THE C^k -CLASSIFICATION OF CERTAIN OPERATORS IN $L_p(1)$

BY SHMUEL KANTOROVITZ

Introduction. We investigate in this paper the one-parameter family of operators

$$T_{\alpha} = M + \alpha J$$

acting in $L_p(0, 1)$ $(1 \le p < \infty)$, where $\alpha \in C$ (the complex field), $M: f(x) \to xf(x)$ and $J: f(x) \to \int_0^x f(t) dt$.

Extending a result of Sakhnovič [8] from the case p=2 to the case $1 , Kalisch [4] established recently that <math>T_{\alpha}$ is similar to M if Re $\alpha = 0$.

The situation becomes quite different if Re $\alpha \neq 0$; thus, T_{α} is *not* similar to M if $|\text{Re }\alpha| \geq 1$, and more generally, T_{α} is not similar to T_{β} if $[\text{Re }\alpha] \neq [\text{Re }\beta]$ (Proposition 13). This result will follow from our discussion of the C^k -operational calculus (both "global" and "local", in the sense of [5], [6], [7]) for the operators T_{α} . We recall briefly the terminology, restricting ourselves to bounded operators $T: X \to X$ (X a Banach space) with *real* spectrum $\sigma(T)$.

Fix a compact interval $\Delta \subseteq R$ (the real line) which contains $\sigma(T)$. For $n=0, 1, 2, \ldots$, let $C^n(\Delta)$ denote the Banach algebra of all complex valued functions of class C^n on Δ , with the norm

$$\|\varphi\|_{n,\Delta} = \sum_{j=0}^{n} \sup_{\Delta} |\varphi^{(j)}|/j!$$

(We shall write $\|\varphi\|_n$ when $\Delta = [0, 1]$.) We say that T is of class C^n (and we write $T \in (C^n)$) if there exists a continuous representation $\varphi \to T(\varphi)$ of $C^n(\Delta)$ on X such that $T(\varphi) = I$ (the identity operator) for $\varphi(t) \equiv 1$ and $T(\varphi) = T$ for $\varphi(t) \equiv t$. Such a representation is unique when it exists, and is called the C^n -operational calculus for T. For example, $T_0 = M$ is of class $C = C^0$, and its C-operational calculus is $\varphi \to M(\varphi)$, where

$$M(\varphi): f(x) \to \varphi(x) f(x), f \in L_p(0, 1).$$

If $W \subset X$ is a linear manifold, we denote by T(W) the algebra of all linear transformations of X with domain W and range contained in W. If W is invariant for T, a C^n -operational calculus for T on W is an algebra homomorphism $\varphi \to T(\varphi)$ of $C^n(\Delta)$ into T(W) with the following properties:

- (i) $T(\varphi) = I/W$ for $\varphi(t) \equiv 1$;
- (ii) $T(\varphi) = T/W$ for $\varphi(t) \equiv t$;
- (iii) for each $x \in W$, the mapping $\varphi \to T(\varphi)x$ of $C^n(\Delta)$ into X is continuous.

Received by the editors March 9, 1967.

(1) This research was partially supported by NSF-GP-5493.

For each $n=0, 1, 2, \ldots$, there exists a maximal invariant linear manifold $W_n(T)$ on which T admits a C^n -operational calculus, and the latter is uniquely determined on $W_n(T)$. In fact, $W_n(T)$ is the set of all $x \in X$ for which

$$|x|_n = \sup \{ \|\varphi(T)x\| ; \varphi \text{ a polynomial with } \|\varphi\|_{n,\Delta} \le 1 \}$$
 is finite.

The "semisimplicity manifold" $W_0(T)$ is particularly important (cf. Theorem 2.1 in [6]); it contains trivially the eigenvectors of T. We shall write $W_n(T_\alpha; p)$ instead of $W_n(T_\alpha)$ when it will be necessary to specify the L_p space under consideration.

We may now describe the main results of this paper (for 1):

- 1°. T_{α} is of class C^n if $|\operatorname{Re} \alpha| \leq n$ and only if $|\operatorname{Re} \alpha| < n+1$ (Theorem 6); the C^n -operational calculus for T_{α} ($|\operatorname{Re} \alpha| \leq n$) is given in Theorems 8 and 9.
- 2°. The W_k manifolds of T_α are dense for Re $\alpha < 0$ and trivial for Re $\alpha \ge 1$ and $k < [\text{Re } \alpha]$ (Theorems 10 and 11).
- 3°. T_{α} is not spectral (in Dunford's sense) for $|\text{Re }\alpha| \ge 1$ (it is of course spectral for $\text{Re }\alpha=0$, by the Kalisch-Sakhnovič result).
- 1. Five lemmas. Let $\{J^{\zeta}; \operatorname{Re} \zeta > 0\}$ be the Riemann-Liouville holomorphic semigroup, acting in $L_{\nu}(0, 1)$ $(1 \le p < \infty)$:

$$(J^{\zeta}f)(x) = (1/\Gamma(\zeta)) \int_0^x (x-t)^{\zeta-1} f(t) dt$$

 $(f \in L_p(0, 1), x \in [0, 1], \text{ Re } \zeta > 0)$. It is known (cf. [3] for p = 2, and [4] for $1) that if <math>1 , the semigroup <math>\{J^{\zeta}\}$ admits a strongly continuous boundary group $\{J^{i\gamma}; \gamma \in R\}$ of bounded operators, and

$$||J^{i\gamma}|| \le e^{\pi|\gamma|/2} \qquad (\gamma \in \mathbf{R})$$

(see also the estimates at the end of Kalisch's paper [4]). The operator J^{ζ} (Re $\zeta > 0$) is one-to-one in $L_p(0, 1)$ ($p \ge 1$); its inverse, with domain $\mathcal{D}_{-\zeta} = \mathcal{R}(J^{\zeta})$ (the range of J^{ζ}), is a closed operator, which we denote by $J^{-\zeta}$.

For $1 , note that <math>\mathcal{R}(J^{\beta + i\gamma}) = \mathcal{R}(J^{\beta})$ $(\beta > 0, \gamma \in \mathbb{R})$, since $J^{\beta + i\gamma} = J^{\beta}J^{i\gamma}$ and $J^{i\gamma}$ is nonsingular.

For p=1 and $\gamma \in \mathbb{R}$, we define $J^{i\gamma}$ as follows. Its domain is $\mathscr{D}_{i\gamma} = U\{\mathscr{R}(J^{\zeta});$ Re $\zeta > 0\}$; if $f \in \mathscr{D}_{i\gamma}$, say $f = J^{\zeta}h$ for some $h \in L_1(0, 1)$ and $\zeta \in \mathbb{C}$ with Re $\zeta > 0$, then $J^{i\gamma}f = J^{\zeta + i\gamma}h$. One verifies easily that $J^{i\gamma}$ is well defined.

We shall use the notation \mathcal{D}_{ζ} also for Re $\zeta > 0$, in which case $\mathcal{D}_{\zeta} = L_{p}(0, 1)$ (the domain of J^{ζ} !); similarly $\mathcal{D}_{i\gamma} = L_{p}(0, 1)$ for 1 .

LEMMA 1. For any $\zeta \in \mathbb{C}$, \mathscr{D}_{ζ} is invariant under M, and the following (trivially equivalent) identities are valid on \mathscr{D}_{ζ} :

- $(1) MJ^{\zeta}-J^{\zeta}M=\zeta J^{\zeta+1},$
- $(2) J^{\zeta}M = T_{-\zeta}J^{\zeta},$
- (3) $MJ^{\zeta} = J^{\zeta}T_{\zeta}$.

Proof. If Re $\zeta > 0$ (Re $\zeta \ge 0$ if $1), the first statement is trivial, since <math>\mathcal{D}_{\zeta} = L_p(0, 1)$. For $g \in L_p(0, 1)$ and Re $\zeta > 0$,

$$(MJ^{\zeta}-J^{\zeta}M)g(x) = \Gamma(\zeta)^{-1} \int_0^x (x-t)^{\zeta-1}(x-t)g(t) dt$$
$$= \Gamma(\zeta)^{-1}\Gamma(\zeta+1)J^{\zeta+1}g(x) = \zeta J^{\zeta+1}g(x).$$

This proves the first, and hence all three identities of the lemma (for $1 \le p < \infty$ and Re $\zeta > 0$). By (3), $M\mathcal{R}(J^{\zeta}) \subset \mathcal{R}(J^{\zeta})$, i.e. $\mathcal{D}_{-\zeta}$ is invariant under M. Apply $J^{-\zeta}$ to both sides of (3):

$$J^{-\zeta}MJ^{\zeta}=T_{r},$$

i.e., $J^{-\zeta}M = T_{\zeta}J^{-\zeta}$ on $\mathscr{D}_{-\zeta}$. This proves (2) (and hence the lemma) for Re $\zeta < 0$. Let $\mathscr{D} = U\{\mathscr{D}_{\zeta}; \text{ Re } \zeta < 0\}$. \mathscr{D} is *M*-invariant, and dense in $L_p(0, 1)$ ($1 \le p < \infty$). Let $g \in \mathscr{D}$; then $g = J^{\zeta}h$ for some $\zeta \in C$ with Re $\zeta > 0$ and some $h \in L_p(0, 1)$. Using (3) twice (for Re $\zeta > 0$), we obtain (for $\gamma \in R$):

$$MJ^{i\gamma}g = MJ^{\zeta+i\gamma}h = J^{\zeta+i\gamma}T_{\zeta+i\gamma}h$$

= $J^{i\gamma}J^{\zeta}(T_{\zeta}+i\gamma J)h = J^{i\gamma}(MJ^{\zeta}+i\gamma J^{\zeta+1})h$
= $J^{i\gamma}(M+i\gamma J)J^{\zeta}h = J^{i\gamma}T_{i\gamma}g$.

If p=1, this finishes the proof of the lemma for Re $\zeta=0$. If $1 , this shows that (3) is valid on the dense subset <math>\mathcal{D}$ of $L_p(0, 1)$ (for $\zeta=i\gamma$); since $J^{i\gamma}$ is a bounded operator, (3) is valid everywhere on $L_p(0, 1)$.

LEMMA 2. For β , $\gamma \in \mathbf{R}$ arbitrary, the operators $T_{\beta+i\gamma}$ and T_{β} acting in $L_p(0, 1)$ $(1 are similar, with <math>J^{i\gamma}$ implementing the similarity:

$$J^{i\gamma}T_{\beta+i\gamma}J^{-i\gamma}=T_{\beta},$$

(for $\beta = 0$ and p = 2, this is due to Sakhnovič [8]).

Proof. By (3),

$$J^{i\gamma}T_{\beta+i\gamma}J^{-i\gamma}=J^{i\gamma}(T_{i\gamma}+\beta J)J^{-i\gamma}=M+\beta J=T_{\beta}.$$

REMARK. For any $1 \le p < \infty$ and any complex numbers α and ζ , T_{α} is unboundedly similar to T_{ζ} (in particular, T_{α} is unboundedly similar to M). Indeed,

$$J^{-(\zeta-\alpha)}T_{\alpha}J^{\zeta-\alpha} = T_{\zeta} \quad \text{on } \mathscr{D}_{\zeta-\alpha},$$

where everything makes sense by Lemma 1. This suggests considering the map $\varphi \to J^{-\alpha}M(\varphi)J^{\alpha}$ as a "possible" operational calculus for T_{α} .

LEMMA 3. For any integer $n \ge 0$, and $1 \le p < \infty$, the operator T_n acting in $L_p(0, 1)$ belongs to $(C^n) - (C^{n-1})$, and the C^n -operational calculus for T_n is given by

(4)
$$T_n(\varphi) = J^{-n}M(\varphi)J^n, \quad \varphi \in C^n[0, 1].$$

REMARK. (1) $(C^{-1}) = \Phi$ by convention. (2) $T_n(\varphi)$ is well defined, since $\mathcal{R}(J^n)$ is a $C^n[0, 1]$ -module.

Proof. By Leibnitz' formula,

(5)
$$T_n(\varphi) = \sum_{j=0}^n \binom{n}{j} M(\varphi^{(j)}) J^j, \qquad \varphi \in C^n[0, 1].$$

Thus $T_n(\varphi)$ is a bounded operator on $L_p(0, 1)$. In fact, since $||J^j|| \le 1/j!$ (cf. [3, p. 664]), we have

(6)
$$||T_n(\varphi)|| \leq {n \choose \lfloor n/2 \rfloor} ||\varphi||_n, \qquad \varphi \in C^n[0, 1].$$

The map $\varphi \to T_n(\varphi)$ is clearly an algebra homomorphism of $C^n[0, 1]$ into the bounded operators on $L_p(0, 1)$, which is continuous by (6). If $\varphi(x) \equiv 1$, $T_n(\varphi)$ is trivially the identity operator. If $\varphi(x) \equiv x$, $T_n(\varphi) = T_n$ by (3). Thus, $T_n \in (C^n)$ and its C^n -operational calculus is given by (4). Finally, apply (5) to the functions

$$\varphi_t(x) = e^{itx} \qquad (x, t \in R).$$

Thus

$$(e^{itT_n}g)(x) = \sum_{j=0}^n \binom{n}{j} (it)^j e^{itx} (J^j g)(x),$$

and consequently $||e^{ttT_n}|| \neq O(|t|^{n-1})$ (n=1, 2, ...). Therefore $T_n \notin (C^{n-1})$ $(n \ge 1)$ by Lemma 2.11 in [5].

LEMMA 4. Let $n \ge 0$ be an integer. Then, for φ of class C^n and $g \in \mathcal{R}(J^n)$ (or vice versa, or for both φ and g in $\mathcal{R}(J^n)$), the following identity is valid:

$$J^{n}(\varphi J^{-n}g) = \sum_{j=0}^{n} \binom{n}{j} (-1)^{j} J^{j}(gJ^{-j}\varphi).$$

REMARK. Here, as usual, $\mathcal{R}(J^n)$ denotes the range of J^n in $L_p(0, 1)$, with p arbitrary $(1 \le p < \infty)$. Note the analogy with Leibnitz' formula (in fact, the latter may be used to prove the lemma).

Proof. We use induction on n. The lemma is trivial for n=0. Suppose it is true for n=k. Let φ and g be as required for n=k+1. Write $g'=J^{-1}g$. Then φ and g' satisfy the hypothesis for n=k. Therefore

$$J^{k+1}(\varphi J^{-(k+1)}g) = JJ^{k}(\varphi J^{-k}g')$$

$$= \sum_{k=0}^{k} (-1)^{j} {k \choose j} J^{j}J(g'J^{-j}\varphi).$$

An integration by parts shows that

$$J(g'J^{-j}\varphi) = gJ^{-j}\varphi - J(gJ^{-(j+1)}\varphi).$$

Thus

$$J^{k+1}(\varphi J^{-(k+1)}g) = \sum_{j=0}^{k} (-1)^{j} {k \choose j} \{J^{j}(gJ^{-j}\varphi) - J^{j+1}(gJ^{-(j+1)}\varphi)\}$$

$$= g\varphi + \sum_{j=1}^{k} (-1)^{j} [{k \choose j} + {k \choose j-1}] J^{j}(gJ^{-j}\varphi)$$

$$+ (-1)^{k+1}J^{k+1}(gJ^{-(k+1)}\varphi).$$

Since

$$\binom{k}{j} + \binom{k}{j-1} = \binom{k+1}{j},$$

we obtain the correct identity for n=k+1, Q.E.D.

LEMMA 5. For any integer $n \ge 0$, and for $1 \le p < \infty$, the operator T_{-n} acting in $L_p(0, 1)$ belongs to $(C^n) - (C^{n-1})$, and the C^n -operational calculus for T_{-n} is given by

(7)
$$T_{-n}(\varphi) = \sum_{j=0}^{n} \binom{n}{j} (-1)^{j} J^{j} M(\varphi^{(j)}), \qquad \varphi \in C^{n}[0, 1].$$

Proof. The map $\varphi \to T_{-n}(\varphi)$ of $C^n[0, 1]$ into the bounded operators on $L_p(0, 1)$ is clearly linear and continuous, in fact,

$$||T_{-n}(\varphi)|| \leq {n \choose \lfloor n/2 \rfloor} ||\varphi||_n.$$

For $g \in \mathcal{R}(J^n)$, we have by Lemma 4:

(8)
$$T_{-n}(\varphi)g = J^n(\varphi J^{-n}g).$$

Therefore $\mathcal{R}(J^n)$ is invariant under $T_{-n}(\varphi)$ (for all $\varphi \in C^n[0, 1]$) and $T_{-n}(\varphi\psi) = T_{-n}(\varphi)T_{-n}(\psi)$ on $\mathcal{R}(J^n)$ (for all $\varphi, \psi \in C^n[0, 1]$). Since $\mathcal{R}(J^n)$ is dense in $L_p(0, 1)$ and $T_{-n}(\varphi)$ is continuous, it follows that $T_{-n}(\cdot)$ is multiplicative on $C^n[0, 1]$. The relations $T_{-n}(\varphi) = I(T_{-n})$ for $\varphi(x) \equiv 1$ ($\equiv x$) are trivial on $\mathcal{R}(J^n)$ by (8) and Lemma 1; by density, they are true throughout $L_p(0, 1)$.

Finally, one verifies that $T_{-n} \notin (C^{n-1})$ just as in Lemma 3.

2. Global classification (1 .

THEOREM 6. The operator T_{α} acting in $L_p(0, 1)$ $(1 is of class <math>C^n$ (n = 0, 1, 2, ...) if $|\operatorname{Re} \alpha| \le n$ and only if $|\operatorname{Re} \alpha| < n + 1$.

In other words, T_{α} is of class C^n in the strip $|\text{Re }\alpha| \leq n$ and is *not* of class C^n outside the strip $|\text{Re }\alpha| < n+1$.

The theorem is an immediate corollary of Lemmas 3 and 5, together with the following

LEMMA 7. Suppose that, for some integer $n \ge 0$ and some $\alpha_0 \in \mathbb{C}$, the operator T_{α_0} is of class \mathbb{C}^n (when acting in $L_p(0, 1)$, $1). Then <math>T_\alpha$ is of class \mathbb{C}^n for all α in the strip $-n \le \operatorname{Re} \alpha \le \operatorname{Re} \alpha_0$ if $\operatorname{Re} \alpha_0 \ge 0$ ($\operatorname{Re} \alpha_0 \le \operatorname{Re} \alpha \le n$ if $\operatorname{Re} \alpha_0 \le 0$).

Proof. To fix the ideas, suppose Re $\alpha_0 = \beta_0 \ge 0$. Write $\alpha = \beta + i\gamma$ $(\beta, \gamma \in \mathbb{R})$. Fixing a polynomial φ and elements $f \in L_p(0, 1)$, $g \in L_q(0, 1)$ $(p^{-1} + q^{-1} = 1)$, we define

$$\Phi(\alpha) = \langle e^{\pi\alpha^2} \varphi(T_\alpha) f, g \rangle, \qquad \alpha \in \mathbf{C}.$$

Since $|e^{\pi\alpha^2}| \le e^{\pi\beta^2}$, and since $\varphi(T_\alpha)$ is a polynomial in α (with operator coefficients), we have $|\Phi(\alpha)| = O(e^{\varepsilon|\gamma|})$ (for $|\gamma| \to \infty$) in the strip $-n \le \beta \le \beta_0$, for any $\varepsilon > 0$.

By Lemma 2 and the estimate $||J^{i\gamma}|| \le e^{\pi|\gamma|/2}$, we have:

$$|\Phi(\beta + i\gamma)| \le \exp \pi(\beta^2 - \gamma^2 + |\gamma|) \cdot ||f||_p ||g||_q ||\varphi(T_\beta)||$$

$$\le \exp \pi(\beta^2 + 1/4) \cdot ||f||_p ||g||_q ||\varphi(T_\beta)||$$

for all β , $\gamma \in R$.

Since T_{-n} and T_{β_0} are of class C^n (by Lemma 5, the hypothesis and Lemma 2), there exists a constant K (depending only on n, β_0 and p) such that

$$\|\varphi(T_{-n})\| \leq K \|\varphi\|_n$$
 and $\|\varphi(T_{\beta_0})\| \leq K \|\varphi\|_n$.

Hence

$$|\Phi(-n+i\gamma)| \leq M \|f\|_p \|g\|_q \|\varphi\|_n$$

and

$$|\Phi(\beta_0+i\gamma)| \leq M \|f\|_p \|g\|_q \|\varphi\|_n$$

for all real γ , where $M = K \exp \pi(\delta^2 + 1/4)$ and $\delta = \max(n, \beta_0)$. By the Phragmèn-Lindelöf principle (cf. [9, p. 180]), it follows that $|\Phi(\alpha)| \le M \|f\|_p \|g\|_q \|\varphi\|_n$ for $-n \le \text{Re } \alpha \le \beta_0$. Hence, for such α ,

$$\|\varphi(T_{\alpha})\| \leq M \exp \pi(\gamma^2 - \beta^2) \|\varphi\|_n$$

and the lemma follows.

The next two theorems give explicitly the C^n -operational calculus for T_{α} (|Re α | $\leq n$) acting in $L_{\nu}(0, 1)$, with 1 .

THEOREM 8. Let n be a nonnegative integer. Then for $0 \le \text{Re } \alpha \le n$ and $\varphi \in C^n[0, 1]$ the range of J^{α} (i.e., the domain of $J^{-\alpha}$) is invariant under $M(\varphi)$, and the C^n -operational calculus for T_{α} is given by

$$T_{\alpha}(\varphi) = J^{-\alpha}M(\varphi)J^{\alpha}, \qquad \varphi \in C^{n}[0, 1].$$

Proof. By Lemma 1 (3),

(9)
$$\varphi(M)J^{\alpha} = J^{\alpha}\varphi(T_{\alpha})$$

for any polynomial φ . In particular,

(10)
$$\varphi(M)\mathcal{R}(J^{\alpha}) \subset \mathcal{R}(J^{\alpha}), \quad \varphi = \text{a polynomial.}$$

Let $\varphi \in C^n[0, 1]$, and choose polynomials φ_k which converge to φ in $C^n[0, 1]$. In particular, $\varphi_k \to \varphi$ uniformly in [0, 1], and therefore

(11)
$$\mathscr{D}_{-\alpha} \ni \varphi_k J^{\alpha} g \to \varphi J^{\alpha} g$$

in $L_{\nu}(0, 1)$, for any $g \in L_{\nu}(0, 1)$. By (9), we have:

(12)
$$J^{-\alpha}(\varphi_k J^{\alpha} g) = \varphi_k(T_{\alpha}) = T_{\alpha}(\varphi_k) \to T_{\alpha}(\varphi)$$

in the uniform operator topology, since $T_{\alpha} \in (C^n)$ by Theorem 6 (for $|\text{Re }\alpha| \leq n$ and $1) and <math>\varphi_k \to \varphi$ in $C^n[0, 1]$. Since $J^{-\alpha}$ is a closed operator, it follows from (11) and (12) that $\varphi J^{\alpha}g \in \mathscr{D}_{-\alpha}$ and

$$J^{-\alpha}(\varphi J^{\alpha}g) = T_{\alpha}(\varphi),$$
 Q.E.D.

We consider next the range $-n \le \text{Re } \alpha < 0 \ (n=1, 2, ...)$. Note that $\text{Re } (\alpha + n) \ge 0$. The notation $T_{-n}(\varphi)$ is that of Lemma 5.

THEOREM 9. Let n be a nonnegative integer. Then for $-n \le \text{Re } \alpha < 0$ and $\varphi \in C^n[0, 1]$, the range of $J^{\alpha+n}$ (i.e., $\mathscr{D}_{-(\alpha+n)}$) is invariant under $T_{-n}(\varphi)$, and the C^n -operational calculus for T_{α} is given by

$$T_{\alpha}(\varphi) = J^{-(\alpha+n)}T_{-n}(\varphi)J^{\alpha+n}, \qquad \varphi \in C^{n}[0, 1].$$

Proof. By (10), $\mathcal{R}(J^{\alpha+n})$ is invariant for $M(\varphi)$ for any polynomial φ ; it is therefore invariant for the operator

$$T_{-n}(\varphi) = \sum_{j=0}^{n} \binom{n}{j} (-1)^{j} J^{j} M(\varphi^{(j)}), \qquad \varphi = \text{a polynomial.}$$

Thus, for any polynomial φ , the operator

$$S_{\alpha}(\varphi) = J^{-(\alpha+n)}T_{-n}(\varphi)J^{\alpha+n}$$

is everywhere defined. Being closed, it is *continuous* by the Closed Graph Theorem. Let $g \in \mathcal{D}_{\alpha} = \mathcal{R}(J^{-\alpha})$, say $g = J^{-\alpha}h$ with $h \in L_p(0, 1)$. By Lemma 1,

$$S_{\alpha}(\varphi)g = J^{-(\alpha+n)}T_{-n}(\varphi)J^{n}h = J^{-(\alpha+n)}J^{n}\varphi(M)h$$
$$= J^{-\alpha}\varphi(M)h = \varphi(T_{\alpha})J^{-\alpha}h$$
$$= \varphi(T_{\alpha})g$$

for any polynomial φ .

This shows that the continuous operators $S_{\alpha}(\varphi)$ and $\varphi(T_{\alpha}) = T_{\alpha}(\varphi)$ coincide on the dense subset \mathcal{D}_{α} of $L_{\nu}(0, 1)$. Thus, for every polynomial φ ,

(13)
$$T_{\alpha}(\varphi) = J^{-(\alpha+n)}T_{-n}(\varphi)J^{\alpha+n}.$$

Let $\varphi \in C^n[0, 1]$, and let φ_k be polynomials converging to φ in $C^n[0, 1]$. Since T_α and T_{-n} are of class C^n (by Theorem 6), we have (in the uniform operator topology):

(14)
$$T_{\alpha}(\varphi_k) \to T_{\alpha}(\varphi); \quad T_{-n}(\varphi_k) \to T_{-n}(\varphi)$$

for any $k \to \infty$.

Fix $g \in L_p(0, 1)$. Then $T_{-n}(\varphi_k)J^{\alpha+n}g \in \mathcal{D}_{-(\alpha+n)}$ (cf. beginning of the proof) and

$$T_{-n}(\varphi_k)J^{\alpha+n}g \to T_{-n}(\varphi)J^{\alpha+n}g$$

for $k \to \infty$ (by (14)). Moreover

$$J^{-(\alpha+n)}[T_{-n}(\varphi_k)J^{\alpha+n}g] = T_{\alpha}(\varphi_k)g \rightarrow T_{\alpha}(\varphi)g$$

by (13) and (14). Since $J^{-(\alpha+n)}$ is closed, it follows that $T_{-n}(\varphi)J^{\alpha+n}g \in \mathscr{D}_{-(\alpha+n)} = \mathscr{R}(J^{\alpha+n})$ and $J^{-(\alpha+n)}T_{-n}(\varphi)J^{\alpha+n}g = T_{\alpha}(\varphi)g$, Q.E.D.

3. The local C^k -operational calculus. Note first that the results of §2 are also relevant to the case p=1, in the sense of the local C^k -operational calculus. Let $L=\bigcup_{1< p<\infty} L_p(0,1)$. This is a dense linear manifold in $L_1(0,1)$, which is invariant under T_α for all $\alpha\in C$. Let $n\geq 0$ be an integer, and let $|\operatorname{Re}\alpha|\leq n$. If $f\in L$, say $f\in L_p(0,1)$ for some $1< p<\infty$, then the mapping $\varphi\in C^n[0,1]\to T_\alpha(\varphi)f\in L_1(0,1)$ is continuous $(T_\alpha(\cdot))$ is given by Theorems 8 and 9) because $\|T_\alpha(\varphi)f\|_1\leq \|T_\alpha(\varphi)f\|_p$ $\leq \|T_\alpha(\cdot)\|_p \|f\|_p \|\varphi\|_n$, where $\|T_\alpha(\cdot)\|_p$ denotes the norm of the C^n -operational calculus for T_α acting in $L_p(0,1)$. Thus $W_n(T_\alpha;1)\supset L$ for $|\operatorname{Re}\alpha|\leq n$, and the C^n -operational calculus for T_α on L is provided by Theorems 8 and 9.

In the next two theorems, we study the manifolds $W_k(T_\alpha; p)$ for $k < |\text{Re } \alpha|$ (they coincide with the whole space for $k \ge |\text{Re } \alpha|$, at least for 1 , by §2). It turns out that the situation is totally different in the right and left half-planes.

THEOREM 10. For $\alpha \in \mathbb{C}$ with Re $\alpha < 0$ and 1 ,

$$W_k(T_\alpha; p) \supset \mathcal{D}_{\alpha+k}, \qquad 0 \leq k < |\text{Re } \alpha|,$$

and the C^k -operational calculus for T_{α} on $\mathcal{D}_{\alpha+k}$ is given by

(15)
$$T_{\alpha}(\varphi) = J^{-(\alpha+k)}T_{-k}(\varphi)J^{\alpha+k}, \quad \varphi \in C^{k}[0, 1],$$

(where $T_{-k}(\varphi)$ is defined in Lemma 5).

Proof. Fix p, α and k as in the theorem, and define $T_{\alpha}(\cdot)$ by (15). One verifies easily that the mapping $\varphi \to T_{\alpha}(\varphi)$ is an algebra homomorphism of $C^k[0, 1]$ into $T(\mathscr{D}_{\alpha+k})$ which sends the functions $\varphi(x) \equiv 1$ and $\varphi(x) \equiv x$ respectively to $I | \mathscr{D}_{\alpha+k}$ and $T_{\alpha} | \mathscr{D}_{\alpha+k}$ (cf. Lemma 1). Moreover, for each $g \in \mathscr{D}_{\alpha+k}$, the mapping $\varphi \to T_{\alpha}(\varphi)g$ of $C^k[0, 1]$ into $L_v(0, 1)$ is continuous, since

$$T_{\alpha}(\varphi)g = J^{-\alpha-k}T_{-k}(\varphi)h$$

for $g=J^{-\alpha-k}h$ with $h \in L_p(0, 1)$. Q.E.D.

In particular, $W_k(T_\alpha; p)$ is dense in $L_p(0, 1)$ for Re $\alpha < 0$ and $k \ge 0$ arbitrary. For Re $\alpha \ge 1$, we get the "other" extreme.

THEOREM 11. For $\alpha \in C$ with Re $\alpha \ge 1$ and $1 , <math>W_k(T_\alpha; p) = (0)$ if $k < [\text{Re } \alpha]$. The same is true for p = 1 if α is an integer.

Proof. If α is an integer, this is a trivial consequence of Lemma 3 and Leibnitz' formula.

Suppose then that $1 , and that <math>f \in W_k(T_\alpha; p)$ for some fixed $k < m = [\text{Re } \alpha]$. As in the proof of Lemma 7, we apply the Phragmèn-Lindelöf principle in the strip $0 \le \text{Re } \zeta \le \text{Re } \alpha$ to the function $\Phi(\zeta) = \langle e^{\pi \zeta^2} \varphi(T_\zeta) f, g \rangle$ where φ is a polynomial and $g \in L_q(0, 1)$ (both fixed). We then obtain that $f \in W_k(T_\zeta; p)$ for all ζ in the strip, hence in particular for $\zeta = m$. Since k < m, we conclude that f is the null function.

4. Similarity and spectrality.

LEMMA 12. Let $\alpha \in \mathbb{C}$ and $1 . Then every <math>s \in [0, 1) = \sigma(T_{\alpha}) \setminus \{1\}$ is an eigenvalue of $T_{-\alpha}$ for $\operatorname{Re} \alpha \geq 1$ ($\operatorname{Re} \alpha > 1$ or $\alpha = 1$ if p = 1), while T_{α} has no eigenvalue for $\operatorname{Re} \alpha \geq 0$ ($\operatorname{Re} \alpha > 0$ or $\alpha = 0$ if p = 1).

Proof. Let C_s denote the characteristic function of the interval [s, 1], $0 \le s < 1$. One verifies easily that C_s is an eigenvector of T_{-1} corresponding to the eigenvalue s (for $1 \le p < \infty$).

By Lemma 1, (3),

$$T_{-\alpha}J^{\alpha-1}C_s = J^{\alpha-1}T_{-1}C_s = sJ^{\alpha-1}C_s$$

i.e. $J^{\alpha-1}C_s$ (which is in $L_p(0, 1)$ for α as in the first statement of the lemma) is an eigenvector of $T_{-\alpha}$ corresponding to the eigenvalue s.

Next, suppose $T_{\alpha}g = \lambda g$ for $g \in L_p(0, 1)$ and $\lambda \in \mathbb{C}$. If Re $\alpha \ge 0$ (Re $\alpha > 0$ or $\alpha = 0$ if p = 1), we may apply J^{α} on both sides of this equation; by Lemma 1,(3), we obtain

$$MJ^{\alpha}g = \lambda J^{\alpha}g.$$

Since M has no eigenvector $\neq 0$ and J^{α} is one-one, it follows that g is the zero element.

Let $\alpha, \beta \in C$. By Lemma 2, T_{α} and T_{β} are similar if Re $\alpha = \text{Re } \beta$ (and $1). On the other hand, since the <math>C^k$ -classification and the point spectrum are similarity invariants, it follows from Lemmas 3, 5 and 12 that T_{α} and T_{β} are *not* similar if α and β are distinct integers (for $1 \le p < \infty$).

Conjecture. For $1 and <math>\alpha$, $\beta \in C$, T_{α} and T_{β} are similar if and only if Re $\alpha = \text{Re } \beta$. (By Lemma 2, it would suffice to verify that T_{α} and T_{β} are not similar if α and β are distinct *real* numbers.)

PROPOSITION 13. Let $\alpha, \beta \in C$ and $1 . Then <math>T_{\alpha}$ and T_{β} (acting in $L_p(0, 1)$) are not similar if $[\text{Re } \alpha] \neq [\text{Re } \beta]$.

Proof. Assume, without loss of generality, that Re $\alpha < \text{Re } \beta$. If either $0 \le \text{Re } \alpha$ or Re $\beta \le 0$, this follows from Theorem 6 and the similarity invariance of the C^k -classification. If Re $\alpha < 0 < 1 \le \text{Re } \beta$, $W_0(T_\alpha)$ is dense in $L_p(0, 1)$ (Theorem 10) while $W_0(T_\beta) = (0)$ (Theorem 11). Thus T_α and T_β are not similar.

If Re $\alpha \le -1 < 0 < \text{Re } \beta$, every $s \in [0, 1)$ is an eigenvalue of T_{α} , while T_{β} has no eigenvalue (Lemma 12), and the conclusion follows from the similarity invariance of the point spectrum. Q.E.D.

We next discuss the spectrality of T_{α} in Dunford's sense [1].

LEMMA 14. Let T be a bounded spectral operator with real spectrum, acting in the Banach space X. Let T = S + N be its canonical decomposition (cf. [1]). Then:

- (a) If $W_k(T)$ is dense in X for some integer $k \ge 0$, then T is of finite type $\le k$ (i.e., $N^{k+1}=0$).
- (b) If T is of finite type k, then $W_j(T) \neq (0)$ for all $j \geq 0$; in fact, $W_j(T) \supset \mathcal{R}(N^{k-j})$ for j = 0, ..., k-1, and trivially $W_j(T) = X$ for $j \geq k$.

Proof. Fix a compact interval $\Delta \supset \sigma(T)$. Let $S(\cdot)$ be the C-operational calculus for S (defined on $C(\Delta)$), and let $||S(\cdot)||$ be its norm.

(a) Let $x \in W_k(T)$. The function $e^{izN}x$ $(z \in C)$ is entire of order one and minimal type (since N is a quasi-nilpotent operator). For $z = t \in R$, we have:

$$||e^{itN}x|| = ||e^{-itS}e^{itT}x|| \le ||S(\cdot)|| ||e^{itT}x|| \le ||S(\cdot)|| |x|_k ||\varphi_t||_{k,\Delta_t}$$

where $\varphi_t(s) = e^{its}$, $t, s \in \mathbb{R}$.

Thus $||e^{itN}x|| = O(|t|^k)$, and therefore $e^{izN}x$ is a polynomial of order $\le k$ by Theorem 3.13.8 in [3]. Hence $N^{k+1}x=0$ for each $x \in W_k(T)$, and it follows that $N^{k+1}=0$ since $W_k(T)$ is dense in X.

(b) We have $N^{k+1}=0$ and $N^k\neq 0$. The analytic operational calculus for T takes the form (cf. [1]):

$$T(\varphi) = \sum_{m=0}^{k} S(\varphi^{(m)}) N^{m}/m!$$

If $x \in \mathcal{R}(N^{k-j})$, say $x = N^{k-j}y$ with $y \in X(0 \le j < k)$, then

$$T(\varphi)x = \sum_{m=0}^{j} S(\varphi^{(m)})N^{m}y/m!$$

In particular, $||p(T)x|| \le ||S(\cdot)|| \cdot \max_{0 \le m \le j} ||N^m y|| ||p||_{j,\Delta}$ for any polynomial p, i.e. $x \in W_j(T)$, Q.E.D.

For simplicity, we state the following result for 1 , although part of the conclusion remains valid for <math>p = 1.

PROPOSITION 15. Let $1 . Then <math>T_{\alpha}$ is spectral for $\text{Re } \alpha = 0$, and is not spectral for $|\text{Re } \alpha| \ge 1$.

Proof. The first statement is a trivial corollary of Lemma 2.

By Theorem 6, T_{α} is of class C^n if $n \ge |\operatorname{Re} \alpha|$. Thus, if T_{α} were spectral, it should be of finite type by Lemma 14(a). In particular, its point spectrum should be at most countable by [2, Theorem 1, p. 56]. But this contradicts Lemma 12 if $\operatorname{Re} \alpha \le -1$. Also all $W_j(T_{\alpha})$ ($j \ge 0$) should be nontrivial by Lemma 14(b), contradicting Theorem 11 if $\operatorname{Re} \alpha \ge 1$. Thus T_{α} is not spectral for $|\operatorname{Re} \alpha| \ge 1$.

- 5. **Remarks.** It is interesting to regard the results of this paper as statements about the operators $\alpha^{-1}T_{\alpha}=J+\alpha^{-1}M$ $(0\neq\alpha\in C)$, which are perturbations of J by a scalar operator of arbitrarily small norm. Thus, if α and β are nonzero complex numbers, the following assertions can be made (for $1< p<\infty$):
- (a) If $[|\operatorname{Re} \alpha|] \neq [|\operatorname{Re} \beta|]$, $J + \alpha^{-1}M$ and $J + \beta^{-1}M$ belong to distinct (C^k) -classes, although they differ only by the scalar operator $(\alpha^{-1} \beta^{-1})M$, which is of arbitrarily small norm. This shows that the commutativity hypothesis in [5, Corollary 5.6] cannot be replaced by a restriction on the norm of the perturbing scalar operator.
- (b) The perturbations $J \alpha^{-1}M$ and $J + \alpha^{-1}M$ have respectively a dense and a trivial semisimplicity manifold, a "pure" point spectrum (up to the right end point of the spectrum $[0, \alpha^{-1}]$) and no point spectrum.
 - (c) The perturbations $J + \alpha^{-1}M$ and $J + \beta^{-1}M$ are not similar if $[\text{Re } \alpha] \neq [\text{Re } \beta]$.

REFERENCES

- 1. N. Dunford, A survey of the theory of spectral operators, Bull. Amer. Math. Soc. 64 (1958), 217-274.
- 2. S. R. Foguel, The relations between a spectral operator and its scalar part, Pacific J. Math. 8 (1958), 51-65.
- 3. E. Hille and R. S. Phillips, Functional analysis and semigroups, Amer. Math. Soc. Colloq. Publ., Vol. 31, Amer. Math. Soc., Providence, R. I., 1957.
- 4. G. K. Kalisch, On fractional integrals of pure imaginary order in L_p , Proc. Amer. Math. Soc. 18 (1967), 136–139.
- 5. S. Kantorovitz, Classification of operators by means of their operational calculus, Trans. Amer. Math. Soc. 115 (1965), 194-224.
- 6. —, The semisimplicity manifold of arbitrary operators, Trans. Amer. Math. Soc. 123 (1966), 241-252.
 - 7. ——, Local Cⁿ-operational calculus, J. Math. Mech. 17 (1967), 181-188.
- 8. L. A. Sakhnovič, Privedenie odnogo nesamosoprjažennogo operatora s nepreryvnym spektrom k diagonal' nomu vidu, Uspehi Mat. Nauk 13 (1958), no. 4 (42), 193-196.
 - 9. E. C. Titchmarsh, The theory of functions, Oxford Univ. Press, London, 1939.

YALE UNIVERSITY,

New Haven, Connecticut