ON THE EXISTENCE OF IMMERSIONS AND SUBMERSIONS

BY EMERY THOMAS(1)

1. **Introduction.** Let M and N be manifolds (always assumed to be smooth, connected, and without boundary) and let $f: M \to N$ be a smooth map. If at each point of M the Jacobian matrix of f has maximal rank, we call f a map of maximal rank. (If dim $M < \dim N$, then f is an *immersion*, while if dim $M > \dim N$, f is a submersion.)

QUESTION. Which homotopy classes of *continuous* maps $M \to N$ contain a smooth map of maximal rank?

This question has been reduced to a question purely in homotopy theory by M. Hirsch (for immersions) and Phillips (for submersions). (See [7], [17].) Their results are as follows.

We will use the following notation. For any vector bundle ξ over a complex X we let (ξ) denote the stable equivalence class determined by ξ . We will say that a stable bundle (ξ) has geometric dimension $\leq n$ (for some positive integer n) if there is an n-plane bundle over X which is stably isomorphic to ξ . For a smooth manifold V we let τ_V denote the tangent bundle and ν_V the stable normal bundle; i.e. $\nu_V = -(\tau_V)$.

THEOREM OF HIRSCH. Let $f: M \to N$ be a continuous map between manifolds, where dim $M < \dim N$. Then f is homotopic to an immersion if, and only if, the stable bundle

$$f^*(\tau_N) + \nu_M$$

has geometric dimension $\leq \dim N - \dim M$.

A dual result holds for submersions.

THEOREM OF PHILLIPS. Let M be an open manifold and $f: M \to N$ a continuous map, where dim $M > \dim N$. Then f is homotopic to a submersion if, and only if, the stable bundle

$$(\tau_M) + f^*\nu_N$$

has geometric dimension $\leq \dim M - \dim N$.

Received by the editors March 2, 1967.

⁽¹⁾ Research supported by the National Science Foundation. The author is a Professor in the Miller Institute for Basic Research (Berkeley).

We need here to remark that since M is open, the bundle τ_M is stable over M. (Because M has the homotopy type of an (m-1)-complex, $m = \dim M$. See [8, §3.2].)

For a simple application of these theorems, suppose that M and N are π -manifolds (i.e. each has stably trivial tangent bundle) and that dim $M \neq$ dim N. Since each also has stably trivial normal bundle, it follows by the above theorems that every continuous map $M \rightarrow N$ is homotopic to a smooth map of maximal rank.

In the following two sections we use the theorems of Hirsch and Phillips to study more general manifolds M and N, using in part results from [20] and [21].

2. Immersion of manifolds. We will use the following notation. M^m and N^n will denote smooth connected manifolds with respective dimensions m and n, m < n. We define the *codimension* of a continuous map $M \to N$ to be the positive integer n-m. By the basic theorem of Whitney [23] every map of codimension m (i.e. n=2m) is homotopic to an immersion, and so we consider here the case n < 2m.

For any bundle ξ over a complex X we let $w_i \xi \in H^i(X; \mathbb{Z}_2)$ denote the ith Stiefel-Whitney class of ξ , $i \ge 0$. For a manifold V, we set

$$w_i(V) = w_i(\tau_V), \quad \overline{w}_i(V) = w_i(\nu_V).$$

Suppose now that M and N are manifolds and f: $M \to N$ a continuous map. Set

$$\nu_f = f^*(\tau_N) + \nu_M.$$

We say that f is orientable if

$$f^*w_1(N) = w_1(M),$$

i.e. the stable bundle ν_f is orientable.

By Hirsch (see $\S1$), it follows that if f is homotopic to an immersion then

$$w_i(\nu_f) = 0,$$
 $i > n-m,$
 $\delta w_{n-m}(\nu_f) = 0,$ $n-m$ even, f orientable.

(Here δ denotes the Bockstein coboundary associated with the exact sequence $Z \to Z \to Z_2$.) Thus, in what follows we will be mainly concerned with *sufficient* conditions for f to be homotopic to an immersion.

Codimension $f=m-1, m \ge 4$.

THEOREM 2.1. Let M^m and N^{2m-1} be manifolds, $m \ge 4$, and let $f: M \to N$ be a continuous map. If m is odd, assume that f is orientable. Then f is homotopic to an immersion if, and only if,

$$w_m(v_f) = 0$$
, $m \ even$, $\delta w_{m-1}(v_f) = 0$, $m \ odd$.

The proof of the theorem follows at once from classical obstruction theory [18], as will be shown in §5. (In the case m odd we can omit the hypothesis that f is orientable if we use local coefficients.)

If M and N are orientable manifolds, then every map $f: M \to N$ is orientable. Since $H^m(M; \mathbb{Z}) \approx \mathbb{Z}$, we then obtain from 2.1

COROLLARY 2.2. Let M^{2q+1} and N^{4q+1} be orientable manifolds, $q \ge 2$. Then every map $f: M \to N$ is homotopic to an immersion.

Codimension $f=m-2, m \ge 5$.

THEOREM 2.3. (a) Let M^{4q+1} and N^{8q} be manifolds, $q \ge 1$, and $f: M \to N$ a continuous map. Then f is homotopic to an immersion if $w_{4q}(\nu_f) = 0$.

(b) Let M^{4q+2} and N^{8q+2} be manifolds, $q \ge 1$, and let $f: M \to N$ be an orientable map. Suppose that

$$\delta w_{4q}(v_f) = 0$$
 and $w_{4q+2}(v_f) = 0$.

If M is closed, suppose also that M is orientable and that

$$f^*w_2(N) = 0, \qquad w_{4q}(v_f) \cdot w_2(M) = 0.$$

Then f is homotopic to an immersion.

(c) Let M^{4q+3} and N^{8q+4} be manifolds, $q \ge 1$, and let $f: M \to N$ be an orientable map. Suppose that $w_{4q+2}(\nu_f) = 0$. If M is open or if M is closed, orientable, and either $f^*w_2(N) \ne 0$ or

$$f^*w_2(N) = 0$$
 and $w_{4a+1}(v_1) \cdot w_2(M) = 0$,

then f is homotopic to an immersion.

The proof uses the results of [20], and will be given in §5.

We say that an orientable manifold M is a *spin* manifold if $w_2(M) = 0$; we say that an orientable map $f: M \to N$ is a *spin map* if $f^*w_2N = w_2M$.

Codimension f = m - 3, $m \ge 5$.

THEOREM 2.4. Let $f: M^m \to N^{2m-3}$ be an orientable map, with $m \ge 5$ and $m \ne 0 \mod 4$. If $m \equiv 1 \mod 4$, assume that $H^{m-1}(M; \mathbb{Z}_2) = 0$. If $m \equiv 2 \mod 4$, assume that either M is open or that M is a closed spin manifold and f is a spin map. If $m \equiv 3 \mod 4$, assume that M is a closed spin manifold and f is a spin map. Then f is homotopic to an immersion if

$$\delta w_{m-3}(\nu_f) = 0,$$
 $m \equiv 1 \mod 4,$
 $w_{m-2}(\nu_f) = 0,$ $m \equiv 2 \mod 4,$
 $\delta w_{m-3}(\nu_f) = 0,$ $w_{m-1}(\nu_f) = 0,$ $m \equiv 3 \mod 4.$

The proof will be given in §5.

Codimension f = m - 4, $m \ge 11$.

THEOREM 2.5. Let M^{8q+3} and N^{16q+2} be manifolds, $q \ge 1$, and let $f: M \to N$ be a spin map. Suppose that M is a closed spin manifold. If $w_{8q}(v_f) = 0$, then f is homotopic to an immersion.

The proof will be given in §5.

REMARK. If one takes the manifold N to be R^n , then $\nu_f = \nu_M$ and one can obtain stronger results than those given in 2.1-2.4 by using [14]. Note, for example, [6], [11] and [21].

3. Submersion of manifolds. In this section we assume that M^m and N^n are smooth connected manifolds with m > n. Moreover, throughout the section we assume that M is open. Suppose that n = 1, i.e. $N = R^1$ or S^1 . Then, as observed by Phillips [17], every map $M^m \to N^1$ is homotopic to a submersion (since M has the homotopy type of an (m-1)-complex). We consider here the case n = 2. For a map $f: M \to N$ set $\sigma_f = (\tau_M) + f^*\nu_N$. We will prove

THEOREM 3.1. Let $f: M^m \to N^2$ be a continuous map, $m \ge 5$, where M is open. If m is even assume that f is orientable. Then f is homotopic to a submersion if, and only if,

$$w_{m-1}(\sigma_f) = 0$$
, $m \text{ odd}$, $\delta w_{m-2}(\sigma_f) = 0$, $m \text{ even}$.

Suppose that N is a closed orientable surface. Then the stable normal bundle of N is trivial, and so $w_i(\sigma_t) = w_i(M)$, $i \ge 0$.

On the other hand suppose that $M = M' - \partial M'$, where M' is a compact orientable manifold with nonempty boundary $\partial M'$. It follows from results of Wu and Massey [24], [12], [13], that

$$w_{m-1}(M) = 0$$
, if $m \equiv 3 \mod 4$, $\delta w_{m-2}(M) = 0$, if m even.

(See [5, §2].) Thus from 3.1 we obtain

COROLLARY 3.2. Let M' be a compact orientable m-manifold with nonempty boundary $\partial M'$, and let N be a closed orientable surface. Let M denote the open manifold $M' - \partial M'$. If $m \ge 5$ and $m \ne 1 \mod 4$, then every map $M \to N$ is homotopic to a submersion.

(Note [3] for conditions on an open manifold that it be expressible as $M' - \partial M'$.) Our results on submersions are much less extensive than the results in §2 on immersions. If $f: M^m \to N^n$, with n > 2, then one can still apply the results of [20], [21] to obtain conditions for σ_f to have codimension $\leq m - n$. However, the results in general will be expressed in terms of higher order cohomology operations.

4. Examples. Let M^m and N^n be manifolds, $m \neq n$. The problem of determining the set of maps from M to N of maximal rank falls into two parts: First, determine the homotopy classes of maps from M to N, [M, N]; and second, for each homotopy class of maps, determine whether it contains a map of maximal rank. If M and N fit the hypotheses of one of the theorems in §2 or §3, and if $f: M \to N$, then the second step above consists simply in computing the characteristic classes

 $w_k(v_f)$, if m < n, $w_k(\sigma_f)$, if m > n. By the Whitney duality formula, these classes are given as follows:

$$w_k(v_f) = \sum_{i+j=k} \overline{w}_i(M) \cup f^*w_j(N), \qquad w_k(\sigma_f) = \sum_{i+j=k} w_i(M) \cup f^*\overline{w}_j(N).$$

For an illustration we take N to be the real projective space RP^n (of dim n) and the complex projective space CP^n (of dim 2n).

EXAMPLE A. $N = RP^n$, n > 1. Since RP^n is the *n*-skeleton of the Eilenberg-MacLane space $K(Z_2, 1)$, it follows that if X is a complex of dim < n, then $[X, RP^n] = H^1(X; Z_2)$. The correspondence here is given by $[f] \to f^*x$, where x generates $H^1(RP^n; Z_2)$. Since $w(RP^n) = (1+x)^{n+1}$, we have

$$w_k(\nu_f) = \sum_{i+j=k} {n+1 \choose i} u^i \cup \overline{w}_j(M),$$

where $f: M^m \to RP^n$, m < n, and $u = f^*x$. The results of §2 can now be used to determine the immersions of M^m in RP^n , for appropriate dimensions m and n. (The difficulty in studying submersions is that in general we do not know how to determine the set $[M^m, RP^n]$, when m > n.)

EXAMPLE B. $N = CP^n$, $n \ge 1$. Now CP^n is the (2n+1)-skeleton of the Eilenberg-MacLane space K(Z, 2), and so if a complex X has dimension $\le 2n$, then $[X, CP^n] = H^2(X; Z)$, the correspondence being given by $[f] \to f^*y$, where y generates $H^2(CP^n; Z)$. Let M^m be a manifold and $f: M^m \to CP^n$ a map, $m \le 2n$. Since $w(CP^n) = (1+y)^{n+1} \mod 2$, we have

$$w_{2k}(v_f) = \sum_{i+j=k} {n+1 \choose i} v^i \cup \overline{w}_{2j}(M), \qquad \delta w_{2k}(v_f) = \sum_{i+j=k} {n+1 \choose i} v^i \cup \delta \overline{w}_{2j}(M),$$

where $v=f^*y$. The results of §2 can now be used to determine the immersions of M^m in $\mathbb{C}P^n$ for appropriate m and n. Take M to be $\mathbb{C}P^q$, for example. Since $H^2(\mathbb{C}P^q; \mathbb{Z}) \approx \mathbb{Z}$, we have $[\mathbb{C}P^q, \mathbb{C}P^n] = \mathbb{Z}$, $q \leq n$, and so each homotopy class of map $f: \mathbb{C}P^q \to \mathbb{C}P^n$ is characterized by an integer, called the *degree* of the map. (See Feder [4].) By 2.3(b) one can show:

(4.1) Let q be a positive integer. Then for each integer d there is an immersion of CP^{2q+1} in CP^{4q+1} of degree d.

REMARK. (4.1) suggests the following general problem. Let q and n be integers, 0 < q < n. Determine the integers d for which there is an immersion of \mathbb{CP}^q in \mathbb{CP}^n of degree d. By Whitney [23], if $n \ge 2q$ all integers d can occur. By Feder [4], if $n \le [3q/2] - 1$, only $d = \pm 1$ can occur. (In [22] we show that for q = 2, n = 3, only $d = \pm 1$ can occur, while if q = 3, n = 4, then d can occur if, and only if, there is an integer e such that $5d^2 = e^2 + 4$. Note also [4, Theorem 8.3].)

5. **Proofs of theorems.** For a topological group G let BG denote the classifying space for G constructed by Milnor [15]. Let O(n), $n \ge 1$, denote the orthogonal group of rank n, and let G denote the stable orthogonal group [2]. If X is a complex

then a stable vector bundle over X can be regarded as a map $X \to BO$. Now the natural inclusion $O(n) \subset O$ induces a map $p_n \colon BO(n) \to BO$, and a stable bundle ξ over X has geometric dimension $\leq n$ if, and only if, there is a map $\eta \colon X \to BO(n)$ such $p_n \circ \eta = \xi$. Up to homotopy type the map p_n can be regarded as a fiber map [1], with fiber $V_n = O/O(n)$.

By Stiefel (see [18]), V_n is (n-1)-connected and (for $n \ge 3$),

$$\pi_n(V_n) = Z,$$
 n even,
= $Z_2,$ n odd.

Thus by standard obstruction theory (e.g. see [18], [10], or [19]), if X has dim $\le n+1$ then a stable bundle ξ over X has geometric dim $\le n$ if, and only if,

(*)
$$w_{n+1}(\xi) = 0$$
, $n \text{ odd}$, $\delta w_n(\xi) = 0$, $n \text{ even}$,

assuming that ξ is orientable in the case n even. This proves Theorem 2.1. Furthermore, (*) proves 2.3(a) (since $\pi_{4q}(V_{4q-1})=0$, see [16]) and also proves 2.4 in the case $m \equiv 1 \mod 4$ (since $\pi_{4q+1}(V_{4q-2})=0$, [16]). Finally, since an open m-manifold has the homotopy type of an (m-1)-complex, (*) also proves 3.1, and 2.3-2.4 in the cases M is open.

To prove the remaining theorems in $\S 2$ (assuming now that M is a *closed* manifold) we need some results from [20], and [21]. In [20] we do not deal with *stable* bundles, and so we will need the following relationship between n-plane bundles and stable bundles.

LEMMA 5.1. Let X be a complex of dim n and let ξ be an oriented stable vector bundle over X such that $w_n(\xi) = 0$. Then there is an oriented n-plane bundle η over X such that η is stably equivalent to ξ and $\chi(\eta) = 0$ (where $\chi(\eta)$ denotes the Euler class of η). Moreover, ξ has geometric dimension $\leq k$ (where k < n) if, and only if, η has n-k linearly independent cross-sections.

The proof is standard and is left to the reader.

Proof of 2.3(b). Let η be an *n*-plane bundle over M corresponding to the stable bundle ν_f . Thus by 5.1 and by the hypotheses of 2.3(b),

$$w_2(\eta) = w_2(M), \quad w_{4a}(\eta) \cdot w_2(M) = 0, \quad \delta w_{4a}(\eta) = 0, \quad \chi(\eta) = 0,$$

and so by Theorem 7.3 of [20], η has 2 linearly independent cross sections. Thus, by 5.1, ν_f has geometric dimension $\leq 4q$ and so by Hirsch, f is homotopic to an immersion.

Before proving 2.3(c) we need a preliminary result. Let ξ be a vector bundle (stable or otherwise) over a complex X. Define a homomorphism

$$\alpha_{\varepsilon}: H^{i}(X; \mathbb{Z}_{2}) \rightarrow H^{i+2}(X; \mathbb{Z}_{2}), \qquad i \geq 0,$$

by

$$x \rightarrow Sq^2(x) + x \cdot w_2(\xi)$$
.

Suppose that X is a closed manifold M of dim m, and let ξ , η be two bundles over M. Then

$$\alpha_{\varepsilon} = \alpha_n : H^{m-2}(M; \mathbb{Z}_2) \to H^m(M; \mathbb{Z}_2)$$

if, and only if, $w_2(\xi) = w_2(\eta)$, as may be seen by using Poincaré duality. In particular if we take ξ to be the tangent bundle of M, then by Wu [24] $\alpha_{\xi}H^{m-2}(M; Z_2) = 0$, provided M is orientable, and so we have:

LEMMA 5.2. Let η be a bundle over a closed orientable m-manifold M, $m \ge 2$. If $w_2(\eta) \ne w_2(M)$, then

$$\alpha_n H^{m-2}(M; Z_2) = H^m(M; Z_2).$$

Proof of 2.3(c). The first obstruction to ν_f pulling back to BO(4q+1) is the class $w_{4q+2}(\nu_f)$, which vanishes by hypothesis. The second (and final) obstruction is a coset in $H^{4q+3}(M; Z_2)$ of the subgroup $\alpha_{\nu_f} H^{4q+1}(M; Z_2)$. (See [9], [10], [20].) Now if $f^*w_2(N) \neq 0$ then $w_2(\nu_f) \neq w_2(M)$, and so by (5.2), $\alpha_{\nu_f} H^{4q+1}(M; Z_2) = H^{4q+3}(M; Z_2)$, since M is closed. Thus the second obstruction contains zero and hence vanishes, which completes the proof of 2.3(c) in this case.

Suppose on the other hand that

$$f^*w_2(N) = 0, \qquad w_{4q+1}(\nu_f) \cdot w_2(M) = 0.$$

Then the theorem follows, as above, by using 5.1 and applying 7.3 of [20]. We omit the details.

Proof of 2.4. We have already done the case $m \equiv 1 \mod 4$. If $m \equiv 2 \mod 4$, we use Theorem 1.3 of [21] (applied to the bundle ν_f), while if $m \equiv 3 \mod 4$ we use 5.1 above together with Theorem 1.1 of [21]. We leave the details to the reader.

Proof of 2.5. This follows at once from [21, Theorem 1.3] applied to the bundle ν_f .

REFERENCES

- 1. A. Borel, Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts, Ann. of Math. (2) 57 (1953), 115-207.
 - 2. R. Bott, The stable homotopy of the classical groups, Ann. of Math. (2) 70 (1959), 313-337.
- 3. W. Browder, J. Levine and G. Livesay, Finding a boundary for an open manifold, Amer. J. Math. 87 (1965), 1017-1028.
- 4. S. Feder, Immersions and embeddings in complex projective spaces, Topology 4 (1965), 143-158.
- 5. I. M. James and E. Thomas, Submersions and immersions of manifolds, Inventiones Math. 2 (1967), 171-177.
- 6. A. Haefliger and M. Hirsch, On the existence and classification of differentiable embeddings, Topology 2 (1963), 129-136.
 - 7. M. Hirsch, Immersion of manifolds, Trans. Amer. Math. Soc. 93 (1959), 242-276.
- 8. —, On imbedding differentiable manifolds in Euclidean space, Ann. of Math. (2) 73 (1961), 566-571.
- 9. S. D. Liao, On the theory of obstructions for fiber bundles, Ann. of Math. (2) 60 (1954), 146-191.

- 10. M. Mahowald, On obstruction theory in orientable fiber bundles, Trans. Amer. Math. Soc. 110 (1964), 315-349.
- 11. M. Mahowald and F. Peterson, Secondary cohomology operations on the Thom class, Topology 2 (1964), 367-377.
- 12. W. Massey, On the Stiefel-Whitney classes of a manifold, Amer. J. Math. 82 (1960), 92-102.
- 13. ——, On the Stiefel-Whitney classes of a manifold. II, Proc. Amer. Math. Soc. 13 (1962), 938-942.
- 14. W. Massey and F. Peterson, On the dual Stiefel-Whitney classes of a manifold, Bol. Soc. Mat. Mexicana (2) 8 (1963), 1-13.
 - 15. J. Milnor, Construction of universal bundles. II, Ann. of Math. (2) 63 (1956), 430-436.
 - 16. G. Paechter, The groups $\pi_r(V_{n,m})$. I, Quart. J. Math. Oxford Ser. (2) 7 (1956), 249-268.
 - 17. A. Phillips, Submersions of open manifolds, Topology 6 (1967), 171-206.
 - 18. N. Steenrod, The topology of fiber bundles, Princeton Univ. Press, Princeton, N. J., 1951.
- 19. E. Thomas, Seminar on fiber spaces, Lecture Notes in Math. No. 13, Springer-Verlag, Heidelberg, 1966.
- 20. ——, Postnikov invariants and higher order cohomology operations, Ann. of Math. (2) 85 (1967), 184-217.
 - 21. —, Real and complex vector fields on manifolds, J. Math. Mech. 16 (1967), 1183-1206,
- 22. ——, Submersions and immersions with codimension one or two, Proc. Amer. Math. Soc. (to appear).
 - 23. H. Whitney, Differentiable manifolds, Ann. of Math. (2) 37 (1936), 645-680.
- 24. W. Wu, Classes caractéristique et i-carrés d'une variété, C. R. Acad. Sci. Paris 230 (1950), 508-521.

University of California, Berkeley, California