HARMONIC DIFFERENTIAL WITH PRESCRIBED SINGULARITIES

BY MITSURU NAKAI(1)

Introduction

1. Throughout this paper we denote by R an open Riemann surface and by R_0 a relatively compact subdomain of R with the relative boundary ∂R_0 consisting of a finite number of mutually disjoint closed analytic Jordan curves. The open set $R_1 = R - \overline{R}_0$ can be considered to be a neighborhood of the ideal boundary β of R. For the sake of simplicity, we denote by α the common relative boundary $\partial R_0 = \partial R_1$ and we fix the orientation of α positively with respect to the domain R_0 .

A harmonic differential σ defined on $\overline{R}_1 = R_1 \cup \alpha$ is called a harmonic singularity at β and in case $\int_{R_1} \sigma \wedge *\sigma < \infty$, we say that the singularity σ at β is removable. A harmonic differential λ on R is said to have the harmonic singularity σ at β if $\lambda - \sigma$ is a removable harmonic singularity at β . The purpose of this paper is to discuss the following

PROBLEM A. Find a harmonic differential λ on R having a given harmonic singularity σ at β .

It is known (Ahlfors-Sario [1, p. 300]) that Problem A is solvable if σ and $*\sigma$ are the restrictions to \overline{R}_1 of some closed C^1 -differentials on R. We shall prove that if $R \notin O_G$, then Problem A is always solvable, and if $R \in O_G$, then Problem A is solvable if and only if $\int_{\alpha}^{\infty} \sigma = \int_{\alpha}^{\infty} *\sigma = 0$ (Theorem 2).

2. In Problem A, we may assume without loss of generality that σ is a C^1 -differential on R whose restriction to \overline{R}_1 gives a harmonic singularity at β . In fact, take a subdomain R_{σ} of R such that $\overline{R}_{\sigma} \subset R_0$ and σ is harmonic on $R - \overline{R}_{\sigma}$. We find a C^1 -function ϕ on R such that $\phi = 1$ on a neighborhood of \overline{R}_1 and $\phi = 0$ on a neighborhood of \overline{R}_{σ} . Then $\phi \sigma$ can be considered to be a C^1 -differential on R and $\phi \sigma | \overline{R}_1 = \sigma$.

Let $\Gamma = \Gamma(R)$ be the Hilbert space of all square integrable differentials on R which is the completion of square integrable C^{∞} -differentials on R with respect to the inner product $(\omega_1, \omega_2) = \int \omega_1 \wedge *\omega_2$. We denote by $\Gamma_{e0} = \Gamma_{e0}(R)$ the closure of $\Gamma_{e0}^{\infty} = \Gamma_{e0}^{\infty}(R) = \{df; f \in C_0^{\infty}(R)\}$ in Γ , where $C_0^{\infty}(R)$ is the totality of C^{∞} -functions on R with compact supports. We also denote by $*\Gamma_{e0} = *\Gamma_{e0}(R) = \{*\omega; \omega \in \Gamma_{e0}(R)\}$. Then we have the de Rahm decomposition of Γ :

(1)
$$\Gamma(R) = \Gamma_{e0}(R) \oplus {}^*\Gamma_{e0}(R) \oplus \Gamma_{h}(R),$$

Received by the editors August 16, 1965.

⁽¹⁾ This work was sponsored by the U.S. Army Research Office, Durham, Grant DA-AROD-31-124-G499, University of California, Los Angeles.

where $\Gamma_h = \Gamma_h(R)$ is the totality of harmonic differentials in $\Gamma(R)$. From these remarks, it follows at once that Problem A is equivalent to the following:

PROBLEM B. Given a C^1 -differential σ on R whose restriction to \overline{R}_1 is a harmonic singularity at β , find a harmonic differential λ on R such that $\lambda - \sigma \in \Gamma_{e0}(R) \oplus {}^*\Gamma_{e0}(R)$.

The advantage of this reformulation is that we can now see the precise nature of the solution. That is, we shall show that if the solution λ of Problem B exists, then it is unique and if σ is exact (resp. *exact), then the solution λ is also exact (resp. *exact). A differential is *exact, if, by definition, its *conjugate is exact (Theorem 2).

3. The key to the solution of our problem is the following: let $\mathscr{D}(\alpha)$ be the totality of continuous differentials ω defined on neighborhoods V_{ω} of α and $\mathscr{D}_0(\alpha)$ the subclass of $\mathscr{D}(\alpha)$ consisting of differentials ω such that $\int_{\alpha} \omega = 0$. For each $\omega \in \mathscr{D}(\alpha)$, we consider the quantity

(2)
$$K(\alpha, \omega) = \sup \left\{ \left| \int_{\alpha} f\omega \right|^{2} / \int_{R} df \wedge *df ; f \in C_{0}^{\infty}(R), f \neq 0 \right\}.$$

We shall show that if $R \notin O_G$, then $K(\alpha, \omega) < \infty$ for any $\omega \in \mathcal{D}(\alpha)$, and if $R \in O_G$, then $K(\alpha, \omega) < \infty$ if and only if $\omega \in \mathcal{D}_0(\alpha)$ (Theorem 1).

Fundamental inequality

4. Fix a point z_0 in R_0 and consider the space $HD_0 = HD_0(R_0)$ of HD-functions on R_0 vanishing at z_0 . HD_0 is a Hilbert space with respect to the norm $\int_{R_0} du \wedge *du$. For two functions u and v in HD_0 , we set

$$(u, v)_g = \int_{R_0} (1 + g(z, z_0)) du(z) \wedge *dv(z),$$

where g is the Green's function on R_0 . HD_0 is a pre-Hilbert space with this inner product, and we denote it by $HD_{0,g}$. Let $\{u_n\}_{n=1}^{\infty}$ be a Cauchy sequence in $HD_{0,g}$. Since it is also a Cauchy sequence in HD_0 , there exists an element $u \in HD_0$ such that $du_n \to du$ in each parametric neighborhood. Then by Fatou's lemma

$$\int_{R_0} (1 + g(z, z_0)) d(u - u_n) \wedge *d(u - u_n) \leq \liminf_{m \to \infty} (u_m - u_n, u_m - u_n)_g.$$

Thus we have that $u \in HD_{0,g}$ and

$$\lim_{n\to\infty}\inf(u-u_n,u-u_n)\leq\lim_{n,m\to\infty}(u_m-u_n,u_m-u_n)=0.$$

This shows that $HD_{0,g}$ is a Hilbert space. Clearly $u \to u$ is a continuous isomorphism of $HD_{0,g}$ onto HD_0 . By the closed graph theorem, the norm $(u, u)_g$ is equivalent to $\int_{R_0} du \wedge *du$. Hence in particular, there is a constant K_1 such that

(3)
$$\int_{R_0} g \ du \wedge *du \leq K_1 \int_{R_0} du \wedge *du$$

for any u in HD_0 and hence for any u in $HD(R_0)$.

Let $u \in HD_0 \cap C(\overline{R}_0)$. Since $d^*du^2 = 2 du \wedge *du$, by Green's formula,

$$\int_{\alpha} u^2 * dg = 2 \int_{R_0} g \ du \wedge * du.$$

Hence if $\omega \in \mathcal{D}_0(\alpha)$ and $u \in HD(R) \cap C(\overline{R}_0)$, then by (3), (4), and the fact $\int_{\alpha} u\omega = \int (u - u(z_0))\omega$, we deduce

$$\left|\int_{\alpha} u\omega\right|^{2} \leq K_{2} \int_{R_{2}} du \wedge *du,$$

where $K_2 = 2K_1 \int_{\alpha} \Omega^2 dg$ with $\Omega dg = \omega$ on α . Hence by using Dirichlet's principle, we obtain the following:

LEMMA 1 [3]. Let $\omega \in \mathcal{D}_0(\alpha)$. Then there exists a constant C_ω depending only on ω such that for any $f \in C^1(R_0) \cap C(\overline{R}_0)$,

(6)
$$\left|\int_{\alpha} f\omega\right|^{2} \leq C_{\omega} \int_{R_{0}} df \wedge *df.$$

5. Assume that $R \notin O_G$. $R_1 = R - \overline{R}_0$ consists of a finite number of components $R_1^{(1)}$, $R_1^{(2)}$, ..., $R_1^{(k)}$. Let $\alpha_i = \alpha \cap \partial R_1^{(i)}$. If $R_1^{(i)}$ has positive (resp. null) ideal boundary, then we put $F_i = R_1^{(i)}$ (resp. $F_i = R - (R_1^{(i)})^-$) and orient $\alpha_i = \partial F_i$ positively with respect to F_i . Take the harmonic measure w_i on F_i such that $w_i = 0$ on ∂F_i . Since $R \notin O_G$, at least one of $R_1^{(i)}$ and $R - (R_1^{(i)})^-$ has positive ideal boundary and by our choice of F_i , $w_i > 0$. Take an f in $C_0^{\infty}(R)$ arbitrary but fixed for the time being. Let F_i' be a subdomain of F_i such that $F_i - (F_i')^-$ is a neighborhood of the ideal boundary of F_i and f vanishes on $F_i - F_i'$ and such that $\partial F_i'$ consists of a finite number of mutually disjoint analytic closed Jordan curves with $\alpha_i \subset \partial F_i'$. We orient $\beta_i = \partial F_i' - \alpha_i$ positively with respect to F_i' . Let u be harmonic in F_i' with boundary values f on $\partial F_i'$. Hence u = f on α_i and u = 0 on β_i . By Green's formula

$$\int_{\alpha_{i}+\beta_{i}} u^{2} * dw_{i} - \int_{\alpha_{i}+\beta_{i}} w_{i} * du^{2} = \int_{F_{i}} w_{i} d * du^{2}.$$

Since $*du^2 = 2u^*du = 0$ on β_i and $d^*du^2 = 2 du \wedge *du$, we have

$$\int_{\alpha_i} u^2 * dw_i = 2 \int_{F_i} w_i du \wedge * du.$$

Hence by noticing $w_i < 1$,

$$\left|\int_{\alpha_1} u\omega\right|^2 \leq K_{\omega}^{(i)} \int_{F_i} du \wedge *du,$$

where $\omega \in \mathcal{D}(\alpha)$ and $K_{\omega}^{(i)} = 2 \int_{\alpha_i} \Omega^2 dw_i$ with $\Omega dw_i = \omega$ on α . Thus by $\int_{F_i} du \wedge du \leq \int_{F_i} df \wedge df \leq \int_{F_i} df \wedge df$ and u = f on α_i , we have

(7)
$$\left| \int_{\mathbb{R}} f \omega \right|^2 \le K_{\omega}^{(t)} \int_{\mathbb{R}} df \wedge *df.$$

Let $K_{\omega} = k \max(K_{\omega}^{(i)}; 1 \le i \le k)$. Then

$$\left| \int_{\alpha} f \omega \right| \leq \sum_{i=1}^{k} \left| \int_{\alpha_{i}} f \omega \right| \leq \sqrt{K_{\omega} \int_{R} df \wedge *df}.$$

Hence we obtain the following:

LEMMA 2. Let $R \notin O_G$ and $\omega \in \mathcal{Q}(\alpha)$. Then there exists a constant K_{ω} depending only on ω such that for any $f \in C_0^1(R)$,

(8)
$$\left|\int_{\alpha} f\omega\right|^{2} \leq K_{\omega} \int_{R} df \wedge *df.$$

6. Assume that $R \in O_G$. Let $\omega \in \mathcal{D}(\alpha)$ and assume that there exists a constant C_{ω} depending only on ω such that

$$\left| \int_{\alpha} f \omega \right|^{2} \leq C_{\omega} \int_{\mathbb{R}} df \wedge *df$$

for any $f \in C_0^\infty(R)$. Let Ω be a subdomain of R such that $\Omega \supset \overline{R}_0$ and $\partial \Omega$ consists of a finite number of mutually disjoint analytic closed Jordan curves. Let w_{Ω} be the continuous function on R such that $w_{\Omega} = 1$ on \overline{R}_0 , $w_{\Omega} = 0$ on $R - \Omega$ and w_{Ω} is harmonic on $\Omega - \overline{R}_0$. By applying the mollifier, we can find a sequence $\{f_n\}$ in $C_0^\infty(R)$ such that $\int_R d(w_{\Omega} - f_n) \wedge *d(w_{\Omega} - f_n) \to 0 \ (n \to \infty)$ and f_n converges uniformly to w_{Ω} on R. Then from

$$\left| \int_{\alpha} f_n \omega \right|^2 \le C_{\omega} \int_{R} df_n \wedge *df_n;$$

$$\left| \int_{\alpha} (f_n - 1) \omega \right| \le \left(\int_{\alpha} |\omega| \right) \sup |f_n - w_{\Omega}|$$

it follows that

$$\left|\int_{\alpha}\omega\right|^{2}\leq C_{\omega}\int_{\Omega-R_{\Omega}}dw_{\Omega}\wedge *dw_{\Omega}.$$

Since $R \in O_G$, $\int_{\Omega - R_0} dw_{\Omega} \wedge *dw_{\Omega} \to 0$ as $\Omega \nearrow R$. Thus $\int_{\alpha} \omega = 0$. Hence this with Lemma 1 gives the following:

LEMMA 3. Let $R \in O_G$ and $\omega \in \mathcal{D}(\alpha)$. In order that there exists a constant C_ω depending only on ω such that for any $f \in C_0^1(R)$,

$$\left| \int_{\alpha} f \omega \right|^2 \leq C_{\omega} \int_{\mathbb{R}} df \wedge *df,$$

it is necessary and sufficient that $\omega \in \mathcal{D}_0(\alpha)$.

7. Lemmas 2 and 3 complete the proof of the fact mentioned in 3:

THEOREM 1. If $R \notin O_G$, then $K(\alpha, \omega) < \infty$ for any $\omega \in \mathcal{D}(\alpha)$, while if $R \in O_G$, then $K(\alpha, \omega) < \infty$ if and only if $\omega \in \mathcal{D}_0(\alpha)$.

Existence theorem

8. Theorem 2. Let σ be a C^1 -differential on R such that $\sigma | \overline{R}_1$ gives a harmonic singularity at the ideal boundary β of R. If $R \notin O_G$, then there exists a harmonic differential λ on R such that $\lambda - \sigma \in \Gamma_{e0}(R) \oplus {}^*\Gamma_{e0}(R)$, and if $R \in O_G$, then there exists a harmonic differential λ on R such that $\lambda - \sigma \in \Gamma_{e0}(R) \oplus {}^*\Gamma_{e0}(R)$ if and only if

(10)
$$\int_{a}^{b} \sigma = \int_{a}^{b} *\sigma = 0.$$

In either case λ is uniquely determined by σ and λ is exact (resp. *exact) if σ is exact (resp. *exact).

9. First, we prove the existence part. Let σ be arbitrary if $R \notin O_G$ and let σ satisfy (10) if $R \in O_G$. Let $f \in C_0^{\infty}(R)$. By Green's formula,

$$\int_{R_1} \sigma \wedge *df = \int_{R_1} df \wedge *\sigma = \int_{\alpha} f *\sigma$$

and

$$\int_{R_1} \sigma \wedge df = -\int_{R_1} df \wedge \sigma = -\int_{\alpha} f\sigma.$$

Hence for any f_1 and f_2 in $C_0^{\infty}(R)$, by Theorem 1 and $(df_1, *df_2) = 0$,

$$\left| \int_{R_1} \sigma \wedge *(df_1 + *df_2) \right|^2 \leq T'_{\sigma} \int (df_1 + *df_2) \wedge *(df_1 + *df_2),$$

where T'_{σ} is a constant depending only on σ . Thus the functional

$$T(\theta) = -\int_{\mathbb{R}} \sigma \wedge *\theta$$

defined on $\Gamma_{e_0}^{\infty}(R) \oplus {}^*\Gamma_{e_0}^{\infty}(R)$ satisfies

$$|T(\theta)|^2 \leq T_\sigma \int_{\mathbb{R}} \theta \wedge *\theta,$$

where $T_{\sigma} = \int_{R_0} \sigma \wedge *\sigma + T'_{\sigma}$. Thus T can be extended to a bounded linear functional on

$$\Gamma_{e0}(R) \oplus {}^*\Gamma_{e0}(R) = \overline{\Gamma_{e0}^{\ \infty}(R) \oplus {}^*\Gamma_{e0}^{\ \infty}(R)}.$$

Hence there exists a unique element ω in $\Gamma_{e0}(R) \oplus {}^*\Gamma_{e0}(R)$ such that $T(\theta) = \int \omega \wedge {}^*\theta$. Thus in particular,

$$\int_{R} (\sigma + \omega) \wedge *df = \int_{R} (\sigma + \omega) \wedge df = 0$$

for any f in $C_0^{\infty}(R)$. Take a compact subdomain Ω in R; then clearly $\sigma + \omega \in \Gamma(\Omega)$. Taking f in $C_0^{\infty}(\Omega)$, the above equality shows that $\sigma + \omega \in (\Gamma_{e_0}^{\infty}(\Omega) \oplus *\Gamma_{e_0}^{\infty}(\Omega))^{\perp}$. By the de Rahm decomposition, $\Gamma_h(\Omega) = \Gamma(\Omega) \oplus (\Gamma_{e_0}^{\infty}(\Omega) \oplus *\Gamma_{e_0}(\Omega))$, we conclude

that $\sigma + \omega \in \Gamma_h(\Omega)$. Thus $\lambda = \sigma + \omega$ is a harmonic differential on R and $\lambda - \sigma = \omega \in \Gamma_{e0}(R) \oplus *\Gamma_{e0}(R)$.

10. Next assume that $R \in O_G$ and we can find a harmonic differential λ on R such that $\lambda - \sigma = \omega \in \Gamma_{e0}(R) \oplus {}^*\Gamma_{e0}(R)$ for a given σ . We have to show that (10) holds. Clearly, for any $f \in C_0^{\infty}(R)$,

$$\left| \int_{\alpha} f \omega \right|^{2} = \left| \int_{R_{1}} df \wedge \omega \right|^{2} \leq \left(\int_{R} \omega \wedge *\omega \right) \cdot \int_{R} df \wedge *df$$

and similarly

$$\left| \int_{\alpha} f * \omega \right|^{2} \leq \left(\int_{R} \omega \wedge * \omega \right) \cdot \int_{R} df \wedge * df.$$

Hence by Theorem 1, we must have $\int_{\alpha} \omega = \int_{\alpha} *\omega = 0$. On the other hand, $\int_{\alpha} \lambda = \int_{R_0} d\lambda = 0$ and $\int_{\alpha} *\lambda = \int_{R_0} d^*\lambda = 0$. Thus (10) follows.

11. Finally, we prove the last part of Theorem 2. Let λ_1 and λ_2 be harmonic differential on R such that $\lambda_1 - \sigma$ and $\lambda_2 - \sigma$ belong to $\Gamma_{e0}(R) \oplus *(\Gamma_{e0}(R))$. Then $\lambda_1 - \lambda_2 \in \Gamma_{e0}(R) \oplus *\Gamma_{e0}(R)$. But $\lambda_1 - \lambda_2$ is harmonic and thus $\lambda_1 - \lambda_2 = 0$ by the de Rahm decomposition.

Assume that σ is exact (resp. *exact). Then for $\theta \in {}^*\Gamma_{e0}^{\infty}(R)$ (resp. $\Gamma_{e0}^{\infty}(R)$), $\int_R \lambda \wedge {}^*\theta = \int_R \sigma \wedge {}^*\theta = 0$. This implies $\int_R \omega \wedge {}^*\theta = 0$. Thus $\omega \in (\Gamma_{e0}(R) \oplus {}^*\Gamma_{e0}(R))$ $\oplus {}^*\Gamma_{e0}^{\infty}(R) = \Gamma_{e0}(R)$ (resp. $\omega \in (\Gamma_{e0}(R) \oplus {}^*\Gamma_{e0}(R)) \oplus \Gamma_{e0}^{\infty}(R) = {}^*\Gamma_{e0}(R)$).

12. Application to the case of functions. Let s be a harmonic function on \overline{R}_1 , arbitrary if $R \notin O_G$, and $\int_{\alpha} *ds = 0$ if $R \in O_G$. Thus by Theorem 2, there exists a harmonic function p on R such that $d(p-s) \in \Gamma_{e0}(R)$. This means that p-s is bounded on R. Thus we constructed a harmonic function p on R which behaves like s at β . If $\int_{\alpha} *ds = 0$, then $\int_{\alpha} *d(p-s) = 0$ and $d(p-s) \in \Gamma_{e0}(R)$. This implies $L_1(p-s) = p-s$ on R_1 (see [3]), where L_1 is Sario's principal operator for R_1 . Such an approach to the principal function problem was initiated by Browder [2].

The author wishes to express his gratitude to Professor Leo Sario for his stimulating suggestions.

REFERENCES

- 1. L. V. Ahlfors and L. Sario, *Riemann surfaces*, Princeton Math. Series, No. 26, Princeton, N. J., 1960.
- 2. F. E. Browder, Principal functions for elliptic systems of differential equations, Bull. Amer. Math. Soc. 71 (1965), 342-344.
- 3. M. Nakai and L. Sario, Construction of principal functions by orthogonal projections, Canad, J. Math. 18 (1966), 887-896.

University of California, Los Angeles, California Nagoya University, Nagoya, Japan