M-SEMIREGULAR SUBALGEBRAS IN HYPERFINITE FACTORS

BY SISTER RITA JEAN TAUER(1)

1. Introduction. The general study of algebras of operators on Hilbert space has led to the investigation of rings of operators, also called W^* -algebras or von Neumann algebras. If the center of a ring (center in the algebraic sense) consists only of scalar multiples of the identity, then the ring is a factor. Since every ring can be decomposed into factors [6], the study of rings is, in a sense, reduced to a study of factors. In this paper we are concerned with the maximal abelian subalgebras of type II₁ factors, or continuous factors which have a finite trace defined on them [2]. For the present, we restrict ourselves to the study of hyperfinite factors, that is, those which are generated by a sequence of factors \mathfrak{M}_n of type I_n , with $\mathfrak{M}_{n_1} \neq \mathfrak{M}_{n_2} \neq \cdots$ (The factor \mathfrak{M}_n is isomorphic to the algebra of n by n matrices.) Since all hyperfinite factors are algebraically isomorphic [5, §4.7], while the concept of a subring of a finite factor is purely algebraic [5, §1.6], any construction used will yield general results.

Dixmier has defined three types of maximal abelian subalgebras R in a factor \mathfrak{A} : regular, semiregular, and singular [3]. These depend on the properties of N(R), the ring generated by $\{V: VRV^* = R, V \text{ unitary}, V \in \mathfrak{A}\}$. In other words, N(R) is the normalizer of R in \mathfrak{A} . Later, Anastasio defined an additional type, M-semiregular $(M=1, 2, 3, \ldots)$, which coincides with the semiregular type when M=1. Extending the notation N(D) to any subring $D \subset \mathfrak{A}$, and letting $N^j(D) = N[N^{j-1}(D)]$, we have a chain $R \not\subseteq N(R) \not\subseteq N^2(R) \not\subseteq \cdots \not\subseteq N^t(R) = \mathfrak{A}$. We say that a maximal abelian subalgebra R is M-semiregular if $N^k(R)$ is not a factor for k < M, but $N^M(R)$ is a factor [1]. Anastasio constructed infinite sequences of non-isomorphic 2-semiregular and 3-semiregular subalgebras in a hyperfinite factor. (The 1-semiregular case had already been done [7].) In this paper we propose to show the existence of M-semiregular subalgebras for every positive integer $M \ne 1$.

We use the notation and results of [7]. Let \mathfrak{M}_p be the full 2^p by 2^p matrix algebra over the complex numbers, and $\{{}^pE_{ij}: i, j=0, 1, \ldots, 2^p-1\}$ the matrix units which generate it. By letting ${}^pE_{ij} = {}^{p+1}E_{2i,2j} + {}^{p+1}E_{2i+1,2j+1}$, we imbed \mathfrak{M}_p in \mathfrak{M}_{p+1} . Then $\bigcup_{p=1}^{\infty} \mathfrak{M}_p = \mathfrak{M}$ is a *-algebra. The normalized matrix trace on \mathfrak{M} makes it into a pre-Hilbert space \mathfrak{P} : If $A, B \in \mathfrak{M}$, let $(A, B) = \operatorname{Tr}(B * A)$, so that $(A, A)^{1/2} = [A]$, the Hilbert space or metric norm of A. If A is in \mathfrak{M} , then A acting

Received by the editors November 21, 1966.

⁽¹⁾ This work was supported by the National Science Foundation under an Academic Year Extension of the Research Participation Program for College Teachers.

by left multiplication is a bounded operator on \mathfrak{F} , so it can be extended to the Hilbert space closure \mathscr{H} . If \mathfrak{A} is the weak closure of \mathfrak{M} , then it is well known that \mathfrak{A} is a hyperfinite factor [2].

2. M-semiregular subalgebras. The following general construction leads to a large variety of maximal abelian subalgebras of \mathfrak{A} .

DEFINITIONS 2.1. Let $\{U_t: t=1, 2, \ldots\}$ be a set of selfadjoint unitaries such that: (1) $U_t \in \mathfrak{M}_t$; (2) U_t is zero except for 2 by 2 blocks along the main diagonal. Let $Y_t = U_1 U_2 \cdots U_t$, and for $A \in \mathfrak{A}$, define $A^{(t)} = Y_t A Y_t^*$ and $A^{(t)} = Y_t^* A Y_t$. For fixed t, the mappings $A \to A^{(t)}$ and $A \to A^{(t)}$ are *-automorphisms of \mathfrak{A} and inverses of each other. Because of the form of U_t , the matrix unit ${}^p E_{jj}$ commutes with U_t for all t > p. Thus if A is a diagonal matrix in \mathfrak{M}_p , $p \le t$, then $A^{(t)} = A^{(t+1)}$, and so $\lim_{t \to \infty} A^{(t)} = A^{(\infty)}$ exists in \mathfrak{M} , hence in \mathfrak{A} .

In general, for $A \in \mathfrak{A}$, the limit $A^{(\infty)}$ does not exist. The mapping $A \to A^{(\infty)}$ is thus an isomorphism of some proper subalgebra of \mathfrak{A} into \mathfrak{A} . This subalgebra, the domain of the mapping, we call \mathfrak{D} . If E is the set of diagonal matrices, then $E \subset \mathfrak{D}$, as seen above. The ring $(E^{(\infty)})^-$ is the maximal abelian subalgebra R which we study in this paper. (Cf. [7, pp. 285–286], for the proof that R is maximal abelian.) In Lemma 2.2 we will show that $E^- \subset \mathfrak{D}$, and that $(E^-)^{(\infty)} = (E^{(\infty)})^-$ or R.

LEMMA 2.2. If
$$F = E^-$$
, then $F \subseteq \mathfrak{D}$, and $F^{(\infty)} = (E^{(\infty)})^- = R$.

Proof. Suppose $A \in F$. Then there is a sequence $A_n \in E \cap \mathfrak{M}_n$, $A_n \to A$, with $A_n^{(\infty)} \in \mathfrak{M}$. Let $\varepsilon > 0$ be given, and choose n such that $[A_n - A] < \varepsilon/2$. Consider

Choose s, t such that both are greater than or equal to n. Then $Y_sA_nY_s^*=A_n^{(s)}=A_n^{(n)}$ and $Y_tA_nY_t^*=A_n^{(t)}=A_n^{(n)}$. Hence $[Y_sA_nY_s^*-Y_tA_nY_t^*]=0$ if s, $t \ge n$. Since Y_s and Y_t are unitary, the other two norms equal $[A-A_n]$, and so the sum is less than ε . Therefore $A^{(t)}$ is Cauchy in the metric topology.

Now $A \in \mathfrak{A}$ and so $||A|| < \infty$. Since $||A^{(t)}|| = ||A||$, $A^{(t)}$ is a bounded sequence. By [5, p. 723], $A^{(t)}$ is then Cauchy in the strong topology also, so its limit exists in \mathfrak{A} . Therefore $F \subset \mathfrak{D}$.

We next show that $F^{(\infty)} = (E^{(\infty)})^-$ or R. Let $A \in F$, $A_n \in E \cap \mathfrak{M}_n$, $A_n \to A$. Let $\varepsilon > 0$ be given, and choose n so that both $[\![A_n - A]\!] < \varepsilon/2$ and $[\![A^{(n)} - A^{(\infty)}]\!] < \varepsilon/2$. Then

Therefore $A^{(\infty)} \in (E^{(\infty)})^-$, and so $F^{(\infty)} \subseteq R$.

On the other hand, if $G \in \mathbb{R}$, there is a sequence $A_n \in E \cap \mathfrak{M}_n$, $A_n^{(\infty)} \to G$, with $||A_n^{(\infty)}|| = ||A_n^{(n)}|| = ||A_n|| \le ||G||$ [4]. Since $A_n^{(\infty)}$ is metrically Cauchy, so is A_n , which

is also strongly Cauchy because of the bound on the norm. Hence A_n has a limit $A \in F$. By another standard argument, if $\varepsilon > 0$ be given, there exists N such that $[\![Y_tAY_t^* - G]\!] < \varepsilon$ when $t \ge N$. Therefore $G = \lim_{t \to \infty} Y_tAY_t^*$ and so $G \in F^{(\infty)}$. Hence $R \subset F^{(\infty)}$, and $F^{(\infty)} = R$.

REMARK. The normalizer of \mathbf{R} in $\mathfrak A$ results in a similar way from the mapping $A \to A^{(\infty)}$. The subalgebra $r(\mathscr C_0^D)$, to be defined later, has the property that $\mathbf{E} \subset r(\mathscr C_0^D) \subset \mathfrak D$, and $r(\mathscr C_0^D)^{(\infty)} = N(\mathbf{R})$. (It appears that $r(\mathscr C_0^D) = \mathfrak D$, but we do not need this fact and have not proved it.)

By means of various choices of the sequence $\{U_i\}$, in §3 we construct a maximal abelian subalgebra R_n for each $n = 1, 2, 3, \ldots$, where R_n is M-semiregular, M = n + 1. The chain $R_n \subsetneq N(R) = P_n \subsetneq N^2(R_n) \subsetneq \cdots \subsetneq N^{n+1}(R_n) = N^M(R_n) = \mathfrak{A}$ is such that $N^k(R_n)$ is not a factor for $k = 1, 2, \ldots, n < M$, while $N^M(R_n)$ is the factor \mathfrak{A} .

Furthermore, the subalgebras R_n are not conjugate under any *-automorphism of \mathfrak{A} . The integer n determines the number of normalizers between R_n and \mathfrak{A} in the chain, and this is an automorphism invariant (cf. [7, pp. 282 and 305]).

Note. For convenience of notation, we often work with $N^k(\mathbf{P}_n) = N^{k+1}(\mathbf{R}_n)$, k = 0, 1, ..., n.

3. Detailed construction of M-semiregular subalgebras. In the construction of M-semiregular subalgebras, we use the following notations and definitions.

DEFINITIONS 3.1. We regard $n=1, 2, 3, \ldots$ as fixed, and let

$$\Gamma = \{p : p = (3c+1)n, c = 0, 1, 2, \ldots\},\$$

an infinite set of positive integers. We define $\mathscr{C}_n = \{{}^pE_{rs} : p \in \Gamma\}$. In the following paragraphs, we define a decomposition of \mathscr{C}_n into 2^n disjoint subsets K_y $(0 \le y \le 2^n - 1)$, so that $\mathscr{C}_n = \bigcup_y K_y$.

Let \mathfrak{G}_n be the set of all *n*-tuples (a_1, a_2, \ldots, a_n) , where $a_k = 0$ or 1. This is a commutative group under the operation of coordinate-wise addition modulo 2. If $\gamma = 0, 1, \ldots, 2^n - 1$ and $\gamma = \sum_{j=1}^n a_j 2^{n-j}$, we identify it with its binary expansion (a_1, a_2, \ldots, a_n) , so that we can consider γ as an element of \mathfrak{G}_n . The sum $\gamma_1 + \gamma_2$ is then defined by addition in \mathfrak{G}_n .

We determine the set K_r in which ${}^pE_{rs}$ is contained as follows: For any index r $(0 \le r \le 2^{(3c+1)n}-1)$, let $r = \sum_{k=0, k \ne 2}^{3c} r_k 2^{kn}$. (Congruence is modulo 3 in this and in the following summations.) For $k \equiv 0$, we have $0 \le r_k < 2^n$, and so $r_k = \sum_{j=1}^n k_j 2^{n-j}$ with $(k_1, \ldots, k_n) \in \mathfrak{G}_n$. Designate this element of \mathfrak{G}_n by $\psi(r_k)$. For $k \equiv 1$, $0 \le r_k < 2^{2n}$, and we let $\sigma(r_k) = 2(r_k \mod 2^{n-1})$, so that $\psi(\sigma(r_k))$ is defined. Let

$$\Delta(r) = \sum_{k=0; k=0}^{3c} \psi(r_k) + \sum_{k=1; k=1}^{3c-2} \psi(\sigma(r_k)),$$

where the addition is coordinate-wise (mod 2), so that $\Delta(r) \in \mathfrak{G}_n$. Then $K_{\gamma} = \{{}^{p}E_{rs} : \Delta(r) + \Delta(s) = \gamma\}$ and we say that $K_{\gamma} = K({}^{p}E_{rs})$. Since this is independent of p, we sometimes write $K_{\gamma} = K(r, s)$.

DEFINITIONS 3.2. We also define the following sets of matrix units, again subsets of $\mathscr{C}_n: \mathscr{C}_0 = \mathscr{N}_0 = K_0$. For j = 1, 2, ..., n, $\mathscr{C}_j = \bigcup_{\gamma} \{K_{\gamma}: \gamma = (a_1, ..., a_j, 0, 0, ..., 0)\}$ and $\mathscr{N}_j = \mathscr{C}_j \sim \mathscr{C}_{j-1}$. If we let

$$\mathfrak{M}^{D} = {}^{1}E_{00}\mathfrak{M}^{1}E_{00} + {}^{1}E_{11}\mathfrak{M}^{1}E_{11},$$

then we define $\mathscr{C}_{j}^{D} = \mathscr{C}_{j} \cap \mathfrak{M}^{D}$ and $\mathscr{N}_{j}^{D} = \mathscr{N}_{j} \cap \mathfrak{M}^{D}$, while $\mathscr{C}_{j}' = \mathscr{C}_{j} \sim \mathscr{C}_{j}^{D}$ and $\mathscr{N}_{j}' = \mathscr{N}_{j} \sim \mathscr{N}_{j}^{D}$. We let $r(\mathscr{C}_{j}^{D})$ be the ring generated by the matrix units in \mathscr{C}_{j}^{D} , while $R(\mathscr{C}_{j}^{D})$ is the ring generated by $\{F : F = ({}^{p}E_{rs})^{(p)} \text{ with } {}^{p}E_{rs} \in \mathscr{C}_{j}^{D}\}$.

LEMMA 3.3. Suppose $p \in \Gamma$, $p+3nE_{rs} \in K_{\gamma}$. Let $r=r'2^{3n}+r_12^n+r_0$ and $s=s'2^{3n}+r_12^n+r_0$ $(0 \le r_1, s_1 < 2^{2n}, 0 \le r_0, s_0 < 2^n)$. Then

$$\gamma = \Delta(r) + \Delta(s) = (\Delta(r') + \Delta(s')) + \sigma + (\Delta(r_0) + \Delta(s_0)),$$

where $\sigma = \psi(\sigma(r_1)) + \psi(\sigma(s_1))$.

Proof. This follows by computation from Definitions 3.1, since $\Delta(r)$ can be written as $\Delta(r') + \psi(\sigma(r_1)) + \psi(r_0)$, and the same for $\Delta(s)$.

Construction 3.4. In constructing the maximal abelian subalgebra R_n according to §2.1, the sequence $\{U_t: t=1, 2, 3, \ldots\}$ is to be as follows: Let

$$B_1 = \begin{bmatrix} 2^{-1/2} & 2^{-1/2} \\ 2^{-1/2} & -2^{-1/2} \end{bmatrix}.$$

Let B_t be in \mathfrak{M}_t , with all entries zero except for 2 by 2 blocks like B_1 along the main diagonal.

For n > 1, $U_t = I$ if t < n. If $p \in \Gamma$ and if $\Delta(r) = (a_1, a_2, \ldots, a_n)$, define:

$${}^{p}E_{rr}U_{p+1} = {}^{p}E_{rr} \qquad \text{if } a_{n} = 0,$$

$$= {}^{p}E_{rr}B_{p+1} \qquad \text{if } a_{n} = 1,$$

$$\vdots$$

$${}^{p}E_{rr}U_{p+n-j+1} = {}^{p}E_{rr} \qquad \text{if } a_{j} = 0,$$

$$= {}^{p}E_{rr}B_{p+n-j+1} \qquad \text{if } a_{j} = 1,$$

$$\vdots$$

$$U_{p+n+1} = I.$$

$${}^{p}E_{rr}U_{p+n+2} = {}^{p}E_{rr} \qquad \text{if } a_{2} = 0,$$

$$= {}^{p}E_{rr}B_{p+n+2} \qquad \text{if } a_{2} = 1,$$

$$\vdots$$

$${}^{p}E_{rr}U_{p+n+j} = {}^{p}E_{rr} \qquad \text{if } a_{j} = 0,$$

$$= {}^{p}E_{rr}B_{p+n+j} \qquad \text{if } a_{j} = 1,$$

$$\vdots$$

$${}^{p}E_{rr}U_{p+2n} = {}^{p}E_{rr} \qquad \text{if } a_{n} = 0,$$

$$= {}^{p}E_{rr}B_{p+2n} \qquad \text{if } a_{n} = 1,$$

$$U_{p+2n+1} = \cdots = U_{p+3n-2} = I,$$

$${}^{1}E_{00}U_{p+3n-1} = {}^{1}E_{00},$$

$${}^{1}E_{11}U_{p+3n-1} = {}^{1}E_{11}B_{p+3n-1},$$

$$U_{p+3n} = I.$$

For n=1, $p \in \Gamma$, and if $\Delta(r) = (a_1)$, define:

$${}^{p}E_{rr}U_{p+1} = {}^{p}E_{rr}$$
 if $a_{1} = 0$,
 $= {}^{p}E_{rr}B_{p+1}$ if $a_{1} = 1$,
 ${}^{1}E_{00}U_{p+2} = {}^{1}E_{00}$,
 ${}^{1}E_{11}U_{p+2} = {}^{1}E_{11}B_{p+2}$,
 $U_{p+3} = I$.

REMARK. With this construction we aim to show that $N^{j+1}(\mathbf{R}) = N^{j}(\mathbf{P}) = R(\mathscr{C}_{j}^{D})$ for j = 0, 1, ..., n-1, and that none of these is a factor. However,

$$N^n(\mathbf{P}) = \mathfrak{A} = R(\mathscr{C}_n^D \cup \mathscr{C}_n').$$

(For n=1, the following three propositions hold with slight adaptations. Then nothing else is needed until Theorems 3.14 and 3.15.)

THEOREM 3.5. $N(\mathbf{R}) = \mathbf{P} = R(\mathscr{C}_0^D)$.

Proof. If $p \in \Gamma$, ${}^{p}E_{rs} \in \mathscr{C}_{0}^{D}$, then $\Delta(r) + \Delta(s) = (0, 0, ..., 0)$. So computation with the definitions of §3.4 shows that

$$U_{p+3n}\cdots U_{p+1}{}^{p}E_{rs}U_{p+1}\cdots U_{p+3n}={}^{p}E_{rs}.$$

If $q \in \Gamma$, q > p, then q = p + 3hn for some integer h. Since ${}^{p}E_{rs}$ is a sum $\sum_{\nu} {}^{q}E_{r_{\nu}s_{\nu}}$, with all terms of the sum in \mathscr{C}_{0}^{D} , we have

$$U_a \cdots U_{p+1}{}^p E_{rs} U_{p+1} \cdots U_a = {}^p E_{rs} \in \mathscr{C}_0^D.$$

But if ${}^{p}E_{rs} \in \mathcal{N}_{j}$ $(j \ge 1)$, then

$$U_{p+n-j+1}\cdots {}^{p}E_{rs}\cdots U_{p+n-j+1}={}^{p}E_{rs}B_{p+n-j+1}.$$

Also, if ${}^{p}E_{rs} \in \mathscr{C}'_{0}$,

$$U_{p+3n-1}\cdots {}^{p}E_{rs}\cdots U_{p+3n-1}={}^{p}E_{rs}B_{p+3n-1}.$$

Hence our construction satisfies the conditions of [7, §4.1], with \mathscr{C}_0^D taking the place of K_0 . Also, $d \le 3n-1$ is surely sufficient. Thus we can apply [7, Lemma 4.3] in order to conclude that any unitary V leaving R invariant is the metric limit of a sequence V_m in \mathfrak{M} such that if $V_m \in \mathfrak{M}_p$ $(p \in \Gamma)$, then $V_m^{[p]} = \sum \alpha_{cd}{}^p E_{cd}$ with ${}^p E_{cd} \in \mathscr{C}_0^D$. So if $V \in N(R)$, then $V \in R(\mathscr{C}_0^D)$, and we have $N(R) \subseteq R(\mathscr{C}_0^D)$.

On the other hand, consider a unitary V in \mathfrak{M}_p $(p \in \Gamma)$ such that $V^{[p]} = \sum \pm {}^p E_{rs}$ with ${}^p E_{rs} \in \mathscr{C}_0^D$ and signs arbitrary. It is straightforward to show that V leaves R invariant. Since the collection of all unitaries of this type is sufficient to generate $R(\mathscr{C}_0^D)$, we have $R(\mathscr{C}_0^D) \subseteq N(R)$.

Therefore $N(\mathbf{R}) = \mathbf{P} = R(\mathcal{C}_0^D)$.

REMARK. The preceding proof also implies that $r(\mathscr{C}_0^D)$ is in \mathfrak{D} and that $R(\mathscr{C}_0^D) = r(\mathscr{C}_0^D)^{(\infty)}$. For if $F = \sum \alpha_{rs}{}^p E_{rs}$ with ${}^p E_{rs} \in \mathscr{C}_0^D$, then $F^{(p)} = F^{(p+h)}$ for any h > 0. Hence $\lim_{p \to \infty} F^{(p)} = F^{(\infty)}$ exists and $F \in \mathfrak{D}$. Using this information about $F \in r(\mathscr{C}_0^D) \cap \mathfrak{M}$, Lemma 2.2 and its proof can be rephrased to show that $r(\mathscr{C}_0^D) \subset \mathfrak{D}$,

and that $R(\mathscr{C}_0^D)$, which is defined as the closure of $[r(\mathscr{C}_0^D) \cap \mathfrak{M}]^{(\infty)}$, can also be regarded simply as $r(\mathscr{C}_0^D)^{(\infty)}$.

LEMMA 3.6. Let $p \in \Gamma$, $A^{[p]} = \sum_{\alpha \in a} \alpha_{ca} E_{ca}$ with E_{ca} in \mathcal{N}_{j}^{D} $(0 \le j \le n)$, \mathcal{C}'_{n-1} , or \mathcal{N}'_{n} . Then if $q \in \Gamma$, q > p, $A^{[q]} = \sum_{\beta \in S} \beta_{rs} E_{rs}$ with E_{rs} also in \mathcal{N}_{j}^{D} , \mathcal{C}'_{n-1} , or \mathcal{N}'_{n} respectively.

Proof. The case \mathcal{N}_0^D has already been dealt with, since $\mathcal{N}_0^D = \mathscr{C}_0^D$.

We first consider q = p + 3n. Then $A^{[q]} = U_{p+3n} \cdots A^{[p]} \cdots U_{p+3n}$, and because of linearity it is sufficient to consider one term of $A^{[p]}$, say ${}^{p}E_{cd}$.

If $1 \le j \le n$ and ${}^{p}E_{cd} \in \mathcal{N}_{i}^{D}$, then Definition 3.4 shows that

$$U_{p+3n}\cdots {}^{p}E_{cd}\cdots U_{p+3n}=\sum \delta_{rs}{}^{p+3n}E_{rs}$$

is in \mathfrak{M}_{p+n+j} . Consider one term ${}^{p+3n}E_{rs}$. With $r=c\cdot 2^{3n}+r_12^n+r_0$ and $s=d\cdot 2^{3n}+s_12^n+s_0$, we thus have $r_0=s_0$ and $r_1\equiv s_1\pmod{2^{n-j}}$. So $\sigma(r_1)=\sigma(s_1)\pmod{2^{n-j+1}}$; and therefore $\psi(\sigma(r_1))+\psi(\sigma(s_1))=(a_1,\ldots,a_{j-1},0,0,\ldots)$, while $\psi(r_0)+\psi(s_0)=(0,0,0,\ldots)$. Hence, applying Lemma 3.3, ${}^{p+3n}E_{rs}\in \mathscr{N}_j$ as was ${}^pE_{cd}$. Now the action of the unitaries U_t surely preserves \mathscr{C}_n^D , and therefore ${}^{p+3n}E_{rs}$ is in \mathscr{N}_1^D .

Next suppose ${}^{p}E_{cd} \in \mathscr{C}'_{n-1}$ and consider $U_{p+3n} \cdots {}^{p}E_{cd} \cdots U_{p+3n}$. The product is in \mathfrak{M}_{p+3n-1} , by Definition 3.4, so one term ${}^{p+3n}E_{rs}$ has $r=c \cdot 2^{3n}+r_12^n+r_0$, $s=d \cdot 2^{3n}+s_12^n+s_0$ with $r_0 \equiv s_0 \pmod{2}$. Thus $\psi(r_0)+\psi(s_0)=(\ldots,a_{n-1},0)$, and we can have ${}^{p+3n}E_{rs} \in \mathscr{N}_n$ if and only if $\psi(\sigma(r_1))+\psi(\sigma(s_1))=(\ldots,a_{n-1},1)$. But by definition, $\sigma(r_1)\equiv 0 \pmod{2}$, so this cannot happen. As before, the action of the U_t 's preserves \mathscr{C}'_n . Therefore ${}^{p+3n}E_{rs}$ is in \mathscr{C}'_{n-1} .

If ${}^{p}E_{cd} \in \mathcal{N}'_{n}$, then this time the computations of the preceding paragraph lead to the conclusion that the terms of $U_{p+3n} \cdots {}^{p}E_{cd} \cdots U_{p+3n}$ are in \mathcal{N}'_{n} . (Here $\psi(\sigma(r_{1})) + \psi(\sigma(s_{1})) = (\ldots, a_{n-1}, 0)$.)

If $q \in \Gamma$, q > p, then q = p + 3hn for some integer h, and the desired result follows by induction.

Lemma 3.7. For
$$j=1, 2, \ldots, n$$
, $R(\mathscr{C}_{j-1}^D) \subsetneq R(\mathscr{C}_j^D) \subsetneq R(\mathscr{C}_n)$.

Proof. The inclusions are trivial and we need only show that they are proper inclusions.

Let F be a matrix unit in \mathcal{N}_{j}^{D} (resp. \mathcal{C}_{n}'), so that $F \in \mathfrak{M}_{p}$ ($p \in \Gamma$) and $F^{[p]} = {}^{p}E_{ab}$ in \mathcal{N}_{j}^{D} (\mathcal{C}_{n}'). Suppose that F is also in $R(\mathcal{C}_{j-1}^{D})$ ($R(\mathcal{C}_{n}^{D})$). Then there is a sequence $F_{m} \in \mathfrak{M}$ converging strongly to F, such that if $F_{m} \in \mathfrak{M}_{q}$ ($q \in \Gamma$), $F_{m}^{[q]} = \sum \beta_{cd}{}^{q}E_{cd}$ with ${}^{q}E_{cd} \in \mathcal{C}_{j-1}^{D}(\mathcal{C}_{n}^{D})$. Choose F_{m} such that $[\![F_{m} - F]\!] < 1/2^{p}$ and choose $q \in \Gamma$ such that F_{m} , $F \in \mathfrak{M}_{q}$. Then by Lemma 3.6, $F^{[q]} = \sum \alpha_{ab}{}^{q}E_{ab}$ with ${}^{q}E_{ab} \in \mathcal{N}_{j}^{D}(\mathcal{C}_{n}')$.

Case 1. $F \in \mathcal{N}_{j}^{D}$. Since $(F_{m}^{[q]}, F^{[q]}) = (F_{m}, F) = 0$, we have $1/2^{2p} > [[F_{m} - F]]^{2} = [[F_{m}]]^{2} + [[F]]^{2} > 1/2^{p}$, a contradiction. Therefore $F \notin R(\mathscr{C}_{j-1}^{D})$.

Case 2. $F \in \mathscr{C}'_n$. Here

$$(F_m^{[q]}, F^{[q]}) = ({}^{1}E_{ii} F_m^{[q]} {}^{1}E_{ii} + {}^{1}E_{jj} F_m^{[q]} {}^{1}E_{jj}, {}^{1}E_{ii} F^{[q]} {}^{1}E_{jj})$$

= 0 where $i, j = 0$ or $1, i \neq j$.

So again $1/2^{2p} > [[F_m - F]]^2 > 1/2^p$, a contradiction, and therefore $F \notin R(\mathscr{C}_n^D)$.

DEFINITION 3.8. We define the following projections in \mathcal{C}_{0}^{D} : For k = 2, ..., n and $s = 0, 1, ..., 2^{p} - 1$, let $P_{k}(s)$ be the operator such that $P_{k}(s)^{[p+3n]} = \sum_{h} {}^{p+3n}E_{s''+h,s''+h}$, where $s'' = 2^{3n}s$, $h \equiv 0 \pmod{2^{2n-k+1}}$ and $0 \le h \le 2^{3n} - 1$. Let P'(s) be the operator such that $P'(s)^{[p+3n]} = \sum_{h} {}^{p+3n}E_{s''+h,s''+h}$, where $s'' = 2^{3n}s$, $h \equiv 0 \pmod{2^{2}}$ and $0 \le h \le 2^{3n} - 1$.

LEMMA 3.9. Suppose $W \in \mathfrak{M}_p$ $(p \in \Gamma)$ is such that $W^{[p]} = V^{[p]} + X^{[p]}$, with $V^{[p]} = \sum \beta_{rs}{}^p E_{rs} ({}^p E_{rs} \in \mathscr{C}_n^D)$ and $X^{[p]} = \sum \alpha_{rs}{}^p E_{rs} ({}^p E_{rs} \in \mathscr{C}_n^I)$. Let ${}^p E_{rt}$ be a fixed matrix unit in \mathscr{C}_n^D with $K(r, t) = K_r$. Then

$$\begin{array}{ll}
{}^{p}E_{rr}[U_{p+3n}\cdots W^{[p]}\cdots U_{p+3n}]\sum_{s=0}^{2^{p}-1}P'(s)^{[p+3n]}[U_{p+3n}\cdots W^{*[p]}\cdots U_{p+3n}]^{p}E_{tt} \\
(**) &= A(r,t)^{[p+3n]} + O(r,t)^{[p+3n]},
\end{array}$$

where (A, Q) = 0 and

$$Q^{[p+3n]} = \sum_{s=0}^{2^{p}-1} \alpha_{rs} \bar{\alpha}_{ts} C(\gamma)^{p+3n} E_{ab}$$

with $p+3nE_{ab}$ in \mathcal{N}_{n-1}^{D} or \mathcal{N}_{n}^{D} , $C(\gamma)$ a nonzero integer.

Proof. The following statements are verified by calculations similar to those of [7, pp. 295–301].

Suppose $K({}^{p}E_{rs}) = K_{\alpha}$ and $K({}^{p}E_{st}) = K_{\beta}$, with both matrix units in \mathscr{C}'_{n} , $\alpha + \beta = \gamma$. If $\alpha = (a_{1}, a_{2}, \ldots, a_{n})$ and $\beta = (b_{1}, b_{2}, \ldots, b_{n})$, define $\omega_{1} = \omega(\alpha) = 2(\sum_{i=2}^{n} a_{i}) + a_{1} + 1$, $\omega_{2} = \omega(\beta)$, and $\mu(\alpha, \beta) = 2(\sum_{i=2}^{n} a_{i}b_{i}) + a_{1}b_{1}$. Then the nonzero entries of the product $U_{p+3n} \cdots {}^{p}E_{rs} \cdots U_{p+3n}$ have numerical value $\pm (2^{-1/2})^{\omega_{1}}$, and similarly for ${}^{p}E_{st}$. Let $r_{0} = 2^{3n-2}r$, $s_{0} = 2^{3n-2}s$, $t_{0} = 2^{3n-2}t$. Then 2^{μ} is the number of distinct δ 's such

that

$$^{p+3n-2}E_{r_0r_0}[U_{p+3n}\cdots {}^{p}E_{rs}\cdots U_{p+3n}]^{p+3n-2}E_{s_0+\delta,s_0+\delta}$$

and

$$p+3n-2E_{s_0s_0}[U_{p+3n}\cdots p_{r_s}\cdots U_{p+3n}]^{p+3n-2}E_{t_0+\delta,t_0+\delta}$$

are both nonzero.

Using the preceding, a matrix calculation shows that

(*)
$$[U_{p+3n}\cdots^{p}E_{rs}\cdots U_{p+3n}]P'(s)^{[p+3n]}[U_{p+3n}\cdots^{p}E_{rs}\cdots U_{p+3n}]$$

has a term of the form $C(\gamma)^{p+3n}E_{r'',t''+2}$ and a term of the form $C(\gamma)^{p+3n}E_{r''+2,t''+2}$, where $r''=2^{3n}r$, $t''=2^{3n}t$, and $C(\gamma)=2^{\mu}(2^{-1/2})^{\omega_1+\omega_2}$. It is straightforward to show that $C(\gamma)$ depends only on γ and on the fact that ${}^pE_{rs}$ and ${}^pE_{st}$ are in \mathscr{C}'_n . By Lemma 3.3, if $K_{\gamma}\subset\mathscr{C}_{n-2}$, then K(r'',t''+2) is in \mathscr{N}_{n-1} . If $K_{\gamma}\subset\mathscr{N}_{n-1}$ or \mathscr{N}_n , then so is K(r''+2,t''+2). Also, since ${}^pE_{rt}\in\mathscr{C}^D_n$, so are these matrix units.

Now the product (**) of the lemma equals

$$\sum_{s=0}^{2^{p}-1} [U_{p+3n} \cdots \delta_{rs}{}^{p}E_{rs} \cdots U_{p+3n}]P'(s)^{[p+3n]}[U_{p+3n} \cdots \delta_{ts}{}^{p}E_{st} \cdots U_{p+3n}].$$

Suppose $K_{\gamma} \subset \mathscr{C}_{n-2}$ and s such that ${}^{p}E_{rs}$ and ${}^{p}E_{st}$ are both in \mathscr{C}'_{n} . The summand corresponding to this s includes the term $\alpha_{rs}\bar{\alpha}_{ts}C(\gamma)^{p+3n}E_{r'',t''+2}$, which is in \mathscr{N}_{n-1} . Considering the summands corresponding to other s, we could not have one matrix unit in \mathscr{C}'_{n} , the other in \mathscr{C}^{D}_{n} , since ${}^{p}E_{rt} \in \mathscr{C}^{D}_{n}$. But if both are in \mathscr{C}^{D}_{n} , then the product is in \mathfrak{M}_{p+2n} , so there is no element in position (r'', t''+2).

Suppose $K_{\gamma} \subset \mathcal{N}_n$ or \mathcal{N}_{n-1} . If s is such that ${}^pE_{rs}$ and ${}^pE_{st}$ are both in \mathscr{C}'_n , then the summand includes the term $\alpha_{rs}\bar{\alpha}_{ts}C(\gamma)^{p+3n}E_{r''+2,t''+2}$, which is in the same class as K_{γ} . Again, if s is such that both matrix units are in \mathscr{C}^D_n there is no element in position (r''+2, t''+2).

So if we let Q be as stated in the lemma, with (a, b) = (r'', t''+2) or (r''+2, t''+2) according to K_{γ} , then (A, Q) = 0 and $p+3nE_{ab} \in \mathcal{N}_{n-1}^{D}$ or \mathcal{N}_{n}^{D} .

LEMMA 3.10. Suppose $W \in \mathfrak{M}_p$ $(p \in \Gamma)$ is such that $W^{[p]} = V^{[p]} + X^{[p]}$, with $V^{[p]} = \sum \beta_{rs}{}^p E_{rs} ({}^p E_{rs} \in \mathscr{C}_{k-1}^D)$ and $X^{[p]} = \sum \alpha_{rs}{}^p E_{rs} ({}^p E_{rs} \in \mathscr{N}_k{}^D)$. Let ${}^p E_{rt}$ be a fixed matrix unit in \mathscr{C}_{k-1}^D with $K(r, t) = K_r$. Then

$$^{p}E_{rr}[U_{p+3n}\cdots W^{[p]}\cdots U_{p+3n}]\sum_{s=0}^{2^{p}-1}P_{k}(s)^{[p+3n]}[U_{p+3n}\cdots W^{*[p]}\cdots U_{p+3n}]^{p}E_{tt}$$

$$= A(r,t)^{[p+3n]} + Q(r,t)^{[p+3n]},$$

where

$$Q^{[p+3n]} = \sum_{s=0}^{2^{p}-1} \alpha_{rs} \bar{a}_{ts} D_{k}(\gamma)^{p+3n} E_{ab}$$

with $p+3nE_{ab}$ in \mathcal{N}_{k-1}^D , $D_k(\gamma)$ a nonzero integer.

Proof. The proof is like that of the preceding lemma, with the following changes: $\omega_1 = \omega(\alpha) = 2(\sum_{i=2}^n a_i) + a_1$ (and a similar change in ω_2), $\mu(\alpha, \beta) = 2(\sum_{i=2}^{k-1} a_i b_i) + a_k b_k + a_1 b_1$, $r_0 = 2^{n+k-1}r$, $s_0 = 2^{n+k-1}s$, $t_0 = 2^{n+k-1}t$. Then 2^{μ} is the number of distinct δ 's such that

$$p+n+k-1$$
 $E_{r_0,r_0}[U_{p+3n}\cdots p_{r_s}\cdots U_{p+3n}]^{p+n+k-1}E_{s_0+\delta,s_0+\delta}$

and

$$p+n+k-1$$
 $E_{s_0s_0}[U_{p+3n}\cdots p_{s_t}\cdots U_{p+3n}]^{p+n+k-1}E_{t_0+\delta,t_0+\delta}$

are both nonzero. The expression

(*)
$$[U_{p+3n}\cdots^{p}E_{rs}\cdots U_{p+3n}]P_{k}(s)^{[p+3n]}[U_{p+3n}\cdots^{p}E_{st}\cdots U_{p+3n}]$$

has a term of the form $D_k(\gamma)^{p+3n}E_{r'',t''+\pi}$ and a term of the form $D_k(\gamma)^{p+3n}E_{r''+\pi,t''+\pi}$ where $r''=2^{3n}r$, $t''=2^{3n}t$, $\pi=2^{2n-k}$, and $D_k(\gamma)=2^{\mu}(2^{-1/2})^{\omega_1+\omega_2}$. Here $D_k(\gamma)$ depends only on γ and on k. By Lemma 3.3, if $K_{\gamma} \subset \mathscr{C}_{k-2}$, then $K(r'', t''+\pi)$ is in \mathscr{N}_{k-1} ; if $K_{\gamma} \subset \mathscr{N}_{k-1}$, then $K(r''+\pi, t''+\pi)$ is in \mathscr{N}_{k-1} .

It can be verified, as in the preceding lemma, that (A, Q)=0 if we take Q as stated, with $(a, b)=(r'', t''+\pi)$ or $(r''+\pi, t''+\pi)$ according to K_{γ} .

LEMMA 3.11. If the results of Lemmas 3.9 and 3.10 hold for q=p+3n, then they hold for any q=p+3hn (i.e., $q \in \Gamma$). Also,

$$\llbracket Q \rrbracket^2 \ge \left| \sum_{s=0}^{2^p-1} \alpha_{rs} \bar{a}_{ts} \right|^2 / 2^{p+5n}.$$

Proof. We first obtain bounds for $C(\gamma)$ and $D_k(\gamma)$. In both cases, we have $\mu \ge 0$ and $\omega_1 + \omega_2 \le 2(2n-1) + 2 = 4n$. Hence $C(\gamma)$ or $D_k(\gamma) = 2^{\mu}(2^{-1/2})^{\omega_1 + \omega_2} \ge (2^{-1/2})^{4n} = 1/2^{2n}$.

$$\begin{aligned}
& [Q^{[p+3n]}]^2 \geq |C(\gamma)|^2 \Big| \sum_{\alpha_{rs}\bar{\alpha}_{ts}} |^2/2^{p+3n} \\
& \geq \Big| \sum_{\alpha_{rs}\bar{\alpha}_{ts}} |^2/2^{p+5n},
\end{aligned}$$

and similarly in the case of $D_k(\gamma)$.

Now the unitaries $U_{p+3n+1}, \ldots, U_{p+3nn}$ preserve the orthogonality of A and Q and the norm of Q. Also, by Lemma 3.6, matrix units in $\mathcal{N}_{j}^{D}(j=1, 2, \ldots, n)$ are left in that class under the action of the unitaries U_{t} .

LEMMA 3.12. For j=1, 2, ..., n-1, let $\mathscr{V}_j = \{V : V[R(\mathscr{C}_{j-1}^D)]V^* = R(\mathscr{C}_{j-1}^D), V$ unitary, $V \in \mathfrak{A}\}$. If $V \in \mathscr{V}_j$, then there is a sequence $V_m \in \mathfrak{M}$ converging metrically to V such that if $V_m \in \mathfrak{M}_p$ $(p \in \Gamma)$, $V_m^{[p]} = \sum \beta_{rs}^p E_{rs}$ with ${}^p E_{rs}$ in \mathscr{C}_j^D . Thus, $N(R(\mathscr{C}_{j-1}^D)) \subset R(\mathscr{C}_j^D)$.

Proof. (i) Since $V \in \mathfrak{A}$, $||V|| \le 1$, there is a sequence $W_m \in \mathfrak{M}$, $||W_m|| \le 1$, converging strongly and metrically to V [4]. If $W_m \in \mathfrak{M}_p$, let $W_m^{[p]} = V_m^{[p]} + X_m^{[p]}$, where $V_m^{[p]} = \sum \beta_{rs} {}^p E_{rs} ({}^p E_{rs} \in \mathscr{C}_n^D)$ and $X_m^{[p]} = \sum \alpha_{rs} {}^p E_{rs} ({}^p E_{rs} \in \mathscr{C}_n^C)$. Because of the orthogonality of V_m and X_m , X_m itself is Cauchy in the metric topology. Now $||W_m|| \le 1$ implies $||V_m|| \le 1$ because of the definition of \mathscr{C}_n^D . Since $X_m = W_m - V_m$, we have $||X_m|| \le 2$, and so X_m is also Cauchy in the strong topology [5, p. 723]. Let $X_m \to X \in \mathfrak{A}$. Suppose $\lim_m [\![X_m]\!] \ne 0$; then $\lim_m [\![X_m X_m^*]\!] \ne 0$ also. Hence $[\![X_m X_m^*]\!]^2 > 2^{5n} \varepsilon^2$ for all m and some $\varepsilon > 0$. (Recall that n is fixed and related only to $R = R_n$.) Choose W_m so that $[\![W_m - V]\!] < \varepsilon/4$. Suppose $W_m \in \mathfrak{M}_p$. Then

$$[[X_m^{(p)}X_m^{(p)*}]]^2 = (1/2^p) \sum \left| \sum_{s=0}^{2^p-1} \alpha_{rs} \bar{\alpha}_{ts} \right|^2 > 2^{5n} \varepsilon^2.$$

(The outer summation is over pairs (r, t) such that ${}^{p}E_{rt} \in \mathscr{C}_{n}^{D}$, since ${}^{p}E_{rs}$, ${}^{p}E_{st} \in \mathscr{C}_{n}^{\prime}$.) Fix p from here on.

Consider $\sum_{s=0}^{2^{p}-1} P'(s)^{[p+3n]}$, which has its matrix units in \mathscr{C}_{0}^{D} . Then $\sum_{s} P'(s)$ is in $R(\mathscr{C}_{j-1}^{D})$ for any $j \ge 1$, and if $V \in \mathscr{V}_{j}$, $V(\sum_{s} P'(s))V^{*} = T \in R(\mathscr{C}_{j-1}^{D})$. So there exists a sequence $T_{v} \in \mathfrak{M}$, $[T_{v} - T] \to 0$, and $T_{v} \in \mathfrak{M}_{q}$ $(q \in \Gamma)$ implies $T_{v}^{[q]} = \sum_{s} \eta_{ih} {}^{q}E_{ih}$ with ${}^{q}E_{ih}$ in \mathscr{C}_{j-1}^{D} . Choose T_{v} such that $[V(\sum_{s} P'(s))V^{*} - T_{v}] < \varepsilon/2$. Since $\sum_{s} P'(s)$ is a projection, of norm at most one,

$$\left[W_m \left(\sum_s P'(s) \right) W_m^* - V \left(\sum_s P'(s) \right) V^* \right] < \varepsilon/2,$$

and thus it follows that

$$\left[W_m \left(\sum_s P'(s) \right) W_m^* - T_v \right] < \varepsilon.$$

On the other hand, we can apply Lemmas 3.9 and 3.11 with W_m replacing W. Take q to be such that $q \in \Gamma$, $q \ge p+3n$, and $T_v \in \mathfrak{M}_q$. Since $Q^{[q]} = \sum \lambda_{cd}{}^q E_{cd}$ $({}^q E_{cd} \in \mathcal{N}_{n-1}^D \text{ or } \mathcal{N}_n^D)$ and $T_v^{[q]} = \sum \eta_{ih}{}^q E_{ih}$ $({}^q E_{ih} \in \mathscr{C}_{j-1}^D$, where j-1 < n-1), we have $(T_v^{[q]}, Q^{[q]}) = 0$ also. Therefore

$$\begin{split}
& \left[\left[{}^{p}E_{rr}W_{m}^{[q]} \sum P'(s)^{[q]}W_{m}^{*[q]} {}^{p}E_{tt} - {}^{p}E_{rr}T_{v}^{[q]} {}^{p}E_{tt} \right] \right]^{2} \\
&= \left[\left[A(r,t)^{[q]} + Q(r,t)^{[q]} - {}^{p}E_{rr}T_{v}^{[q]} {}^{p}E_{tt} \right] \right]^{2} \\
&\geq \left[\left[Q(r,t)^{[q]} \right] \right]^{2} \geq \left| \sum_{s} \alpha_{rs} \bar{\alpha}_{ts} \right|^{2} / 2^{p+5n}.
\end{split}$$

Finally, we have:

$$\varepsilon^{2} \geq \sum_{(r,t)} \left[\left[{}^{p}E_{rr} \left(W_{m}^{[q]} \sum_{s} P'(s) W_{m}^{*[q]} - T_{\nu}^{[q]} \right) {}^{p}E_{tt} \right] \right]^{2}, \qquad {}^{p}E_{rt} \in \mathscr{C}_{n}^{D}$$

$$\geq \sum_{(r,t)} \left| \sum_{s} \alpha_{rs} \bar{\alpha}_{ts} \right|^{2} / 2^{p+5n} > \varepsilon^{2},$$

which is a contradiction.

Therefore $\lim_{l} [X_{l}] = 0$ and so $\lim_{l} [V_{l} - V] = 0$, where $||V_{l}|| \le 1$ and $V_{l} \in \mathfrak{M}_{z}$ $(z \in \Gamma)$ implies $V_{l}^{[z]} = \sum \beta_{rs}^{z} E_{rs}$ with ${}^{z}E_{rs} \in \mathscr{C}_{n}^{D}$.

(ii) To show: Suppose $j < k \le n$ and suppose there exists $W_m \in \mathfrak{M}$ such that $\|W_m\| \le 1$, $\lim_m \|W_m - V\| = 0$, and $W_m \in \mathfrak{M}_p$ implies $W_m^{[p]} = \sum \delta_{rs}{}^p E_{rs}$ with ${}^p E_{rs}$ in \mathscr{C}_k^D . Then there exists V_m with the same properties except that $V_m^{[p]} = \sum \beta_{rs}{}^p E_{rs}$ with ${}^p E_{rs}$ in \mathscr{C}_{k-1}^D .

We let the assumed $W_m^{[p]} = V_m^{[p]} + X_m^{[p]}$, where the matrix units of the two summands are in \mathscr{C}_{k-1}^D and \mathscr{N}_k^D respectively. The argument proceeds much as in part (i), with $\sum_s P_k(s)$ replacing $\sum_s P'(s)$, so that Lemmas 3.10 and 3.11 apply. Since $V(\sum P_k(s))V^* = T$ in $R(\mathscr{C}_{j-1}^D)$ and since j-1 < k-1, the desired orthogonality holds between Q (in \mathscr{N}_{k-1}^D) and T_v (the sequence of matrices converging to T). We are led to conclude that $\lim_m [X_m] = 0$, and that V is the metric limit of V_m .

Since we can extend this as far as k=j+1 by a finite induction process, the lemma is proved.

THEOREM 3.13. For j=1, 2, ..., n-1, if $R(\mathscr{V}_j)$ is the ring generated by \mathscr{V}_j as defined in Lemma 3.12, then $R(\mathscr{V}_j) = R(\mathscr{C}_j^D)$. Thus, $N(R(\mathscr{C}_{j-1}^D)) = R(\mathscr{C}_j^D)$.

Proof. By Lemma 3.12, $R(\mathscr{V}_i) \subset R(\mathscr{C}_i^D)$.

For the reverse inclusion, take $T \in R(\mathscr{C}_{j-1}^D)$. Let $V_1^{[p]} = \sum \pm^p E_{rs}$ with ${}^pE_{rs}$ in \mathscr{C}_{j-1}^D and signs arbitrary. Then $V_1TV_1^*$ is in $R(\mathscr{C}_{j-1}^D)$ since all three operators are.

Next let $V_2^{[p]} = \sum \pm {}^p E_{rs}$ with ${}^p E_{rs}$ in \mathcal{N}_j^D . Take a sequence $T_m \in \mathfrak{M}$, $T_m \to T$, and if $T \in \mathfrak{M}_q$, $T_m^{[q]} = \sum \beta_{cd} {}^q E_{cd}$ with ${}^q E_{cd}$ in \mathcal{C}_{j-1}^D . If $z = \max[p, q]$, then

$$V_{2}^{[q]}T_{m}^{[q]}V_{2}^{*[q]} = \left[\sum \delta_{rs}^{z}E_{rs}\right]\left[\sum \beta'_{cd}{}^{z}E_{cd}\right]\left[\sum \delta_{rs}^{z}E_{rs}\right],$$

where the matrix units of the first sum are in \mathcal{N}_{j}^{D} , those of the second in \mathcal{C}_{j-1}^{D} , and those of the third in \mathcal{N}_{j}^{D} , by Lemma 3.6. Calculating by means of §3.1, we see that each matrix unit of this product is in \mathcal{C}_{j-1}^{D} . Hence $V_{2}T_{m}V_{2}^{*}$ is in $R(\mathcal{C}_{j-1}^{D})$, and so is its strong limit $V_{2}TV_{2}^{*}$.

But all unitaries of the form V_1 or V_2 are sufficient to generate $R(\mathscr{C}_j^D)$. Therefore $R(\mathscr{C}_j^D) \subseteq R(\mathscr{V}_j)$, and hence $R(\mathscr{V}_j) = R(\mathscr{C}_j^D)$.

THEOREM 3.14. If $\mathscr{V}_n = \{V : V[R(\mathscr{C}_{n-1}^D)]V^* = R(\mathscr{C}_{n-1}^D), \ V \ unitary, \ V \in \mathfrak{A}\}, \ then$ $R(\mathscr{V}_n) = R(\mathscr{C}_n) = \mathfrak{A}. \ Thus, \ N(R(\mathscr{C}_{n-1}^D)) = \mathfrak{A}.$

Proof. Obviously $R(\mathscr{V}_n) \subseteq R(\mathscr{C}_n)$.

For the reverse inclusion, let T be in $R(\mathscr{C}_{n-1}^D)$. Consider in turn four types of unitaries $V_i^{[p]} = \sum \pm^p E_{rs}$ (i = 1, 2, 3, 4 and signs arbitrary). For i = 1, the matrix units are to be in \mathscr{C}_{n-1}^D ; for i = 2, in \mathscr{N}_n^D ; for i = 3, in \mathscr{C}_{n-1}' ; for i = 4, in \mathscr{N}_n' . By Lemma 3.6, these classes are preserved under the unitaries U_t . So calculations like those in the proof of Theorem 3.13 show that $V_i T V_i^*$ is in $R(\mathscr{C}_{n-1}^D)$ for i = 1, 2, 3, 4.

But all unitaries of these types are sufficient to generate $R(\mathscr{C}_n)$, or \mathfrak{A} . Therefore $R(\mathscr{C}_n) \subset R(\mathscr{V}_n)$, and $R(\mathscr{V}_n) = \mathfrak{A}$.

REMARK. Theorems 3.13 and 3.14, together with Theorem 3.5 and Lemma 3.7, show that for each R_n , $n=1, 2, 3, \ldots$, we have $R_n \supseteq N(R_n) \supseteq \cdots \supseteq N^{n+1}(R_n) = \mathfrak{U}$. In order to prove that R_n is M-semiregular (n+1=M), we need only show that $N(R_n)$, $N^2(R_n)$, ..., $N^n(R_n)$ are not factors. $(N^{n+1}(R_n) = N^M(R_n)$ is the factor \mathfrak{U} .)

THEOREM 3.15. For $k = 1, 2, ..., n, N^k(\mathbf{R}_n)$ is not a factor.

Proof. If $k \neq n$, $N^k(\mathbf{R}_n) = N^{k-1}(\mathbf{P}_n) = R(\mathscr{C}_{k-1}) = R(\mathscr{C}_{k-1}^D)$. Consider the projection ${}^1E_{00} = {}^1E_{00}^{(\infty)} \in \mathbf{R}_n \subset N^k(\mathbf{R}_n)$. If A is any operator in $N^k(\mathbf{R}_n)$, there is a sequence $A_m \to A$ such that if $A_m \in \mathfrak{M}_p$, $A_m^{[p]} = \sum \alpha_{rs}{}^pE_{rs}$ with ${}^pE_{rs} \in \mathscr{C}_{k-1}^D$. Then

$$({}^{1}E_{00}A_{m}{}^{1}E_{00})^{[p]} = {}^{1}E_{00}A_{m}^{[p]}{}^{1}E_{00} = \sum \alpha_{rs}{}^{1}E_{00}{}^{p}E_{rs}{}^{1}E_{00}$$

$$= \sum \alpha_{rs}{}^{p}E_{rs} \quad \text{(by definition of } \mathscr{C}_{k-1}^{D})$$

$$= A_{r}^{[p]}.$$

Thus ${}^{1}E_{00}A_{m}{}^{1}E_{00} = A_{m}$, and taking strong limits, ${}^{1}E_{00}A {}^{1}E_{00} = A$.

Therefore ${}^{1}E_{00}$ commutes with $N^{k}(\mathbf{R}_{n})$, ${}^{1}E_{00} \neq \alpha I$, ${}^{1}E_{00} \in N^{k}(\mathbf{R}_{n})$, and so $N^{k}(\mathbf{R}_{n})$ is not a factor.

BIBLIOGRAPHY

- 1. S. Anastasio, Maximal abelian subalgebras in hyperfinite factors, Amer. J. Math. 87 (1965), 955-971.
 - 2. J. Dixmier, Les algèbres d'opérateurs dans l'espace Hilbertien, Gauthier-Villars, Paris, 1957.
- 3. ——, Sous-anneaux abéliens maximaux dans les facteurs de type fini, Ann. of Math. (2) 59 (1954), 279-286.

- 4. I. Kaplansky, A theorem on rings of operators, Pacific J. Math. 1 (1951), 227-232.
- 5. F. J. Murray and J. von Neumann, On rings of operators. IV, Ann. of Math. (2) 44 (1943), 716-808.
- 6. J. von Neumann, On rings of operators. Reduction theory, Ann. of Math. (2) 50 (1949), 401-485.
- 7. Sister R. J. Tauer, Maximal abelian subalgebras in finite factors of type II, Trans. Amer. Math. Soc. 114 (1965), 281-308.

THE COLLEGE OF ST. CATHERINE, ST. PAUL, MINNESOTA