ERGODIC THEORY AND BOUNDARIES

M. A. AKCOGLU AND R. W. SHARPE

1. **Introduction.** Let T be a conservative positive contraction on the L_1 space of a finite measure space (X, \mathcal{F}, μ) . A theorem of Chacon [5], [2] shows that T defines a sub σ -field \mathscr{I} of \mathscr{F} , consisting of invariant subsets of X. The ratio ergodic limits are measurable with respect to \mathscr{I} [5], [2] and the class of these limits contains $L_{\infty}(X, \mathscr{I}, \mu)$, which can be considered as the invariant functions of the adjoint transformation [2]. The main purpose of the present paper is to show that any positive contraction on $L_1(X, \mathscr{F}, \mu)$ behaves, asymptotically, like a conservative transformation (Theorems 3 and 4) and that the invariant functions of the adjoint transformation can be approximated by the ratio ergodic limits.

Intuitively, a ratio ergodic limit corresponds to the result of an averaging process of different values of a function. It is then natural to consider these limits as functions that are smooth with respect to the asymptotic behaviour of the transformation. This leads (Theorem 6) to a Martin-Doob type representation [12], [8] of invariant functions as the L_{∞} functions of a compact Hausdorff space $\mathcal M$ with a Baire measure. The topology on $\mathcal M$ is just strong enough to make the ergodic limits to correspond to continuous functions. As an example we consider a transformation of Feller [10] and show that for this case the above representation is identical with the Poisson representation of harmonic functions in the unit disk. We also consider the possibility of joining X and $\mathcal M$, convergence of measures to $\mathcal M$ in $X \cup \mathcal M$ (Theorem 7), and a relation (Lemma 9) between the Feller and Martin-Doob type representations, corresponding to a result of Feldman [9].

2. **Preliminaries.** Let (X, \mathscr{F}, μ) be a finite measure space and let $L_p = L_p(X, \mathscr{F}, \mu)$, $1 \le p \le \infty$ be the usual Banach spaces, and L_p^+ denote the positive cone of L_p . Let $T: L_1 \to L_1$ be a positive linear contraction and $U: L_\infty \to L_\infty$ be its dual. For $\alpha \in L_\infty$ define $T_\alpha: L_1 \to L_1$ as $T_\alpha f = \alpha f + T(1-\alpha)f$, $f \in L_1$, and let U_α be its dual. If χ_E is the characteristic function of $E \in \mathscr{F}$ we write T_E and U_E instead of T_{χ_E} and U_{χ_E} .

The following partial ordering of L_1^+ is similar to that of Bishop and deLeeuw given in [3].

DEFINITION 1. For $f, g \in L_1^+, f \prec g$ if and only if there exist an integer $n \ge 1$ and $\alpha_1, \ldots, \alpha_n \in L_\infty$ such that $0 \le \alpha_i \le 1$ for $i = 1, \ldots, n$ and $g = T_{\alpha_n} \cdots T_{\alpha_n} f$.

This relation is reflexive and transitive and f < g implies $||f||_1 \ge ||g||_1$. Also, an

induction argument shows that if f < g then there exists an integer $n \ge 1$ such that $g < T^n f$. Hence $\{g \in L_1^+ \mid g > f\}$ is (upward) directed by <.

DEFINITION 2. For $E \in \mathcal{F}, f \in L_1^+$ let

$$\Psi_{E}f = \sup_{g > f} \int_{E} g \ d\mu, \quad \Theta_{E}f = \lim_{g > f} \Psi_{E}g.$$

Note that $\Theta_E f = \lim_{n \to \infty} \Psi_E T^n f$.

LEMMA 1. The limits $\psi_E = \lim_{n \to \infty} U_E^n \chi_E$ and $\theta_E = \lim_{n \to \infty} U^n \psi_E$ both exist (a.e.) and satisfy

$$\Psi_{E}f = \int \psi_{E}f \, d\mu, \quad \Theta_{E}f = \int \theta_{E}f \, d\mu.$$

Proof. By induction, $U_{E\chi_{E}}^{n}\uparrow$ and $U^{n}\psi_{E}\downarrow$, so the limits exist. Now if $f\in L_{\infty}^{+}$ satisfies

$$\chi_E Uf \leq \chi_E f, \quad \chi_{E^c} Uf \geq \chi_{E^c} f$$

with $E^c = X - E$, then for all $\alpha \in L_{\infty}$, $0 \le \alpha \le 1$, we have

$$U_{\alpha}f = \alpha f + (1 - \alpha)Uf \leq \chi_{E}f + \chi_{E^{c}}Uf = U_{E}f.$$

Since, by induction, $U_{E\chi_E}^n$ satisfies (*) for all $n \ge 0$, we get, again by induction, $U_{\alpha_n} \cdots U_{\alpha_1} \chi_E \le U_{E\chi_E}^n$, and hence $\Psi_E f = \int \psi_E f d\mu$. The final part follows from the definition (cf. also [4] and [2]).

DEFINITION 3. For $E, F \in \mathcal{F}$, let

$$\psi_{EF} = \psi_E + \psi_F - \psi_{E \cup F}, \quad \theta_{EF} = \theta_E + \theta_F - \theta_{E \cup F}.$$

 Ψ_{EF} , Θ_{EF} are the functionals on L_1 defined by the L_{∞} functions ψ_{EF} , θ_{EF} .

We note that ψ_{EF} and θ_{EF} are monotone and subadditive in each index. This follows easily from the following general result, which will be useful to obtain other relations between these set functions (cf. [7]).

LEMMA 2. If a_i is real and $A_i \in \mathcal{F}$ for $i=1,\ldots,n$ and $A=\bigcup_{i=1}^n A_i$, then $\chi_A \sum_{i=1}^n a_i \psi_{A_i} \ge 0$ implies $\sum_{i=1}^n a_i \psi_{A_i} \ge 0$ and $\sum_{i=1}^n a_i \theta_{A_i} \ge 0$.

Proof. If $f \in L_1^+$ and $E \subseteq F$, $E, F \in \mathcal{F}$, then by induction: $\chi_{F^c} T_F^n f \leq \chi_{F^c} T_E^n f$. Hence

$$\begin{split} 0 & \leq \int_{F^c} \psi_E T_F^n f \, d\mu \, \leq \int_{F^c} \psi_E T_E^n f \, d\mu \, \leq \int_{E^c} \psi_E T_E^n f \, d\mu \\ & \leq \int \psi_E T_E^n f \, d\mu - \int_F \psi_E T_E^n f \, d\mu \, \leq \, \Psi_E f - \int_F T_E^n f \, d\mu \to 0 \end{split}$$

as $n \to \infty$. Now

$$\begin{split} \int & \psi_E f \, d\mu \, = \, \int & \psi_E \chi_F f \, d\mu + \int \psi_E \chi_{F^c} f \, d\mu \, = \, \int & \psi_E \chi_F f \, d\mu + \int \psi_E T_E \chi_{F^c} f \, d\mu \\ & = \, \int & \psi_E \chi_F f \, d\mu + \int & \psi_E T \chi_{F^c} f \, d\mu \, = \, \int & \psi_E T_F f \, d\mu \, d\mu \\ & = \, \int & \psi_E T_F^n f \, d\mu \, = \, \int_F & \psi_E T_F^n f \, d\mu + \int_{F^c} & \psi_E T_F^n f \, d\mu, \end{split}$$

and hence $\lim_{n\to\infty}\int_F \psi_E T_F^n f d\mu = \int \psi_E f d\mu$. Using this for the case of $A_i \subseteq A$, $i=1,\ldots,n$, we get

$$0 \leq \sum_{i=1}^{n} a_{i} \int_{A} \psi_{A_{i}} T_{A}^{n} f d\mu \rightarrow \sum_{i=1}^{n} a_{i} \int \psi_{A_{i}} f d\mu$$

as $n \to \infty$, which proves the first assertion. Since U is positive, the remainder follows.

LEMMA 3. If $\chi_E \theta_E \ge \alpha \chi_E$ then $\theta_E \ge \alpha \psi_E$.

Proof. From the proof of the previous lemma we have that, for $f \in L_1^+$,

$$\lim_{n\to\infty}\int_{E^c}\theta_ET_E^nf\,d\mu=0.$$

Hence

$$\int \theta_E f \, d\mu = \int \theta_E T_E^n f \, d\mu = \lim_{n \to \infty} \int_E \theta_E T_E^n f \, d\mu$$

$$\geq \alpha \lim_{n \to \infty} \int_E T_E^n f \, d\mu \geq \alpha \int \psi_E f \, d\mu.$$

Finally we prove the following.

LEMMA 4. For $E, F \in \mathscr{F}$, $\|\theta_E\|_{\infty} = \|\chi_E \theta_E\|_{\infty} = 0$ or 1 and $\|\theta_{EF}\|_{\infty} = \|\chi_E \theta_{EF}\|_{\infty} = \|\chi_E \theta_{EF}\|_{\infty} = \|\chi_E \theta_{EF}\|_{\infty} = 0$ or 1.

Proof. For $g \in L_1^+$, as $n \to \infty$, $0 \le \Theta_E(\chi_E^c T_E^n g) \le \Psi_E(\chi_E^c T_E^n g) \to 0$ as in the proof of Lemma 2. Hence the decomposition $\Theta_E g = \Theta_E T_E^n g = \Theta_E(\chi_E T_E^n g) + \Theta_E(\chi_E^c T_E^n g)$ shows that $\|\theta_E\|_{\infty} = \|\chi_E \theta_E\|_{\infty}$. Now, for $n, m \ge 1$,

$$\Theta_{E}g = \Theta_{E}T_{E}^{n}T^{m}g = \lim_{m \to \infty} \lim_{n \to \infty} \Theta_{E}(\chi_{E}T_{E}^{n}T^{m}g) \leq \lim_{m \to \infty} \lim_{n \to \infty} \|\theta_{E}\|_{\infty} \|\chi_{E}T_{E}^{n}T^{m}g\|_{1}$$

$$= \lim_{m \to \infty} \|\theta_{E}\|_{\infty} \Psi_{E}T^{m}g = \|\theta_{E}\|_{\infty} \Theta_{E}g$$

which completes the proof of the first part, since $\|\theta_E\|_{\infty} \leq 1$. For the second part, we have, if $g \in L_1^+$, $0 \leq \Theta_{EF}(\chi_{E^c}T_E^ng) \leq \Theta_E(\chi_{E^c}T_E^ng) \to 0$ as $n \to \infty$ which shows that $\|\theta_{EF}\|_{\infty} = \|\chi_E\theta_{EF}\|_{\infty}$. Now

$$\Theta_{E}g - \Theta_{E}(\chi_{E}^{c}T_{E}^{n}g) = \Theta_{E}(\chi_{E}T_{E}^{n}g) \leq \Theta_{E \cup F}(\chi_{E}T_{E}^{n}g) \leq \|\chi_{E}T_{E}^{n}g\|_{1} \leq \Psi_{E}g;$$

thus, $\Theta_E g \leq \lim_{n\to\infty} \Theta_{E\cup F}(\chi_E T_E^n g) \leq \Psi_E g$. Replacing g by $T^m g$ and letting $m\to\infty$ we get

$$\Theta_E g = \lim_{m \to \infty} \lim_{n \to \infty} \Theta_{E \cup F}(\chi_E T_E^n T^m g).$$

Next, consider

$$\Theta_{EF}(\chi_E T_E^n T^m g) = (\Theta_E + \Theta_F - \Theta_{E \cup F})(\chi_E T_E^n T^m g)$$

and let $n \to \infty$ to get

$$\Theta_{EF}g = \Theta_{E}g + \lim_{n \to \infty} \Theta_{F}(\chi_{E}T_{E}^{n}T^{m}g) - \lim_{n \to \infty} \Theta_{E \cup F}(\chi_{E}T_{E}^{n}T^{m}g).$$

Now, letting $m \to \infty$ we have

$$\Theta_{EF}g = \lim_{m \to \infty} \lim_{n \to \infty} \Theta_F(\chi_E T_E^n T^m g).$$

But

$$\Theta_{EF}g \leq \|\theta_{EF}\|_{\infty} \lim_{m \to \infty} \lim_{n \to \infty} \|\chi_E T_E^n T^m g\|_1
\leq \|\theta_{EF}\|_{\infty} \lim_{m \to \infty} \Psi_E T^m g
\leq \|\theta_{EF}\|_{\infty} \Theta_E g.$$

Hence

$$\Theta_{EF}g = \Theta_{EF}(T_E^n T^m g)
= \lim_{m \to \infty} \lim_{n \to \infty} \Theta_{EF}(\chi_E T_E^n T^m g)
\leq \|\theta_{EF}\|_{\infty} \lim_{m \to \infty} \lim_{n \to \infty} \Theta_F(\chi_E T_E^n T^m g)
\leq \|\theta_{EF}\|_{\infty} \Theta_{EF}g.$$

This completes the proof, since $\|\theta_{EF}\|_{\infty} \leq 1$.

Definition 4. $\Sigma = \{E \in \mathscr{F} \mid \Theta_{EE^c} = 0\}.$

LEMMA 5. Σ is a field.

Proof. Let $E, F \in \Sigma$ and $G = E \cap F$. Then

$$0 \le \theta_{GG^c} = \theta_{G(E^c \cup F^c)} \le \theta_{GE^c} + \theta_{GF^c} \le \theta_{EE^c} + \theta_{FF^c} = 0.$$

Thus $G \in \Sigma$.

Definition 5. \mathscr{A} is the L_{∞} -closure of the class of Σ -simple functions.

We note that \mathscr{A} is a sub-Banach space of L_{∞} .

THEOREM 1. For a real valued function $f \in L_{\infty}$, the following conditions are equivalent:

- (i) $f \in \mathcal{A}$,
- (ii) $\lim_{g > g_0} \int fg \ d\mu$ exists for all $g_0 \in L_1^+$,
- (iii) for all real numbers α and $\varepsilon > 0$,

$$\theta_{EF} = 0$$
 where $E = \{x \mid f(x) \le \alpha\}, F = \{x \mid f(x) \ge \alpha + \epsilon\}.$

Proof. (i) \Rightarrow (ii). If $E \in \Sigma$ then $\theta_E + \theta_{E^c} = \theta_X$; thus, for a real valued $g_0 \in L_1^+$,

$$\limsup_{g > g_0} \int_E g \ d\mu = \limsup_{g > g_0} \int_E g \ d\mu - \limsup_{g > g_0} \int_{E^c} g \ d\mu$$
$$= \liminf_{g > g_0} \int_E g \ d\mu.$$

Therefore $\lim_{g > g_0} \int \chi_E g \ d\mu$ exists for all $E \in \Sigma$.

Hence it exists for all Σ -simple functions, and thus for all $f \in \mathcal{A}$.

(ii) \Rightarrow (iii). Suppose E and F are as in (iii) but that $\theta_{EF} \neq 0$. Then $\|\theta_{EF}\|_{\infty} = 1$ and for all $\delta > 0$ there exists $g_0 \in L_1^+$ with $\|g_0\|_1 = 1$ and $\int \theta_{EF} g \ d\mu \ge 1 - \delta$. Hence $\Theta_E g_0 \ge 1 - \delta$ and $\Theta_F g_0 \ge 1 - \delta$. Thus $\limsup_{g > g_0} \int fg \ d\mu \ge (1 - \delta)(\alpha + \varepsilon)$ and $\liminf_{g > g_0} \int fg \ d\mu \le (1 - \delta)\alpha + \delta \|f\|_{\infty}$. If δ is chosen sufficiently small we see that $\lim_{g > g_0} \int fg \ d\mu$ does not exist.

(iii) \Rightarrow (i). Let $a_1 < a_2 < \cdots < a_n$ be *n* numbers and let $E_i = \{x \mid f(x) \le a_i\}$. Now

$$\sum_{i=1}^{n} \theta_{E_{i}E_{i}^{c}} = \sum_{i=1}^{n} (\theta_{E_{i}} + \theta_{E_{i}^{c}} - \theta_{X})$$

$$\leq \sum_{i=2}^{n} (\theta_{E_{i-1}} + \theta_{E_{i}^{c}} - \theta_{E_{i-1} \cup E_{i}^{c}}) + (\theta_{E_{n}} + \theta_{E_{1}^{c}} - \theta_{X})$$

$$\leq 1.$$

Hence if $E_a = \{x \mid f(x) \le a\}$ then $\theta_{E_a E_a^c} \ne 0$ for only countably many a's, and so $f \in \mathcal{A}$.

3. Invariant functions.

DEFINITION 6. $\mathcal{H} = \{f \mid f \in L_{\infty}, f = Uf\}$ is the class of invariant functions of U. We assume $\mathcal{H} \neq \{0\}$.

Note that \mathscr{H} is a sub-Banach space of L_{∞} . Also, if $h \in \mathscr{H}$ and $g' \succ g \in L_1^+$, then $\int hg' d\mu = \int hg d\mu$ and hence $\lim_{g' \succ g} \int hg' d\mu$ exists. Thus $\mathscr{H} \subseteq \mathscr{A}$.

If $f \in \mathcal{A}$, then $\lim_{n\to\infty} \int f T^n g \ d\mu = \lim_{n\to\infty} \int U^n f g \ d\mu$ exists for all $g \in L_1(X, \mathcal{F}, \mu)$. Hence the bounded sequence $U^n f$, $n=1, 2, \ldots$ has a limit $\pi(f)$ in the w^* -topology of L_∞ . Obviously the limit lies in \mathcal{H} , so $\pi : \mathcal{A} \to \mathcal{H}$ is a positive linear contraction.

DEFINITION 7. $\mathscr{A}_0 = \ker \pi = \{ f \in \mathscr{A} \mid w^* - \lim U^n f = 0 \}$. Hence $\mathscr{A}/\mathscr{A}_0 \cong \mathscr{H}$ is a canonical, isometric isomorphism.

Now \mathscr{A} is a C^* -algebra with the usual operations. We show that \mathscr{A}_0 is a closed ideal.

THEOREM 2. \mathcal{A}_0 is a closed ideal in \mathcal{A} .

Proof. Let $f \in \mathcal{A}_0$ and assume that f is real. Choose $\varepsilon > 0$ and set $E = \{x \mid f(x) \ge \varepsilon\}$. We may assume $E \in \Sigma$. Suppose $\theta_E \ne 0$; then for all $\delta > 0$, there is a $g \in L_1^+$ such that $\|g\|_1 = 1$ and $\Theta_E g \ge 1 - \delta$. Hence:

$$0 = \lim_{n \to \infty} \int U^n f \cdot g \ d\mu = \lim_{n \to \infty} \int f T^n g \ d\mu$$

$$\geq \varepsilon \lim_{n \to \infty} \int_E T^n g \ d\mu - \|f\|_{\infty} \lim_{n \to \infty} \int_{E^c} T^n g \ d\mu$$

$$\geq \varepsilon (1 - \delta) - \|f\|_{\infty} \delta.$$

Clearly, this fails for small δ , and so $\theta_E = 0$. Thus if $E = \{x \mid |f(x)| > \varepsilon\}$, we have $\theta_E = 0$.

Now if $h \in \mathcal{A}$, $h \neq 0$, set $F = \{x \mid |f(x)h(x)| \geq \epsilon\}$. Since $F \subset \{x \mid |f(x)| \geq \epsilon/\|h\|_{\infty}\}$, we have $\theta_F = 0$. Hence

$$\left| \lim_{n \to \infty} \int U^n(fh) g \ d\mu \right| \le \varepsilon \lim_{n \to \infty} \int_F T^n g \ d\mu + \varepsilon \|g\|_1 \quad \text{if } g \in L_1^+$$
$$\le \varepsilon \|g\|_1 \quad \text{for all } \varepsilon > 0.$$

Hence $fh \in \mathcal{A}_0$.

As a result of the lemma, we have given $\mathscr{A}/\mathscr{A}_0$, and hence \mathscr{H} the structure of a C^* -algebra. Thus \mathscr{H} has a representation as the set of complex valued continuous functions on its maximal ideal space. This corresponds to Feller's representation [10] of the invariant functions of certain Markov processes, and we shall refer to \mathscr{H} 's maximal ideal space as the Feller boundary.

As is known [8], [11], the Feller boundary is larger than it need be. In the next section, we obtain some properties of ratio ergodic limits, and use them to define a sub C^* -algebra $\mathcal G$ of $\mathcal H$, with a maximal ideal space $\mathcal M$, smaller than the Feller boundary, but large enough to represent $\mathcal H$ as a function algebra on $\mathcal M$. This corresponds to the Martin-Doob representation [12], [8], [11] for some classes of functions, and $\mathcal M$ will be referred to as the Martin-Doob boundary.

4. Properties of ratio ergodic limits. In [6] Chacon and Ornstein proved that for any $f, g \in L_1$, with g > 0, the limit:

$$\lim_{n\to\infty} \frac{\sum_{k=1}^{n} T^k f}{\sum_{k=1}^{n} T^k g}$$

exists a.e. We denote the limit function by (f/g). It is also known [5], [4], [1], that if $\alpha \le (f/g) \le \beta$ a.e. on $E \in \mathcal{F}$, then $\alpha \le \Psi_E(f)/\Psi_E(g) \le \beta$.

THEOREM 3. If $f, g \in L_1^+$ with g > 0, and

$$E = \{x \mid (f/g)(x) \le a\},$$

$$F = \{x \mid (f/g)(x) \ge a + \varepsilon\},$$

then $\theta_{E,F} = 0$, for all $a \ge 0$ and $\varepsilon > 0$.

Proof. If $\theta_{E,F} \neq 0$ then $\|\chi_E \theta_{E,F}\|_{\infty} = 1$. Let $\delta > 0$ and set $E_{\delta} = \{x \mid \theta_{E,F}(x) \geq 1 - \delta\} \cap E$, and similarly for F_{δ} . Then $\|\chi_{E-E_{\delta}} \theta_{E-E_{\delta}}, F\|_{\infty} \leq \|\chi_{E-E_{\delta}} \theta_{E,F}\|_{\infty} \leq 1 - \delta$. Hence $\theta_{E-E_{\delta},F} = 0$, and so $\theta_{E_{\delta},F} \leq \theta_{E,F} \leq \theta_{E_{\delta},F} + \theta_{E-E_{\delta},F} = \theta_{E_{\delta},F}$ which implies $\theta_{E_{\delta},F} = \theta_{E,F}$. Now $\psi_{E_{\delta}} \geq \theta_{E_{\delta}F_{\delta}} \geq 1 - \delta$ on $E_{\delta} \cup F_{\delta}$. Hence $\psi_{E_{\delta}} \geq (1 - \delta)\psi_{F_{\delta}}$ on $E_{\delta} \cup F_{\delta}$, which by Lemma 2 yields $\psi_{E_{\delta}} \geq (1 - \delta)\psi_{F_{\delta}}$, and $\psi_{F_{\delta}} \geq (1 - \delta)\psi_{E_{\delta}}$. Now $(f/g) \leq a$ on E_{δ} yields $\Psi_{E_{\delta}} f/\Psi_{E_{\delta}} g \leq a$. Similarly $(f/g) \geq a + \varepsilon$ on F_{δ} implies $\Psi_{F_{\delta}} f/\Psi_{F_{\delta}} g \geq a + \varepsilon$. These relations yield $a \Psi_{E_{\delta}} g \geq (1 - \delta)^2 (a + \varepsilon)\Psi_{E_{\delta}} g$ which is false for small δ if $\Psi_{E_{\delta}}(g) \neq 0$. Hence $\theta_{E,F} = 0$.

COROLLARY. If $f, g \in L_1$ and $(f/g) \in L_{\infty}$, then $(f/g) \in \mathcal{A}$.

REMARK. If T is conservative, then Theorem 3 corresponds to the fact that (f/g) is measurable with respect to the σ -field of invariant sets (cf. [5], [2]).

THEOREM 4. If $(f/g) \in L_{\infty}$, and $h \in \mathcal{A}$, then $\int \pi(h) \cdot f d\mu = \int \pi(h(f/g)) g d\mu$.

Proof. Recall that $\int \pi(h(f/g))g \ d\mu = \lim_{n \to \infty} \int h(f/g)T^ng \ d\mu$. We may assume f and h are real. Choose $\varepsilon > 0$, and let E_{ij} , $1 \le i, j \le k$ be a \sum partition of X such that

$$\left\| h - \sum_{ij} h_{i} \chi_{E_{ij}} \right\|_{\infty} < \varepsilon, \quad \left\| (f/g) - \sum_{ij} \alpha_{j} \chi_{E_{ij}} \right\|_{\infty} < \varepsilon$$

for suitable real h_i , α_j with $|h_i| \le ||h||_{\infty}$, $|\alpha_j| \le ||(f/g)||_{\infty}$. Now

$$\left|\lim_{n\to\infty}\int h(f/g)T^ng\ d\mu - \sum_{ij=1}^k h_i\alpha_j \lim_{n\to\infty}\int_{E_{ij}} T^ng\ d\mu\right|$$

$$= \left|\lim_{n\to\infty}\int h(f/g)T^ng\ d\mu - \sum_{ij}h_i\alpha_j\Theta_{E_{ij}}(g)\right| \leq \varepsilon \|g\|_1(\|h\|_{\infty} + \|(f/g)\|_{\infty}).$$

Let $\delta > 0$ be fixed and set $E'_{ij} = \{x \mid \theta_{E_{ij}}(x) \ge 1 - \delta\} \cap E_{ij}$. Then, as before, $\theta_{E'_{ij}} = \theta_{E_{ij}}$, and from Lemma 3, $\theta_{E'_{ij}} \ge (1 - \delta)\psi_{E'_{ij}}$. Now $|\alpha_j - (f/g)| \le \varepsilon$ on E'_{ij} implies that $|\alpha_j - \Psi_{E'_{ij}}f/\Psi_{E'_{ij}}g| \le \varepsilon$. [Here we consider only those E_{ij} 's with $\theta_{E_{ij}} \ne 0$.] Hence:

$$\left| \sum_{ij} h_{i} \alpha_{j} \Theta_{E_{ij}} g - \sum_{\theta_{E_{ij}} \neq 0} h_{i} \frac{\Psi_{E'_{ij}} f}{\Psi_{E'_{ij}} g} \Theta_{E_{ij}} g \right| \leq \varepsilon \|h\|_{\infty} \|g\|_{1}.$$

Also:

$$\left|\sum_{\theta_{E_{ij}}\neq 0} h_i \frac{\Psi_{E'_{ij}}f}{\Psi_{E'_{ij}}g} \Theta_{E_{ij}}g - \sum_{ij} h_i \Psi_{E'_{ij}}f\right| \leq \|g\|_1 \|h\|_{\infty} (\|(f/g)\|_{\infty} + \varepsilon)k^2 \delta.$$

Finally,

$$\left| \sum_{ij} h_i \Psi_{E'_{ij}} f - \sum_{ij} h_i \Theta_{E_{ij}} f \right| \leq \|h\|_{\infty} \|f\|_1 k^2 \delta$$

and

$$\left| \sum_{ij} h_i \Theta_{E_{ij}} f - \lim_{n \to \infty} \int h T^n f \, d\mu \right| \leq \varepsilon \|f\|_1.$$

Putting together all these inequalities, we conclude the result.

5. A representation for \mathcal{H} .

DEFINITION 8. $\mathscr G$ is the sub- C^* -algebra of $\mathscr H$ generated by the class $\{\pi(l/1) \mid l \in L_{\infty}\}$.

Let $\mathcal{M} \subseteq \mathcal{G}^*$ be the maximal ideal space of \mathcal{G} with the w^* topology induced from \mathcal{G}^* . Let \mathcal{B} be the σ -field of Baire sets of \mathcal{M} .

Note that \mathscr{G} contains the unit $\pi(1)$ of \mathscr{H} , and that $g \in \mathscr{G}$ is invertible in \mathscr{G} if and only if it is invertible in \mathscr{H} .

The C^* -algebra $\mathscr{C}(\mathscr{M})$ of continuous complex valued functions on \mathscr{M} is isometrically* isomorphic to \mathscr{G} under the Gelfand mapping $\sigma: \mathscr{G} \to \mathscr{C}(\mathscr{M})$. This mapping is order preserving. To see this first we need a few lemmas.

LEMMA 6. If $f \in \mathcal{H}$ then $\pi |f|^2 \ge |f|^2$.

Proof. We can assume that f is real. Let $g \in L_1^+$ with $||g||_1 = 1$. Then

$$\left| \int fg \ d\mu \right| = \left| \int f \cdot Tg \ d\mu \right| \leq \left| \int |f|^2 Tg \ d\mu \right|^{1/2} \left| \int Tg \ d\mu \right|^{1/2}.$$

Hence $|\int fg \ d\mu|^2 \le \int U|f|^2g \ d\mu$. If $|f|^2 > |Uf|^2$ on a set of positive measure, then there exist $E \in \mathscr{F}$, $\mu(E) > 0$, $a \ge 0$ and $\varepsilon > 0$ such that $|f| \ge a + \varepsilon$ and $U|f|^2 \le a^2$ on E. Take $g = f\chi_E/|f|\mu(E)$. Then

$$(a+\varepsilon)^2 \le \left| \int fg \ d\mu \right|^2 \le \int U|f|^2g \ d\mu \le a^2$$

which is a contradiction. Hence $U|f|^2 \ge |f|^2$ and $\pi |f|^2 \ge |f|^2$.

There is a canonical map $j: L_1 \to \mathscr{G}^*$ defined by $(jf)(g) = \int fg \ d\mu, f \in L_1, g \in \mathscr{G}$. We now show that

LEMMA 7. \mathcal{M} is contained in the w*-closure of jL_1^+ in \mathcal{G}^* .

Proof. Choose $m \in \mathcal{M}$ and suppose that the w^* neighborhood $\{F \mid |Fg_i - mg_i| < \varepsilon, i = 1, ..., n\}$ of m defined by $g_1, ..., g_n \in \mathcal{G}, \varepsilon > 0$ is disjoint of jL_1^+ . Let

$$u = \sum_{i=1}^{n} \pi[(g_i - 1mg_i)\overline{(g_i - 1mg_i)}].$$

Now, let $f \in L_1^+$, $||f||_1 = 1$. Then

$$(jf)u = \sum_{i=1}^{n} \int \pi |g_i - 1mg_i|^2 f \, d\mu$$

$$\geq \sum_{i=1}^{n} \int |g_i - 1mg_i|^2 f \, d\mu$$

$$\geq \sum_{i=1}^{n} \left| \int (g_i - 1mg_i) f \, d\mu \right| \geq \varepsilon^2.$$

Hence $u \ge \varepsilon^2$ a.e. and hence u is invertible in L_{∞} . This implies that u is invertible in \mathscr{G} . But this is impossible since mu = 0.

COROLLARY. jL_1 is dense in \mathcal{G}^* in the w^* -topology.

THEOREM 5. The Gelfand mapping $\sigma: \mathcal{G} \to \mathcal{C}(\mathcal{M})$ is positive.

Proof. If $g \ge 0$ a.e. then $g^{**} \ge 0$ on jL_1^+ where $g \to g^{**}$ is the canonical embedding of \mathscr{G} into \mathscr{G}^{**} . Since jL_1^+ is dense in \mathscr{M} and g^{**} is continuous, $g^{**} \ge 0$ on \mathscr{M} . Hence $\sigma g = g^{**}|_{\mathscr{M}} \ge 0$.

Now we would like to extend σ to \mathscr{H} . First note that, by the Riesz representation theorem, any $F \in \mathscr{G}^*$ can be represented by a measure μ_F on $(\mathscr{M}, \mathscr{B})$. In particular, let $\tilde{\mu} = \mu_{j1}$. From the order-preserving property of the Riesz representation one can see that for any $f \in L_1$, μ_{jj} is absolutely continuous with respect to $\tilde{\mu}$. In fact we can obtain $d\mu_{jj}/d\tilde{\mu}$ as follows. First, considering only L_{∞} functions we have

LEMMA 8. If $f \in L_{\infty}$ then $\mu_{jf} \ll \tilde{\mu}$ and $d\mu_{jf}/d\tilde{\mu} = \sigma \pi (f/1)$.

Proof. For any $g \in \mathcal{G}$,

$$\int_{\mathcal{M}} \sigma g \cdot \sigma \pi(f/1) d\tilde{\mu} = \int_{\mathcal{M}} \sigma \pi [g \cdot \pi(f/1)] d\tilde{\mu} = \int_{X} \pi [g\pi(f/1)] d\mu$$
$$= \int_{X} \pi [g(f/1)] d\mu = \int_{X} gf d\mu,$$

where the last equality follows from Theorem 4.

Definition 9. Let $\tau f = \sigma \pi(f/1), f \in L_{\infty}$.

Note that the linear mapping $f \to \tau f$ defines a positive contraction $L_{\infty}(X, \mathcal{F}, \mu) \to L_{\infty}(\mathcal{M}, \mathcal{B}, \tilde{\mu})$. But it is also a contraction for the corresponding L_1 norms; hence it is a contraction for all L_p norms, $1 \le p \le \infty$. We can then extend this mapping to $L_p(X, \mathcal{F}, \mu) \to L_p(\mathcal{M}, \mathcal{B}, \tilde{\mu})$ with the property that $\int_X gf \, d\mu = \int_{\mathcal{M}} \sigma g \tau f \, d\tilde{\mu}$ for all $g \in \mathcal{G}, f \in L_p$.

We can now prove a representation theorem for \mathcal{H} .

THEOREM 6. There is a positive isometric * isomorphism between \mathcal{H} and $L_{\infty}(\mathcal{M}, \mathcal{B}, \tilde{\mu})$.

Proof. Let $h \in \mathcal{H}$ and define $\phi_h \in \mathcal{G}^*$ by

$$\phi_h(g) = \int_{Y} \pi(gh) d\mu.$$

Note that if $h \in \mathcal{G}$ then ϕ_h is represented by the measure $\sigma(h) \cdot d\tilde{\mu}$ on \mathcal{M} . Let γ_h be the representing measure of ϕ_h , $h \in \mathcal{H}$. Then, for any nonnegative continuous function $\sigma g (g \in \mathcal{G}^+)$ on \mathcal{M}

$$\left| \int_{\mathcal{M}} \sigma g \ d\gamma_h \right| = \left| \int_{X} \pi(gh) \ d\mu \right| \leq \|h\|_{\infty} \int_{X} g \ d\mu = \|h\|_{\infty} \int_{\mathcal{M}} \sigma g \cdot d\tilde{\mu}$$

which shows that γ_h is absolutely continuous with respect to $\tilde{\mu}$ and has a density function bounded by $||h||_{\infty}$. We denote this density function by σh , noting that it is actually an extension of σ , and $||\sigma h||_{\infty} \le ||h||_{\infty}$. Furthermore, if $l \in L_{\infty}$ then

$$\int_{\mathcal{M}} \sigma(h)\tau(l) d\tilde{\mu} = \int_{\mathcal{M}} \sigma(h)\sigma\pi(l/1) d\tilde{\mu} = \int_{X} \pi(h \cdot \pi(l/1)) d\mu$$
$$= \int_{X} \pi(h \cdot (l/1)) d\mu = \int_{X} hl d\mu.$$

Hence $|\int_X hl \ d\mu| \le \|\sigma h\|_{\infty} \|\tau l\|_1 \le \|\sigma h\|_{\infty} \cdot \|l\|_1$, so $\|h\|_{\infty} \le \|\sigma h\|_{\infty}$. Thus the extended σ is also an L_{∞} -norm isometry. To show that $\sigma \mathcal{H} = L_{\infty}(\mathcal{M}, \mathcal{B}, \tilde{\mu})$, first note that, if $h \in \mathcal{H}, l \in L_{\infty}(X, \mathcal{F}, \mu)$ then

$$\left|\int_{X} h l \, d\mu\right| = \left|\int_{\mathcal{M}} \sigma(h) \tau(l) \, d\tilde{\mu}\right| \leq \|\sigma h\|_{1} \|\tau l\|_{\infty} \leq \|\sigma h\|_{1} \|l\|_{\infty},$$

hence $||h||_1 \le ||\sigma h||_1$. Thus $\sigma^{-1} : \sigma \mathcal{H} \to \mathcal{H}$ is an L_1 -contraction onto \mathcal{H} . Now if σh_n is an a.e. monotone sequence in $\sigma \mathcal{H}$ converging a.e. to a function l in $L_{\infty}(\mathcal{M}, \mathcal{B}, \tilde{\mu})$ then h_n is an a.e. bounded and monotone sequence in \mathcal{H} . If the limit function is g, one can easily see that $g \in \mathcal{H}$ and $\sigma g = l$. Since $\sigma \mathcal{H}$ contains the continuous functions, this shows that $\sigma \mathcal{H} = L_{\infty}(\mathcal{M}, \mathcal{B}, \tilde{\mu})$. Now we want to show that

$$\int_{\mathbf{x}} \pi(hf) \ d\mu = \int_{\mathbf{x}} \sigma(h) \sigma(f) \ d\tilde{\mu},$$

for all $h, f \in \mathcal{H}$. In fact, for a fixed $h \in \mathcal{H}$, let $\mathcal{N} \subset \mathcal{H}$ be the class of functions f for which this relation holds. Then $\sigma \mathcal{N}$ contains the continuous functions of \mathcal{M} , and one can show, as before, that $\sigma \mathcal{N}$ is closed under a.e. monotone limits. Hence $\sigma \mathcal{N} = L_{\infty}(\mathcal{M}, \mathcal{B}, \tilde{\mu})$.

Finally, we show that extended σ is multiplicative, i.e. $\sigma(h_1) \cdot \sigma(h_2) = \sigma(\pi(h_1 h_2))$ for all $h_1, h_2 \in \mathcal{H}$. First note that if $f \in L_{\infty}(\mathcal{M}, \mathcal{F}, \tilde{\mu})$ and $\int_{\mathcal{M}} f\tau(l) d\tilde{\mu} = 0$ for all $l \in L_{\infty}(X, \mathcal{F}, \mu)$ then $\sigma^{-1}f = 0$, hence f = 0. Now for $h \in \mathcal{H}, g \in \mathcal{G}, l \in L_{\infty}(X, \mathcal{F}, \mu)$,

$$\int_{\mathcal{M}} \sigma(h)\sigma(g)\tau(l) d\tilde{\mu} = \int_{\mathcal{M}} \sigma(h)\sigma(g)\sigma(\pi(l/1)) d\tilde{\mu}$$

$$= \int_{\mathcal{M}} \sigma(h)\sigma\pi(g\pi(l/1)) d\tilde{\mu} = \int_{X} \pi(h\pi(g\pi(l/1))) d\mu$$

$$= \int_{X} \pi(hg(l/1)) d\mu = \int_{X} \pi(hg)l d\mu = \int_{\mathcal{M}} \sigma\pi(hg)\tau(l) d\tilde{\mu},$$

hence $\sigma(h) \cdot \sigma(g) = \sigma \pi(hg)$.

Now suppose that $h_1, h_2 \in \mathcal{H}, l \in L_{\infty}(X, \mathcal{F}, \mu)$. Then

$$\int_{\mathcal{M}} \sigma(h_1)\sigma(h_2)\tau(l) d\tilde{\mu} = \int_{\mathcal{M}} \sigma(h_1)\sigma\pi(h_2\pi(l/1)) d\tilde{\mu}$$

$$= \int_{X} \pi(h_1\pi(h_2\pi(l/1))) d\mu = \int_{X} \pi(h_1h_2)l d\mu$$

$$= \int_{\mathcal{M}} \sigma\pi(h_1h_2)\tau(l) d\tilde{\mu}$$

which shows that $\sigma(h_1)\sigma(h_2)=\sigma\pi(h_1h_2)$, and completes the proof of the theorem. We remark that every $f\in L_p(\mathcal{M},\mathcal{B},\bar{\mu}), \ 1\leq p<\infty$, induces a function $h\in L_p(X,\mathcal{F},\mu)$, defined by $\int_X hl\ d\mu=\int_{\mathcal{M}} f\tau(l)\ d\bar{\mu}$ for all $l\in L_q(X,\mathcal{F},\mu),\ 1/p+1/q=1$. Since τ is an L_q -contraction the integral on \mathcal{M} is defined and h satisfies $\int_X hl\ d\mu=$

 $\int_X hTl d\mu$, for all $l \in L_q(X, \mathcal{F}, \mu)$. The case p=1 causes no difficulty. If $f \in L_1(\mathcal{M}, \mathcal{B}, \tilde{\mu}), l \in L_{\infty}(X, \mathcal{F}, \mu)$,

$$\left| \int_{\mathcal{M}} f\tau(l) \, d\tilde{\mu} \, \right| \leq \left| \int_{\{|f| \geq n\}} f\tau(l) \, d\tilde{\mu} \, \right| + \left| \int_{\{|f| < n\}} f\tau(l) \, d\tilde{\mu} \, \right|$$

$$\leq \|\tau l\|_{\infty} \int_{\{|f| \geq n\}} |f| \, d\tilde{\mu} + n\|\tau l\|_{1}$$

$$\leq \|l\|_{\infty} \left[\int_{\{|f| \geq n\}} |f| \, d\tilde{\mu} \right] + n\|l\|_{1}.$$

Thus, if l_k is a sequence in L_{∞} with $||l_k||_1 \to 0$ and $||l_k||_{\infty} \le K$ then

$$\lim_{k} \left| \int f \tau(l_k) \ d\tilde{\mu} \right| \leq K \int_{\{|f| \geq n\}} |f| \ d\tilde{\mu} \quad \text{for all } n \geq 1.$$

Hence this limit is zero and the functional $l \to \int f\tau(l) d\bar{\mu}$ on L is induced by an L_1 -function h. In a similar way, any Baire measure on $(\mathcal{M}, \mathcal{B})$ induces what one might call "an invariant functional" on $L_{\infty}(X, \mathcal{F}, \mu)$.

We also note the following relation between the maximal ideal spaces of \mathcal{H} and \mathcal{G} ; that is, between the Feller and Martin boundaries (cf. [9]). Since \mathcal{H} is isometrically isomorphic to $L_{\infty}(\mathcal{M}, \mathcal{B}, \tilde{\mu})$, we state this relation in the following familiar form:

LEMMA 9. Let \mathcal{M} be a compact Hausdorff space, \mathcal{B} its Baire sets, and $\tilde{\mu}$ a Baire measure on $(\mathcal{M}, \mathcal{B})$ with support \mathcal{M} . Let \mathcal{M}' be the maximal ideal space of the C^* -algebra $L_{\infty}(\mathcal{M}, \mathcal{B}, \tilde{\mu})$. Then there is a continuous and onto map $\rho: \mathcal{M}' \to \mathcal{M}$.

Proof. Interpret \mathcal{M}' and \mathcal{M} as classes of homomorphisms and define $\rho \colon \mathcal{M}' \to \mathcal{M}$ by $\rho(\phi) = \phi|_{\mathscr{C}(\mathcal{M})}$. Then ρ is continuous. We show it is onto. Let $m \in \mathcal{M}$, and consider the ideal generated by $m \cdot L_{\infty}(\mathcal{M}, \mathcal{B}, \tilde{\mu})$. If it is proper, it can be embedded in a maximal ideal, whose image must then be m under ρ . We show it is proper. If not, then $1 = \sum_{i=1}^{n} f_{i}g_{i}$ where $f_{i} \in m$, $g_{i} \in L_{\infty}(\mathcal{M}, \mathcal{B}, \tilde{\mu})$. Since m is a maximal ideal, $\exists x_{0}$ such that $f_{i}(x_{0}) = 0$ $i = 1, \ldots, n$. Hence $|f_{i}| \leq \varepsilon/h$ sup $|g_{i}|$ on some neighborhood U of x_{0} , such that $\mu(U) \neq 0$. Hence $1 = |\sum f_{i}g_{i}| \leq \varepsilon$ on U, which is a contradiction.

COROLLARY. \mathcal{M} is homeomorphic to the quotient space \mathcal{M}'/ρ .

We finish this section by considering the possibility of joining X and \mathcal{M} . In general, this cannot be done. If, however, T is induced by a Markov kernel, such that the transform of every point measure is absolutely continuous with respect to μ , then the members of \mathcal{H} can be considered as actual functions on X, and the evaluations of these functions at points of X induce bounded linear functionals on \mathcal{H} . Hence X can be embedded in \mathcal{G}^* (possibly in a many to one fashion). We shall denote the image of X under this mapping as X also. Hence $X \subset j(L_1^+(X, \mathcal{F}, \mu))$. Using the method of Lemma 7, X is dense in \mathcal{M} , in the w^* -topology of \mathcal{G}^* .

Let \overline{X} be the w^* -closure of X in \mathscr{G}^* . Then \overline{X} is a compact Hausdorff space. The following result, stated for the Martin-Doob boundary, is also true for the Feller boundary.

THEOREM 7. For any $g \in L_1(X, \mathcal{F}, \mu)$, $T^n g \ d\mu \to \tau(g) \ d\tilde{\mu}$ in the w*-topology of Baire measures on \overline{X} .

Proof. Let \mathscr{A}_1 = the sub- C^* -algebra of \mathscr{A} , consisting of functions $g' \in \mathscr{A}$ such that $\pi(g') \in \mathscr{G}$.

Let $\mathscr{C} = \{ f \in \mathscr{C}(\overline{X}) \mid f \mid_X \in \mathscr{A}_1 \}, \mathscr{C}_0 = \{ f \in \mathscr{C}(\overline{X}) \mid f \mid_X \in \mathscr{A}_0 \}$. By the Stone-Weierstrass theorem $\mathscr{C} = \mathscr{C}(\overline{X})$. Also, \mathscr{C}_0 is a closed ideal in \mathscr{C} . Let $\mathscr{N} \subseteq \overline{X}$ be the closed subset such that $\mathscr{C}_0 = \{ f \in \mathscr{C} \mid f(\mathscr{N}) = 0 \}$. Then we have

$$\mathscr{C}(\mathscr{N}) \cong \mathscr{C}(\overline{X})/\mathscr{C}_0 \cong \mathscr{A}_1/\mathscr{A}_0 \cong \mathscr{G} \cong \mathscr{C}(\mathscr{M}).$$

Hence $\mathscr{C}(\mathscr{N}) \cong \mathscr{C}(\mathscr{M})$ is induced by a homeomorphism $\phi : \mathscr{N} \to \mathscr{M}$. Hence $g(s) = g(\phi(s))$ under the above sequence of isomorphisms. But \mathscr{G} separates the points of \mathscr{G}^* , so $\phi = \text{identity}$ and $\mathscr{N} = \mathscr{M}$.

In other words,

$$\{f \in \mathscr{C}(\overline{X}) \mid f \mid_{X} \in \mathscr{A}_{0}\} = \{f \in \mathscr{C}(\overline{X}) \mid f(\mathscr{M}) = 0\}.$$

Thus if $f \in \mathscr{C}(\overline{X})$, $g \in L_1(\overline{X}, \mathscr{F}, \mu)$, then:

$$\int_{\mathbb{R}} f T^n g \ d\mu = \int_{\mathbb{R}} U^n(f|_X) g \ d\mu \to \int_{\mathbb{R}} \pi(f|_X) g \ d\mu = \int_{\mathbb{R}} \sigma \pi(f|_X) \tau(g) \ d\tilde{\mu}$$

and

$$\int_{\mathcal{M}} \sigma \pi(f|_{X}) \cdot \tau(g) d\tilde{\mu} = \int_{\mathcal{M}} f|_{\mathcal{M}} \cdot \tau(g) d\tilde{\mu} = \int_{Y} f\tau(g) d\tilde{\mu}.$$

Thus $T^n g d\mu \to \tau(g) d\tilde{\mu}$.

6. Harmonic functions in the unit disk. As an example we consider a transformation suggested by Feller in [10].

Let $D = \{z = \operatorname{re}^{t\phi} \mid 0 \le r < 1, -\pi \le \phi \le \pi\}$ be the unit disk with the (geometric) boundary C. Let \mathscr{F} and μ be the σ -field of Borel subsets and the Lebesque measure. For every $z \in D$, $E \in \mathscr{F}$, let

$$P(z, E) = \mu(Q_z \cap E)/\mu(Q_z)$$

where $Q_z = \{Z \mid |Z-z| < 1-|z|\}$. Then P defines a Markov kernel, such that the transformation of a unit mass at $z \in D$ is given by the measure $P(z, \cdot) \ll \mu$. We let T be the induced transformation on $L_1(D, \mathcal{F}, \mu)$. The adjoint U of T is given by

$$(Uf)(z) = \iint f(Z)P(z, dZ), \quad f \in L_{\infty}, z \in D.$$

It is clear that any bounded harmonic function h belongs to \mathcal{H} . The converse is also true, but it seems that no explicit proof of it has been given and we would like to indicate an outline for this proof.

If R is a Borel subset of [0, 1) let $C_R = \{z \mid |z| \in R\}$. One can then obtain the following

LEMMA 10. Let $\frac{1}{2} \le K < 1$ and R be a Borel subset of [K, 1). Then for all $z \in D$, $\frac{1}{2} \le |z| \le K$,

$$\frac{\mu(Q_z \cap C_R)}{\mu(Q_z \cap C_{(K,1)})} \ge \frac{1}{16} \left[\frac{\lambda(R)}{1-K} \right]^{3/2}$$

where λ is the one dimensional Lebesgue measure.

COROLLARY. Let $E = C_{[0,1/2)} \cup [K, 1]$ and let $f \in L_1^+, f = 0$ a.e. on $C_{(K,1)}$. Then

$$\int_{C_R} T_E^n f \, d\mu \, \ge \, \frac{1}{16} \left[\frac{\lambda(R)}{1-K} \right]^{3/2} \int_{C_{(K,1)}} T_E^n f \, d\mu$$

for all $n \ge 0$.

Using this corollary one can see that if a function $h \in \mathcal{H}$ (which is necessarily continuous) has the form $h(re^{i\phi}) = f(r)g(\phi)$ then $\lim_{r \uparrow 1} f(r)$ exists, and that this implies the harmonicity of h.

Now if h is any function in \mathcal{H} , let t be an irrational number and consider, for a fixed n, $-\infty < n < \infty$,

$$\lim_{m\to\infty}\frac{1}{m}\sum_{k=1}^m(\tau^k\cdot z)^{-n}h(\tau^k\cdot z)=F_n$$

where $\tau: D \to D$ is given by $\tau z = e^{i2\pi t}z$. This limit F_n exists for all nonzero $z \in D$, depends only on r = |z|, and satisfies

$$r^n F_n(r) = \frac{1}{2\pi} \int_{-\pi}^{+\pi} e^{-in\phi} h(re^{in\phi}) d\phi.$$

But, it is clear that

$$e^{in\phi}r^nF_n(r)=\lim_{m\to\infty}\frac{1}{m}\sum_{k=1}^m e^{-i2\pi knt}h(re^{i\Phi}e^{i2\pi kt})$$

is a function in \mathcal{H} , hence $e^{in\phi}r^nF_n(r)$ must be harmonic, which shows that $r^nF_n(r) = C_nr^{|n|}$ and completes the proof of the following

LEMMA 11. A bounded function belongs to \mathcal{H} if and only if it is a harmonic function.

One then shows that the C^* -algebra $\mathscr H$ is isometrically *-isomorphic to L_∞ of the unit circle. For any bounded measurable function l on D, let λ_l be the measure on the unit circle obtained by sweeping out l $d\mu$ by the Poisson kernel. The harmonic function $\pi(l/1)$ corresponds to $d\lambda_l/d\lambda$, which is continuous. It then follows that the maximal ideal space $\mathscr M$ of $\mathscr G$ is homeomorphic to the unit circle. Since T is induced by a Markov kernel, D can be imbedded into $\mathscr G^*$. Then $D \cup \mathscr M$ is homeomorphic to the closed unit disk.

REFERENCES

- 1. M. A. Akcoglu, An ergodic lemma, Proc. Amer. Math. Soc. 16 (1965), 388-392.
- 2. ——, Pointwise ergodic theorems, Trans. Amer. Math. Soc. 125 (1966), 296-309.
- 3. E. Bishop and K. deLeeuw, The representations of linear functionals by measures on sets of extreme points, Ann. Inst. Fourier (Grenoble) 9 (1959), 305-331
- 4. A. Brunel, Sur un lemme ergodique voisin du lemme de E. Hopf, et sur une des applications, C. R. Acad. Sci. Paris 256 (1963), 5481-5484.
- 5. R. V. Chacon, *Identification of the limit of operator averages*, J. Math. Mech. 11 (1962), 961-968.
- 6. R. V. Chacon and D. S. Ornstein, A general ergodic theorem, Illinois J. Math. 4 (1960), 153-160.
 - 7. G. Choquet, Theory of capacities, Ann. Inst. Fourier (Grenoble) 5 (1955), 131-295.
 - 8. J. L. Doob, Discrete potential theory and boundaries, J. Math. Mech. 8 (1959), 433-458.
- 9. J. Feldman, Feller and Martin boundaries for countable sets, Illinois J. Math. 6 (1962), 356-366.
- 10. W. Feller, Boundaries induced by non-negative matrices, Trans. Amer. Math. Soc. 83 (1956), 19-54.
 - 11. G. A. Hunt, Markoff chains and Martin boundaries, Illinois, J. Math. 4 (1960), 313-340.
- 12. R. S. Martin, Minimal positive harmonic functions, Trans. Amer. Math. Soc. 49 (1941), 137-172.

University of Toronto, Toronto, Canada