (i) each D_i and D'_i are open in K_n ,
- (ii) for any closed sets A_i , $i=1,\ldots,t+1$, separating \bar{D}_i and \bar{D}'_i ,

$$\dim\left(\bigcap_{i=1}^{t+1}A_i\right)\geq n-(t+1).$$

Set $C_i = \overline{D}_i \cap X_n$ and $C'_i = \overline{D}'_i \cap X_n$. Then it is easy to see that $\overline{C}_i = \overline{D}_i$ and $\overline{C}'_i = \overline{D}'_i$, since X_n is dense in K_n . Set

$$\varepsilon = \min \{ \rho(C_i, C_i') : i = 1, \ldots, t+1 \}.$$

Take open sets U_i , $i=1,\ldots,t+1$, of K_n such that

(i)
$$\{x: x \in X_n, \, \rho(x, \, C_i) < \varepsilon/4\} \subset U_i \cap X_n \subset \overline{U}_i \cap X_n$$

$$\subset X_n - \{x: x \in X_n, \, \rho(x, \, C_i') < \varepsilon/4\} \quad \text{for each } i,$$

It is easy to see that $\overline{U}_i - U_i$ thus chosen separates $\overline{C}_i = \overline{D}_i$ and $\overline{C}'_i = \overline{D}'_i$ for each *i*. Hence

dim
$$B \ge n - (t+1) \ge n - \lfloor n/2 \rfloor$$
 where $B = \bigcap_{i=1}^{t+1} (\overline{U}_i - U_i)$.

On the other hand

$$\dim B \leq \dim (\bigcup B_i) \leq n-m = n-\lfloor n/2 \rfloor -1$$

because $B \cap X_n = \emptyset$, which is a contradiction.

Assertion 3. dim $X_n \ge n-1$.

Proof. Since dim $B_i \le n - m = n - \lfloor n/2 \rfloor - 1 \le n - 1$, we have dim $X_n \ge n - 1$ at once by Theorem 1.

5. Spaces (Y_n, ρ) with $\mu \dim = [n/2]$ and $\dim \ge n-1$.

LEMMA 9. (X, ρ) has $\mu \dim (X, \rho) \leq n$ if and only if there exists a sequence of locally finite closed coverings \mathscr{F}_i , i = 1, 2, ..., such that

- (i) mesh $\mathcal{F}_i < 1/i$ for any i,
- (ii) ord $\mathcal{F}_i \leq n+1$ for any i.

This is verified at once by Lemma 7.

LEMMA 10. Let X be a metric space with dim $X \le n$ and B_1, B_2, \ldots a sequence of closed sets of X with dim $B_i = n_i$, where $B_1 = X$. Let ε be an arbitrary positive number. Then there exists a locally finite closed covering $\mathscr{F} = \{F_\alpha : \alpha \in \Lambda\}$ which satisfies the following conditions:

- (i) mesh $\mathscr{F} < \varepsilon$.
- (ii) For any i ord $\mathscr{F}|B_i \leq n_i + 1$.
- (iii) For any i, any $j \le n_i + 2$ and any j different indices $\alpha(1), \ldots, \alpha(j)$ of Λ ,

$$\dim \bigcap_{k=1}^{j} (F_{\alpha(k)} \cap B_i) \leq n_i - j + 1.$$

This is proved essentially in Nagami [13, Theorem 3.6].

Construction of (Y_n, ρ) . Let (K_n, ρ) be a Cantor *n*-manifold, $n \ge 3$. Set $m = \lfloor n/2 \rfloor + 2$. By Lemma 10 there exists a locally finite closed covering $\mathscr{F}_1 = \{F_\alpha : \alpha \in \Lambda_1\}$ of K_n such that (i) mesh $\mathscr{F}_1 < 1$, (ii) ord $\mathscr{F}_1 \le n+1$, and (iii) dim $B_1 \le n-m+1$ where $B_1 = \{x : \text{ord } (x, \mathscr{F}_1) \ge m\}$ which is closed by the local finiteness of \mathscr{F}_1 . Then ord $\mathscr{F}_1 | K_n - B_1 < m$.

By Lemma 10 again there exists a locally finite closed covering

$$\mathscr{F}_2 = \{F_\alpha : \alpha \in \Lambda_2\}$$

of K_n such that (i) mesh $\mathscr{F}_2 < 1/2$, (ii) ord $\mathscr{F}_2 \le n+1$, (iii) dim $B_2 \le n-m+1$ where $B_2 = \{x : \text{ord } (x, \mathscr{F}_2) \ge m\}$, and (iv) dim $\bigcap_{k=1}^{j} (F_{\alpha(k)} \cap B_1) \le \dim B_1 - j + 1$ for any $j \le \dim B_1 + 2$ and any j different indices $\alpha(1), \ldots, \alpha(j)$ of Λ_2 . To show that the last condition (iv) implies $B_1 \cap B_2 = \emptyset$, set dim $B_1 = n_1$. Take $n_1 + 2$ different indices $\alpha(1), \ldots, \alpha(n_1 + 2)$ of Λ_2 . Then

$$\dim \bigcap_{k=1}^{n_1+2} (F_{\alpha(k)} \cap B_1) \leq n_1 - (n_1+2) + 1 = -1.$$

Hence we have

$$B_1 \cap \{x : \operatorname{ord}(x, \mathscr{F}_2) \ge n_1 + 2\} = \varnothing.$$

Since

$$n_1 + 2 \le (n - m + 1) + 2 \le n - (\lfloor n/2 \rfloor + 2) + 3$$

= $n - \lfloor n/2 \rfloor + 1 \le (2\lfloor n/2 \rfloor + 1) - \lfloor n/2 \rfloor + 1$
= $\lfloor n/2 \rfloor + 2 = m$,

we have $B_1 \cap B_2 = \emptyset$.

Repeating such procedure we have a sequence of locally finite closed coverings \mathcal{F}_i , $i=1,2,\ldots$, which satisfy the following conditions:

- (i) For each i, mesh $\mathcal{F}_i < 1/i$.
- (ii) For each i, dim $B_i \le n m + 1$ where B_i is a closed set defined by

$$B_i = \{x : \text{ord } (x, \mathscr{F}_i) \geq m\}.$$

(iii) B_i , $i=1, 2, \ldots$, are mutually disjoint.

We set $Y_n = K_n - \bigcup B_i$. Then (Y_n, ρ) is the desired space.

Assertion 1. dim $Y_n \ge n-1$.

Proof. Since

$$\dim B_i \leq n-m+1 = n-[n/2]-1 \leq n-1,$$

the assertion is true by Theorem 1.

ASSERTION 2. μ dim $(Y_n, \rho) \leq [n/2]$.

Proof. Since ord $\mathscr{F}_i|Y_n \le \operatorname{ord} \mathscr{F}_i|K_n - B_i \le m - 1 = (\lfloor n/2 \rfloor + 2) - 1 = \lfloor n/2 \rfloor + 1$, the assertion is true by Lemma 9.

ASSERTION 3. dim $Y_n \le n-1$ when n is odd.

Proof. Since dim $Y_n \leq 2\mu$ dim (Y_n, ρ) by Theorem 3, we have

dim
$$Y_n \le 2[n/2] = 2((n-1)/2) = n-1$$
.

Assertion 4. μ dim $(Y_n, \rho) \ge [n/2]$.

Proof. Assume the contrary. Then

$$\dim Y_n \leq 2\mu \dim (Y_n, \rho) \leq 2([n/2]-1) \leq n-2,$$

a contradiction.

Thus (Y_n, ρ) satisfies (i) dim $Y_n \ge n-1$ and (ii) μ dim $(Y_n, \rho) = [n/2]$. Furthermore when n is odd, dim $Y_n = n-1$.

REMARK 3. It is to be noted that for X_n and Y_n obtained by replacing K_n with I^n , dim $X_n = \dim Y_n = n - 1$ for any n, because of the fact that $I^n - X_n$ and $I^n - Y_n$ are dense in I^n , and the invariance theorem of domain.

REMARK 4. Note that the existence of a sequence of open coverings \mathcal{U}_i , $i=1, 2, \ldots$, with ord $\mathcal{U}_i \leq n+1$ and $\lim \text{mesh } \mathcal{U}_i=0$ does not characterize dimension. Thus it is natural to seek an additional condition upon \mathcal{U}_i with which the existence of the sequence does characterize dimension. Dowker-Hurewicz [2], Nagata [17] and Nagami [14] considered such a condition. This type of characterization theorem is one of the main foundations on which modern dimension theory has been built up. Vopěnka [22] gave a simple condition: " $\mathcal{U}_{i+1} < \text{(refines)}$ \mathcal{U}_i for each i". Recently Nagami-Roberts [16, Theorem 3] refined Vopěnka's

theorem, weakening the mesh condition. But our proof contains an error. The definition of V_{α} in [16, line 15, p. 157] is not adequate. Let us take this opportunity to give a correct proof as follows:

THEOREM 6. A metric space X has dim $X \le n$ if there exists a sequence $\mathcal{U}_1 > \mathcal{U}_2 > \cdots$ of open coverings \mathcal{U}_1 of X such that

- (i) for each $x \in X$, {St $(x, \mathcal{U}_i^{\Delta}) : i = 1, 2, ...$ } is a local base of x,
- (ii) ord $\mathcal{U}_i \leq n+1$.

Proof. Set

$$\mathscr{U}_i = \{U(\alpha_i) : \alpha_i \in A_i\}, \qquad i = 1, 2, \ldots$$

Let $f_i^{i+1}: A_{i+1} \to A_i$ be a function such that $f_i^{i+1}(\alpha_{i+1}) = \alpha_i$ yields $U(\alpha_{i+1}) \subseteq U(\alpha_i)$. For each pair i < j let $f_i^j = f_i^{i+1} \cdots f_{j-1}^j$ and f_i^i be the identity mapping. Let $\mathscr G$ be an arbitrary finite open covering of X. Set

$$X_i = \bigcup \{U(\alpha_i) : \operatorname{St}(U(\alpha_i), \mathcal{U}_i) \text{ refines } \mathscr{G}\}.$$

Then by the condition (i) $\{X_1, X_2, \ldots\}$ is an open covering of X. Set $X_0 = \emptyset$. Set

$$B_{i} = \{\alpha_{i} : U(\alpha_{i}) \cap X_{i} \neq \varnothing\},$$

$$C_{i} = \left\{\alpha_{i} : \alpha_{i} \in B_{i}, U(\alpha_{i}) \cap \left(\bigcup_{j < i} X_{j}\right) = \varnothing\right\},$$

$$D_{i} = \left\{\alpha_{i} : \alpha_{i} \in B_{i}, U(\alpha_{i}) \cap \left(\bigcup_{j < i} X_{j}\right) \neq \varnothing\right\}.$$

Then $B_i \subseteq A_i$, $B_1 = C_1$, $B_i = C_i \cup D_i$ and $C_i \cap D_i = \emptyset$.

For every i < j and every $\alpha_i \in C_i$ set

$$D_j(\alpha_i) = \left(\bigcap_{k=i+1}^j (f_k^j)^{-1}(D_k)\right) \cap (f_i^j)^{-1}(\alpha_i).$$

Then

- (i) $f_k^j(D_i(\alpha_i)) \subseteq D_k(\alpha_i), i < k \leq j$,
- (ii) $D_i = \bigcup \{D_i(\alpha_i) : \alpha_i \in C_i, i < j\}.$

For every $\alpha_i \in C_i$ let

$$V(\alpha_i) = (U(\alpha_i) \cap X_i) \cup (\bigcup \{U(\alpha_j) \cap X_j : \alpha_j \in D_j(\alpha_i), i < j\}).$$

Let us show that

$$\mathscr{V} = \{V(\alpha_i) : \alpha_i \in C_i, i = 1, 2, \ldots\}$$

is an open covering of X such that $\mathscr V$ refines $\mathscr G$ and ord $\mathscr V \leq n+1$, which will prove dim $X \leq n$.

Let x be an arbitrary point of X. Since $X_0 = \emptyset$, there exists i with $x \in X_i - \bigcup_{j < i} X_j$. Take $\alpha_i \in B_i$ with $x \in U(\alpha_i)$. When $\alpha_i \in C_i$, $x \in U(\alpha_i) \cap X_i \subset V(\alpha_i)$. When $\alpha_i \in D_i$, there exist j < i and $\alpha_j \in C_j$ such that $\alpha_i \in D_i(\alpha_j)$. Then $x \in U(\alpha_i) \cap X_i \subset V(\alpha_j)$. Thus $\mathscr V$ is an open covering of X. Let *i* be an arbitrary positive integer and α_i an arbitrary index in C_i . Since $\emptyset \neq U(\alpha_i) \cap X_i \subset V(\alpha_i) \subset U(\alpha_i)$, there exists $\beta_i \in A_i$ such that $U(\beta_i) \cap U(\alpha_i) \cap X_i \neq \emptyset$ and St $(U(\beta_i), \mathcal{U}_i)$ refines \mathscr{G} . Thus $V(\alpha_i)$ refines \mathscr{G} and hence \mathscr{V} refines \mathscr{G} .

To prove ord $\mathscr{V} \leq n+1$ assume the contrary. Then there exist a point x and n+2 indices $\alpha^1, \ldots, \alpha^{n+2}$ such that

- (i) $\alpha^i \in C_{m_i}, i=1,\ldots,n+2,$
- (ii) $x \in V(\alpha^i), i = 1, ..., n+2.$

Let k be the smallest integer such that $x \in X_k - \bigcup_{j < k} X_j$. Every m_i is less than or equal to k. For every α^i there exist j(i) with $j(i) \ge k$ and $\beta^i \in D_{j(i)}(\alpha^i)$ such that $x \in U(\beta^i)$. Set $\gamma^i = f_k^{j(i)}(\beta^i)$. Then (i) $x \in U(\gamma^i)$, (ii) $\gamma^i \in D_k(\alpha^i)$ if $m_i < k$ and (iii) $\gamma^i = \alpha^i$ if $m_i = k$. Since γ^i , $i = 1, \ldots, n+2$, are all different from one another by our construction, ord $(x, \mathcal{U}_k) \ge n+2$, a contradiction. Hence ord $\mathcal{V} \le n+1$ and the proof is finished.

6. Spaces (Z_n, σ_i) illustrating the dependence of μ dim and d_2 on the metric.

LEMMA 11. If (X, ρ) is a metric space with dim X = n, then there exists an equivalent metric ρ' to ρ such that $d_2(X, \rho') = n$.

Proof. Since dim X=n, there exists a defining system of n pairs C_1 , C'_1 ; \cdots ; C_n , C'_n . Let f_1, \ldots, f_n be real-valued mappings of X such that

- (i) $0 \le f_i(x) \le 1$ for any i and any $x \in X$,
- (ii) $f_i(x) = 0$ for any i and any $x \in C_i$,
- (iii) $f_i(x) = 1$ for any i and any $x \in C'_i$.

Set

$$\rho'(x, y) = \rho(x, y) + \sum_{i=1}^{n} |f_i(x) - f_i(y)|.$$

Then ρ' is an equivalent metric to ρ and $\rho'(C_i, C_i') > 0$ for each *i*. Thus we have $d_2(X, \rho') \ge n$ and hence $d_2(X, \rho') = n$.

Construction of Z_n , $n \ge 2$. Set m = [(n+1)/2] + 1. In every (I^i, ρ_i) , i = m, m+1, ..., n+1, we construct (Y_i, ρ_i) as in the preceding section. Then μ dim (Y_i, ρ_i) $\le [i/2] \le [(n+1)/2]$ and dim $Y_i = i-1$ for $i = m, \ldots, n+1$. We assume here that $\rho_i(I^i) \le 1$ for $i = m, \ldots, n+1$. Take a metric ρ'_i equivalent to ρ_i as in Lemma 11 such that $d_2(Y_i, \rho'_i) = i-1$. Then μ dim $(Y_i, \rho'_i) = d_3(Y_i, \rho'_i) = i-1$ are automatically true for $i = m, \ldots, n+1$. By the construction of ρ'_i in Lemma 11 ρ'_i satisfies $\rho'_i(Y_i) \le i+1$.

 Z_n is merely the disjoint sum of Y_m , Y_{m+1} , ..., Y_{n+1} . The topology of Z_n is defined in such a way that a subset G of Z_n is open if and only if $G \cap Y_i$ is open in Y_i for $i=m,\ldots,n+1$. Then Z_n is a metric space. Define for $i=m,\ldots,n+1$ the metrics σ_i of Z_n as follows:

- (i) $\sigma_i | Y_i = \rho_i$ if $i \neq j$.
- (ii) $\sigma_i | Y_i = \rho_i'$.
- (iii) $\sigma_i(x, y) = n+2$ if for any $j=m, \ldots, n+1$, x and y are not in the same Y_j . $\sigma_m, \ldots, \sigma_{n+1}$ are equivalent metrics which give the preassigned topology of Z_n .

Assertion 1. dim $Z_n = n$.

Proof. dim $Z_n = \max \{ \dim Y_i : i = m, ..., n+1 \} = n.$

ASSERTION 2. $\mu \dim (Z_n, \sigma_i) = d_2(Z_n, \sigma_i) = d_3(Z_n, \sigma_i) = i - 1$ for i = [(n+1)/2] + 1, ..., n+1.

Proof. If $j \neq i$, then μ dim $(Y_j, \sigma_i) = \mu$ dim $(Y_j, \rho_j) \leq [(n+1)/2]$. Since

$$\mu \dim (Y_i, \sigma_i) = d_2(Y_i, \sigma_i) = d_3(Y_i, \sigma_i) = \mu \dim (Y_i, \rho_i') = i - 1 \ge [(n+1)/2],$$

we have

$$i-1 = d_2(Z_n, \sigma_i) \leq d_3(Z_n, \sigma_i) \leq \mu \dim(Z_n, \sigma_i)$$

$$= \max \{ \mu \dim(Y_m, \rho_m), \dots, \mu \dim(Y_{i-1}, \rho_{i-1}), \mu \dim(Y_i, \rho_i'), \mu \dim(Y_{i+1}, \rho_{i+1}), \dots, \mu \dim(Y_{n+1}, \rho_{n+1}) \} = i-1.$$

Thus the assertion is proved.

7. A space (R, ρ) with $d_2 = 2$, $\mu \dim = 3$, $\dim = 4$.

First let us construct a space (S, σ) with $d_2(S, \sigma) = 2$ and μ dim $(S, \sigma) = \dim S = 3$. Construction of (S, σ) . (S, σ) will be a subset of

$$(I^4 = \{(x_1, \ldots, x_4) : 0 \le x_i \le 1, i = 1, \ldots, 4\}, \sigma),$$

where σ is Euclidean metric on I^4 . Let C_{ij} , C'_{ij} , $i=1,2,\ldots,j=1,2,3$, be disjoint pairs of closed sets of I^4 such that for any three disjoint pairs of closed sets C_1 , C'_1 ; C_2 , C'_2 ; C_3 , C'_3 , there exists i with $C_j \subset C_{ij}$ and $C'_j \subset C'_{ij}$ for j=1,2,3. Let π be a prime number with $5 \le \pi$. Consider an open covering $\mathcal{D}(\pi)$ of the unit interval [0,1] consisting of overlapping intervals $[0,2/\pi)$, $((\pi-2)/\pi,1]$ and $((2k-1)/\pi,(2k+2)/\pi)$, $k=1,\ldots,(\pi-3)/2$. Define an open covering $\mathscr{E}(\pi)$ of I^4 as follows:

$$\mathscr{E}(\pi) = \{D_1 \times D_2 \times D_3 \times D_4 : D_1, \dots, D_4 \in \mathscr{D}(\pi)\}$$

= $\{E_{\lambda} : \lambda \in \Lambda(\pi)\}.$

Let π_{ij} , i=1, 2, ..., j=1, 2, 3, be prime numbers which are different from each other and satisfy the following conditions:

- (i) $5 \le \pi_{ij}$ for every i and j.
- (ii) max {mesh $\mathscr{E}(\pi_{ij}): j=1, 2, 3$ } < min { $\sigma(C_{ij}, C'_{ij}): j=1, 2, 3$ } for every i.

Let U_{ij} be the sum of all elements of $\mathscr{E}(\pi_{ij})$ which meet C_{ij} . Set $B_{ij} = \overline{U}_{ij} - U_{ij}$ and $B_i = \bigcap_{j=1}^3 B_{ij}$. Then B_{ij} separates C_{ij} and C'_{ij} . Set

$$S=I^4-\bigcup B_i.$$

Then (S, σ) satisfies the required equalities.

Assertion 1. $B_i \cap B_k = \emptyset$ if $i \neq k$.

Proof. Set

$$L_{ij} = \{a/\pi_{ij} : a = 1, \ldots, \pi_{ij} - 1\}.$$

Then $L_{ij} \cap L_{kl} \neq \emptyset$ if and only if i=k and j=l. If $x=(x_1,\ldots,x_4)$ is a point of B_{ij} , then for some $t, x_t \in L_{ij}$. Hence $B_i \cap B_k = \emptyset$ if $i \neq k$.

ASSERTION 2. B_i does not meet the 2-dimensional edge of I^4 . B_i meets the surface of I^4 at only a finite number of points. B_i is the sum of a finite number of segments.

This is evident from the above observation.

ASSERTION 3. B_i is the disjoint sum of a finite number of simple closed curves and a finite number of simple arcs.

Proof. If three different lines l_1 , l_2 , l_3 lying in B_i have a common point, then they lie in some hyperplane $H: x_j = \text{constant}$. Since H is 3-dimensional, it is now easy to see that $H \cap B_i$ cannot contain l_1 , l_2 , l_3 at the same time because (i) $\mathscr{E}(\pi_{ij})|H$, =1, 2, 3, are collections of bordered blicks and (ii) π_{ij} , j=1, 2, 3, are different from each other.

ASSERTION 4. $d_2(S, \sigma) = 2$ and dim S = 3.

The first equality was proved in §4. As for the second equality see Remark 3.

ASSERTION 5. μ dim $(S, \sigma) = 3$.

Proof. To show μ dim $(S, \sigma) > 2$, assume that μ dim $(S, \sigma) \le 2$. Then there exists a finite closed (in S) covering $\mathscr{F} = \{F\}$ of S which satisfies the following conditions:

- (i) $\{G(F) = \text{interior of } F \text{ with respect to } S : F \in \mathcal{F}\}\$ covers S.
- (ii) mesh $\mathcal{F} < 1$.
- (iii) ord $\mathscr{F} \leq 3$.

The proof for the existence of such \mathcal{F} is left to the reader. Cf. Lemma 7 and also use the total boundedness of (S, σ) . Set

$$\mathscr{F}_1 = \{F : F \in \mathscr{F}, \overline{F} \cap \{x : x_1 = 0\} \neq \varnothing\},\$$

 $M_1 = \text{boundary in } I^4 \text{ of } \bigcup \{\overline{F} : F \in \mathscr{F}_1\}.$

Let F be an arbitrary element of \mathscr{F}_1 . Let G' be an open set of I^4 with $G' \cap S = G(F)$. Since dim $\bigcup B_i = 1$, S is dense in I^4 . Hence $G' - \overline{F} \neq \emptyset$ yields $(G' - \overline{F}) \cap S \neq \emptyset$, a contradiction. Thus $G' \subset \overline{F}$, which implies $G(F) \cap M_1 = \emptyset$. Take an arbitrary point x from $M_1 \cap S$. Since $x \notin G(F)$ for any F in \mathscr{F}_1 , there exists an element $F_0 \in \mathscr{F} - \mathscr{F}_1$ such that $x \in G(F_0)$ by the condition (i) imposed upon \mathscr{F} . Hence

ord
$$\mathcal{F}_1|M_1 \cap S \leq \text{ord } \mathcal{F} - 1 \leq 2$$
.

Set

$$\mathscr{F}_2 = \{F : F \in \mathscr{F}_1, \overline{F} \cap \{x : x_2 = 0\} \neq \varnothing\},\$$

 $M_2 = \text{boundary in } M_1 \text{ of } \bigcup \{\overline{F} \cap M_1 : F \in \mathscr{F}_2\}.$

Take an arbitrary point x' from $M_2 \cap S$. Let y^1, y^2, \ldots be a sequence of points of $M_1 - \bigcup \{\overline{F} \cap M_1 : F \in \mathscr{F}_2\}$ with $\lim y^i = x'$. Since \mathscr{F}_1 is finite and $\overline{\mathscr{F}}_1 = \{\overline{F} : F \in \mathscr{F}_1\}$ covers M_1 , we assume here without loss of generality that the sequence $\{y^i\}$ is contained in one \overline{F}_1 with $F_1 \in \mathscr{F}_1 - \mathscr{F}_2$. For any i let z^i be a point of F_1 with $\sigma(y^i, z^i) < \sigma(y^i, x')$. Since $\lim z^i = x', x' \in F_1$. Therefore

ord
$$\mathscr{F}_2|M_2 \cap S \leq \operatorname{ord} \mathscr{F}_1|M_1 \cap S - 1 \leq 1$$
.

Set

$$\mathscr{F}_3 = \{F : F \in \mathscr{F}_2, \overline{F} \cap \{x : x_3 = 0\} \neq \varnothing\},\$$

 $M_3 = \text{boundary in } M_2 \text{ of } \bigcup \{\overline{F} \cap M_2 : F \in \mathscr{F}_3\}.$

Since ord $\overline{\mathscr{F}}_2|M_2 \cap S = \text{ord } \mathscr{F}_2|M_2 \cap S \leq 1$,

$$M_3 \cap S = \emptyset$$
.

Set

$$T = \{x : x \in M_2, \text{ ord } (x, \overline{\mathscr{F}}_2) \ge 2\}.$$

Then T is a closed set of I^4 such that

$$M_3 \subset T \subset M_2 \cap (\bigcup B_i).$$

Let K_1 and K_2 be mutually separated relatively open sets of M_2 such that

$$M_2-M_3 = K_1 \cup K_2,$$

 $K_1 \supset M_2 \cap \{x : x_3 = 0\},$
 $K_2 \supset M_2 \cap \{x : x_3 = 1\}.$

Let P, P', Q or Q' be the union of all components of T which meet $\{x: x_3=0\}$, $\{x: x_3=1\}$, $\{x: x_4=0\}$ or $\{x: x_4=1\}$, respectively. Then these four sets are closed. Let us show for instance P is closed. Let x^0 be an arbitrary point of the closure of P and C_1 , C_2 , ... a sequence of components of T such that

- (i) each C_i intersects $\{x: x_3=0\}$,
- (ii) each C_i contains a point z^i with $\lim z^i = x^0$.

Since $x^0 \in \lim \inf C_i$, $\lim \sup C_i$ is connected by [6, Theorem 2-101]. Since $\lim \sup C_i$ intersects $\{x : x_3 = 0\}$ and $\lim \sup C_i \subseteq T$, $\lim \sup C_i \subseteq P$. Especially $x^0 \in P$ and hence P is closed.

By Assertions 2 and $3 P \cup P'$ and $Q \cap Q'$ are disjoint closed sets of T such that there is no continuum in T between them. Hence by Lemma 2 there exists a subset V of T such that

- (i) V is open and closed in T,
- (ii) $Q \cap Q' \subset V$,
- (iii) $V \cap (P \cup P') = \emptyset$.

Since $Q \cap Q' \cap \{x : x_3 = 0, 1\} = \emptyset$, there exists a subset W of M_2 such that

- (i) W is open in M_2 ,
- (ii) $W \cap T = V$,
- (iii) $\overline{W} \cap \{x : x_3 = 0, 1\} = \emptyset$.

Then

$$(\overline{W} - W) \cap T = \emptyset,$$

 $Q \cap Q' \subseteq W,$
 $\overline{W} \cap (P \cup P' \cup \{x : x_3 = 0, 1\}) = \emptyset.$

Set

$$M = (M_3 - W) \cup (\overline{W} - W),$$

$$G_1 = K_1 - \overline{W},$$

$$G_2 = (K_2 \cup W) - (\overline{W} - W).$$

Then

$$M_2-M = G_1 \cup G_2,$$

 $G_1 \cap G_2 = \varnothing,$
 $G_1 \supseteq M_2 \cap \{x : x_3 = 0\},$
 $G_2 \supseteq M_2 \cap \{x : x_3 = 1\}.$

Since G_1 and G_2 are open in M_2 , M separates $M_2 \cap \{x : x_3 = 0\}$ and $M_2 \cap \{x : x_3 = 1\}$ in M_2 .

Let us show that no component of M meets both $\{x: x_4 = 0\}$ and $\{x: x_4 = 1\}$. Take an arbitrary element F from \mathcal{F}_2 . Set

$$U(F) = M_2 - \bigcup \{ \overline{F}' : F' \in \mathscr{F}_2, F' \neq F \}.$$

Then $\{U(F): F \in \mathscr{F}_2\}$ is a disjoint collection of open sets of M_2 . Since

$$M_2-T=\bigcup \{U(F): F\in \mathscr{F}_2\}$$

and $(\overline{W}-W) \cap T = \emptyset$, $\overline{W}-W$ is the sum of the disjoint collection:

$$\mathscr{H} = \{(\overline{W} - W) \cap U(F) = H(F) : F \in \mathscr{F}_2\}.$$

Since

$$H(F) = (\overline{W} - W) - \bigcup \{U(F') : F' \neq F, F' \in \mathscr{F}_2\},$$

H(F) is closed and hence \mathcal{H} is a disjoint collection of closed sets. Since

$$\operatorname{mesh} \mathscr{H} \leq \operatorname{mesh} \mathscr{F}_2 < 1,$$

no H(F) meets both $\{x: x_4=0\}$ and $\{x: x_4=1\}$. Now M is the sum of the disjoint closed sets:

$$M \cap B_i$$
, $i = 1, 2, \ldots, H(F) \in \mathcal{H}$.

By our construction no $M \cap B_i$ meets both $\{x : x_4 = 0\}$ and $\{x : x_4 = 1\}$ since $Q \cap Q' \cap M = \emptyset$. Therefore no component of M meets both $\{x : x_4 = 0\}$ and $\{x : x_4 = 1\}$ by Lemma 3.

Consider the closed set:

$$X = \{x : x_4 = 0, 1\} \cup M.$$

Let X_1 be the sum of $\{x: x_4=0\}$ and all components of M which meet $\{x: x_4=0\}$. Let X_2 be the sum of $\{x: x_4=1\}$ and all components of M which meet $\{x: x_4=1\}$. Then X_1 and X_2 are closed by the same argument as in the proof for the closedness of P. With the aid of Lemma 2 we can find a closed set N of M_2 which separates $\{x: x_4=0\}$ and $\{x: x_4=1\}$ such that $N \cap M = \emptyset$. Thus two pairs of opposite sides of M_2 are not defining, which shows in turn three pairs of opposite sides of M_1 are not defining as can easily be seen. At last four pairs of opposite faces of I^4 are not defining, a contradiction. Hence $2 < \mu \dim(S, \sigma)$. Since

$$\mu \dim (S, \sigma) \leq \dim S = 3, \qquad \mu \dim (S, \sigma) = 3.$$

ASSERTION 6. $d_3(S, \sigma) = 3$.

Proof. Since σ is totally bounded, $d_3(S, \sigma) = \mu \dim(S, \sigma) = 3$ by Theorem 5.

Construction of (R, ρ) . Take the space (Z_4, σ_3) constructed in the preceding section. Then dim $Z_4 = 4$ and $d_2(Z_4, \sigma_3) = d_3(Z_4, \sigma_3) = \mu \dim(Z_4, \sigma_3) = 2$. R is the disjoint union of Z_4 and S just constructed. The metric ρ on R is defined as follows:

$$\rho | Z_4 = \sigma_3,$$

$$\rho | S = \sigma,$$

$$\rho(x, y) = \max \{\sigma_3(Z_4), \sigma(S)\} (\leq 6) \text{ if } \{x, y\} \text{ is contained in neither } Z_4 \text{ nor } S.$$

Then it is evident that $d_2(R, \rho) = 2$, $d_3(R, \rho) = \mu \dim(R, \rho) = 3$ and dim R = 4.

8. Problems.

Problem 1. Is it true that dim $X \le 2d_2(X, \rho)$ for all (separable) metric spaces (X, ρ) ?

Problem 2. Let (X, ρ) be a metric space with $d_2(X, \rho) < \dim X$ and k an arbitrary integer with

$$d_2(X, \rho) \le k \le \dim X$$
.

Can X allow an equivalent metric σ with $d_2(X, \sigma) = k$?

REMARK 5. Recently Roberts and his student Slaughter solved a problem analogous to Problem 2 for the case when d_2 is replaced by μ dim. (Added in proof. This paper has been accepted for publication in Fundamenta Mathematicae.)

Problem 3. Find a necessary and sufficient condition on X with which $d_2(X, \rho)$ (or μ dim (X, ρ)) = dim X for any metric ρ agreeing with the preassigned topology of X.

REMARK 6. It is reported by Alexandroff [1] that K. Sitnikov got a sufficient condition: If X is a subset of the *n*-dimensional Euclidean space (R^n, ρ) such that dim $X = \dim \overline{X}$, then $\mu \dim (X, \rho) = \dim X$.

Problem 4. Is there a space (X, ρ) with $d_3(X, \rho) < \mu \dim (X, \rho)$?

REFERENCES

- 1. P. Alexandroff, On some results in the theory of topological spaces obtained during the last twenty five years, Uspehi Mat. Nauk 15 (1960), 25-95.
- 2. C. H. Dowker and W. Hurewicz, *Dimensions of metric spaces*, Fund. Math. 43 (1956), 83-87.
- 3. S. Eilenberg and E. Otto, Quelques propriétés caracteristiques de la dimension, Fund. Math. 31 (1938), 149-153.
- 4. O. Hanner, Retraction and extension of mappings of metric and nonmetric spaces, Ark. Mat. 2 (1952), 315-360.
- 5. E. Hemmingsen, Some theorems in dimension theory for normal Hausdorff spaces, Duke Math. J. 13 (1946), 495-504.
 - 6. J. G. Hocking and G. S. Young, Topology, Addison-Wesley, Reading, Mass., 1961.
- 7. W. Hurewicz and H. Wallman, *Dimension theory*, Princeton Univ. Press, Princeton, N. J., 1941.

- 8. M. Katětov, On the relations between the metric and topological dimensions, Czechoslovak Math. J. 8 (1958), 163-166.
- 9. R. L. Moore, Foundations of point set theory, Amer. Math. Soc. Colloq. Publ., Vol. 13, Amer. Math. Soc., Providence, R. I., 1932.
 - 10. K. Morita, On the dimension of normal spaces. I, Japan. J. Math. 20 (1950), 5-36.
 - 11. ——, On the dimension of normal spaces. II, J. Math. Soc. Japan 2 (1950), 16-33.
- 12. ——, Normal families and dimension theory for metric spaces, Math. Ann. 128 (1954), 350-362.
- 13. K. Nagami, Mappings of finite order and dimension theory, Japan. J. Math. 30 (1960), 25-54.
 - 14. —, Note on metrizability and n-dimensionality, Proc. Japan Acad. 36 (1960), 565-570.
- 15. K. Nagami and J. H. Roberts, Metric-dependent dimension functions, Proc. Amer. Math. Soc. 16 (1965), 601-604.
- 16. —, A note on countable-dimensional metric spaces, Proc. Japan Acad. 41 (1965), 155-158.
 - 17. J. Nagata, Note on dimension theory for metric spaces, Fund. Math. 45 (1958), 143-181.
 - 18. ——, On a special metric and dimension, Fund. Math. 55 (1964), 181-194.
- 19. K. Sitnikov, An example of a 2-dimensional set in the 3-dimensional Euclidean space, which allows a deformation as small as desired in a 1-dimensional polyhedron, and some new character of the dimension of the sets in Euclidean spaces, Dokl. Akad. Nauk SSSR 66 (1949), 1059–1062.
- 20. ——, On the dimension of nonclosed sets of Euclidean space, Dokl. Akad. Nauk SSSR 83 (1952), 31-34.
- 21. A. H. Stone, Paracompactness and product spaces, Bull. Amer. Math. Soc. 54 (1948), 977-982.
- 22. P. Vopěnka, Remarks on the dimension of metric spaces, Czechoslovak Math. J. 9 (1959), 519-522.

EHIME UNIVERSITY,

MATSUYAMA, JAPAN

DUKE UNIVERSITY,

DURHAM, NORTH CAROLINA