ON A SIMILARITY INVARIANT FOR COMPACT OPERATORS

BY REESE T. PROSSER(1)

DEDICATED TO THE MEMORY OF HAZLETON MIRKIL

Let \mathscr{H} be a Hilbert space, and \mathscr{K} the algebra of all compact operators acting on \mathscr{H} . If $K \in \mathscr{K}$, then K = WA, where $A = (K^*K)^{1/2}$ is compact and positive, and W is a partial isometry mapping the range of A isometrically onto the range of K. If k_n and a_n are the nth eigenvalues, counted with multiplicities and arranged in order of decreasing magnitude, of K and A, respectively, then $0 \le |k_n| \le a_n$, and $a_n \downarrow 0$ as $n \uparrow \infty$.

For each $K \in \mathcal{K}$ and p, 0 , put

(1)
$$||K||_{p} = ||A||_{p} = \left(\sum_{n=1}^{\infty} a_{n}^{p}\right)^{1/p}, \qquad 0
$$= \sup \{a_{n} : 1 \le n < \infty\}, \qquad p = \infty.$$$$

Then $0 \le ||K||_p \le \infty$, and $||K||_p \downarrow$ as $p \uparrow$. Moreover,

LEMMA 1. If $K, M \in \mathcal{K}$ and B, C are bounded operators on \mathcal{H} , then

(2)
$$||K+M||_{p} \leq 2^{1/p} \{ ||K||_{p}^{p} + ||M||_{p}^{p} \}^{1/p}, \qquad 0
$$\leq 2^{1/p} \{ ||K||_{p} + ||M||_{p} \}, \qquad 1 \leq p \leq \infty,$$$$

(3)
$$||KM||_p \le 2^{1/p} ||K||_r ||M||_s$$
, where $1/p = 1/r + 1/s$,

$$||BKC||_{p} \leq ||B|| ||K||_{p} ||C||,$$

(5)
$$||K^*||_p = ||K||_p.$$

Proof. See [2, Lemma 9, p. 1093].

Now for each $K \in \mathcal{K}$, put

(6)
$$\tau(K) = \operatorname{glb} \{p : \|K\|_p < \infty\} = \operatorname{glb} \{p : A^p \in \operatorname{trace class}\}.$$

Then $0 \le \tau(K) \le \infty$, and from Lemma 1 we have

Received by the editors June 23, 1967.

⁽¹⁾ The results obtained here were suggested primarily by the work of R. M. Dudley [1], preprints of which we gratefully acknowledge.

COROLLARY 2. If $K, M \in \mathcal{K}$ and B, C are bounded operators on \mathcal{H} , then

(7)
$$\tau(K+M) \leq \max \{\tau(K), \tau(M)\},$$

(8)
$$\tau(KM) \leq \tau(K)\tau(M)/(\tau(K)+\tau(M)),$$

$$\tau(BKC) \leq \tau(K),$$

(10)
$$\tau(K^*) = \tau(K).$$

Proof. See Lemma 1.

In particular, it follows from (9) that if B is a bounded invertible operator, then

(11)
$$\tau(BKB^{-1}) = \tau(K).$$

Hence τ is a similarity invariant for the class \mathcal{K} of compact operators. It is clear from the definitions that if K is of finite rank, trace class, or Hilbert-Schmidt class, then $\tau(K) = 0$, ≤ 1 , or ≤ 2 , respectively. Moreover, we have

LEMMA 3. If $K, M \in \mathcal{K}$, and if, for all $\phi \in \mathcal{H}$,

$$||K\phi|| \le \operatorname{const} ||M\phi||,$$

then $\tau(K) \leq \tau(M)$.

Proof. If $||K\phi||^2 = (K^*K\phi, \phi) \le \text{const } ||M\phi||^2 = (M^*M\phi, \phi)$ for all $\phi \in \mathcal{H}$, then $K^*K \le \text{const } M^*M$. If a_n and b_n are the *n*th eigenvalues of $(K^*K)^{1/2}$ and $(M^*M)^{1/2}$, counted with multiplicities and arranged in order of decreasing magnitude, then it follows that $a_n \le \text{const } b_n$ [2, p. 909]. Hence if $\sum b_n^p < \infty$, for any p, $0 , then <math>\sum a_n^p < \infty$, and $\tau(K) \le \tau(M)$.

Thus $\tau(K)$ provides a measure of the "size" of K. In this paper we propose to explore this idea by introducing various other measures of the "size" of K and relating them to $\tau(K)$.

All of our measures of the "size" of K are given in terms of the asymptotic behavior of certain positive sequences or functions associated with K. If $\{b_n\}$ and $\{c_n\}$ are arbitrary monotone-increasing positive sequences, with b_n , $c_n \uparrow \infty$ as $n \uparrow \infty$, then the asymptotic behavior of b_n may be compared with that of c_n by introducing the relative order of growth γ , defined by the formula

(13)
$$\gamma = \text{glb} \{ \mu > 0 : b_n \le \text{const } c_n^{\mu} \},$$
$$= \infty \quad \text{if no such } \mu > 0 \text{ exists.}$$

Then clearly $0 \le \gamma \le \infty$, and if $0 < \gamma - \varepsilon < \gamma < \gamma + \varepsilon < \infty$, we have $b_n \le \text{const } c_n^{\gamma + \varepsilon}$ for all n, and $b_n \ge \text{const } c_n^{\gamma - \varepsilon}$ for arbitrarily large n. The computation of the relative order of growth is facilitated by the formula

(14)
$$\gamma = \limsup_{n \to \infty} \frac{\log b_n}{\log c_n}$$

Similarly, if $\{b_n\}$ and $\{c_n\}$ are monotone-decreasing sequences, with b_n , $c_n \downarrow 0$ as $n \downarrow \infty$, then we introduce the *relative order of decay* δ , defined by the formula

(15)
$$\delta = \text{lub } \{\mu > 0 : b_n \leq \text{const } c_n^{\mu} \},$$
$$= \infty \quad \text{if no such } \mu > 0 \text{ exists.}$$

Then $0 \le \delta \le \infty$, and if $0 < \delta - \varepsilon < \delta < \delta + \varepsilon < \infty$, we have $b_n \le \text{const } c_n^{\delta - \varepsilon}$ for all n, and $b_n \ge \text{const } c_n^{\delta + \varepsilon}$ for arbitrarily large n. The computation of δ is given by

(16)
$$\delta = \liminf_{n \to \infty} \frac{\log b_n}{\log c_n}$$

When $c_n = n$ (or 1/n) we call γ (or δ) simply the order of growth (or order of decay, respectively) of b_n .

From now on let $K \in \mathcal{K}$ be a fixed compact operator acting on \mathcal{H} , and $A = (K^*K)^{1/2}$. Let \mathcal{B} be the unit ball in \mathcal{H} , and \mathcal{E} the (compact, convex, symmetric) image of \mathcal{B} under K. The "size" of K is reflected in the "size" of \mathcal{E} , which can be measured in several different ways. Among them we cite the following:

DEFINITION 4 (THE METRIC VOLUME [1]). Let $\mathscr E$ be any compact convex symmetric subset of $\mathscr H$, and $\mathscr H_n$ any *n*-dimensional subspace of $\mathscr H$. Let $|\mathscr E \cap \mathscr H_n|$ denote the *n*-dimensional Lebesgue volume of $\mathscr E \cap \mathscr H_n$, and put $V_n = \sup |\mathscr E \cap \mathscr H_n|$, the supremum taken over all the $\mathscr H_n$ in $\mathscr H$. Thus V_n is the least upper bound of the volumes of the *n*-dimensional sections of $\mathscr E$, and is called the *n*-dimensional metric volume of $\mathscr E$.

Since $\mathscr E$ is compact, $V_n \downarrow 0$ as $n \uparrow \infty$. The rate of decrease of V_n can be effectively compared with that of the volume B_n of the unit *n*-ball $\mathscr B_n = \mathscr B \cap \mathscr H_n$. Put

(17)
$$\beta(\mathscr{E}) = \text{lub } \{\mu > 0 : V_n \leq \text{const } (B_n)^{\mu} \},$$
$$= 0 \quad \text{if no such } \mu > 0 \text{ exists.}$$

Then $\beta(\mathscr{E})$ is the *order of decay* of the metric volume of \mathscr{E} relative to that of the unit ball \mathscr{B} . When $\mathscr{E} = K(\mathscr{B})$, we shall write $\beta(\mathscr{E}) = \beta(K)$.

DEFINITION 5 (THE METRIC WIDTH [5]). Let \mathscr{E} be any compact convex symmetric subset of \mathscr{H} , and \mathscr{H}_n any *n*-dimensional subspace of \mathscr{H} . Let $d(\mathscr{E}, \mathscr{H}_n)$ denote the maximal orthogonal distance from \mathscr{E} to \mathscr{H}_n , and put $w_n = \inf d(\mathscr{E}, \mathscr{H}_n)$, the infinum taken over all the \mathscr{H}_n in \mathscr{H} . Then w_n is the greatest lower bound of the distance from \mathscr{E} to the *n*-dimensional subspaces of \mathscr{H} , and is called the *n*-dimensional metric width of \mathscr{E} .

Since \mathscr{E} is compact, $w_n \downarrow 0$ as $n \uparrow \infty$. The rate of decrease of w_n can be effectively compared with that of the sequence 1/n. Put

(18)
$$\omega(\mathscr{E}) = \text{lub } \{\mu > 0 : w_n \le \text{const } (1/n)^{\mu} \},$$
$$= 0 \quad \text{if no such } \mu > 0 \text{ exists.}$$

Then $\omega(\mathscr{E})$ is the *order of decay* of the metric width of \mathscr{E} (relative to 1/n). When $\mathscr{E} = K(\mathscr{B})$, we write $\omega(\mathscr{E}) = \omega(K)$.

DEFINITION 6 (THE METRIC ENTROPY [5]). Let $\mathscr E$ be any compact convex symmetric subset of $\mathscr H$, and $\varepsilon > 0$. Let $\mathscr U(\varepsilon)$ be any finite covering of $\mathscr E$ by open balls of radius ε , and let card $\mathscr U(\varepsilon)$ denote the number of balls in $\mathscr U(\varepsilon)$. Put $N(\varepsilon) = \inf \operatorname{Card} \mathscr U(\varepsilon)$, the infimum taken over all finite coverings $\mathscr U(\varepsilon)$ of $\mathscr E$. Put further $H(\varepsilon) = \log N(\varepsilon)$. Then $H(\varepsilon)$ is a measure of the size of ε -covering required by $\mathscr E$, and is called the ε -entropy of $\mathscr E$.

Clearly $H(\varepsilon) \uparrow \infty$ as $\varepsilon \downarrow 0$. Here the rate of increase of $H(\varepsilon)$ can be effectively compared with that of $1/\varepsilon$. Put

(19)
$$\rho(\mathscr{E}) = \text{glb } \{\mu > 0 : H(\varepsilon) \leq \text{const } (1/\varepsilon)^{\mu} \}$$
$$= \infty \quad \text{if no such } \mu > 0 \text{ exists.}$$

Then $\rho(\mathscr{E})$ is the order of growth of the ε -entropy of \mathscr{E} . The value of $\rho(\mathscr{E})$ can evidently be computed from the formula

(20)
$$\rho(\mathscr{E}) = \limsup_{\varepsilon \to \infty} \frac{\log H(\varepsilon)}{\log 1/\varepsilon};$$

when $\mathscr{E} = K(\mathscr{B})$ we write $\rho(\mathscr{E}) = \rho(K)$.

Other measures of the "size" of K may be obtained in various other ways. Among them we cite the following:

DEFINITION 7 (THE EIGENVALUE SEQUENCE). As before, let k_n be the *n*th eigenvalue, counted with multiplicities and arranged in order of decreasing magnitude, of the operator K. Since K is compact, $|k_n| \downarrow 0$ as $n \uparrow \infty$. The rate of decrease of $|k_n|$ can be effectively compared with that of 1/n. Put

(21)
$$\kappa(K) = \text{lub } \{\mu > 0 : |k_n| \le \text{const } (1/n)^{\mu} \},$$
$$= 0 \quad \text{if no such } \mu > 0 \text{ exists.}$$

Then $\kappa(K)$ is the order of decay of the eigenvalue sequence of K.

DEFINITION 8 (BEHAVIOR ON ORTHONORMAL BASES). Let $\Phi = \{\phi_n\}$ be any orthonormal basis for \mathscr{H} , and put $l_n = ||K\phi_n||$. Assume the l_n are arranged in order of decreasing magnitude. Since K is compact, $l_n \downarrow 0$ as $n \uparrow \infty$. Put

(22)
$$\lambda(K, \Phi) = \text{lub } \{\mu > 0 : l_n \leq \text{const } (1/n)^{\mu} \},$$
$$= 0 \quad \text{if no such } \mu > 0 \text{ exists.}$$

Then $\lambda(K, \Phi)$ is the order of decay of the sequence $||K\phi_n||$.

DEFINITION 9 (THE FREDHOLM DETERMINANT [2, p. 1106ff]). Now let K be a normal compact operator, and assume $\tau(K) < \infty$. Let $k = [\tau(K)]$ be the greatest integer in $\tau(K)$, and z be any complex number. For each integer j > k, put σ_j = trace (K^j) , and form

(23)
$$d(z,K) = \det_k (I - zK) = \exp\left\{-\sum_{j=k+1}^{\infty} \frac{\sigma_j z^j}{j}\right\};$$

then d(z, K) is the (generalized) Fredholm determinant of I-zK. We know that d(z, K) is a well-defined complex-valued function of z, analytic in the whole z-plane [2, p. 1106]. Let M(r, d) be the maximum modulus of d(z, K) on the circle |z|=r,

(24)
$$M(r, d) = \max_{|z|=r} |d(z, K)|$$

then $M(r, d) \uparrow \infty$ as $r \uparrow \infty$. The rate of growth of log M(r, d) can be effectively compared with that of r. Put

(25)
$$\gamma(K) = \operatorname{glb} \{\mu > 0 : \log M(r, d) \leq \operatorname{const} r^{\mu} \}.$$

Then $\gamma(K)$ is the exponential order of growth of d(z, K). To compute $\gamma(K)$, we use

(26)
$$\gamma(K) = \limsup_{r \to \infty} \frac{\log \log M(r, d)}{\log r}.$$

Now for any z for which z^{-1} lies in the resolvent set of K, let $R(z^{-1}, K) = z(I - zK)^{-1}$ be the resolvent of K, and put

(27)
$$D(z, K) = d(z, K)R(z^{-1}, K);$$

then D(z, K) is the (generalized) Fredholm minorant of K. It is known that D(z, K) is a well-defined operator-valued function of z, which admits an analytic extension to the whole z-plane [2, p. 1112]. If we define the maximum modulus by

(28)
$$M(r, D) = \max_{|z|=r} ||D(z, K)||,$$

then $M(r, D) \uparrow \infty$ as $r \uparrow \infty$. The rate of growth of log M(r, D) is then given by

(29)
$$\Gamma(K) = \operatorname{glb} \{ \mu > 0 : \log M(r, D) \leq \operatorname{const} r^{\mu} \}.$$

Then $\Gamma(K)$ is the exponential order of growth of D(z, K). To compute $\Gamma(K)$, we use

(30)
$$\Gamma(K) = \limsup_{r \to \infty} \frac{\log \log M(r, D)}{\log r}.$$

DEFINITION 10 (THE FREDHOLM COEFFICIENTS). Again let K be a normal compact operator and d(z, K) and D(z, K) the entire functions introduced in Definition 9. Write

(31)
$$d(z,K) = \sum_{n=0}^{\infty} d_n(K)z^n;$$

here $d_n(K)$ is the *n*th Taylor coefficient of d(z, K) in the Taylor series expansion about the origin. Since $d_n(z, K)$ is entire, we must have $d_n \to 0$ as $n \to \infty$. The rate of decrease of the d_n can be effectively compared with that of 1/n!. Put

(32)
$$\delta(K) = \text{lub } \{\mu > 0 : |d_n(K)| \le \text{const } (1/n!)^{\mu} \}.$$

Then $\delta(K)$ is the order of decay of the Fredholm coefficients d_n relative to 1/n!. Similarly, we have

(33)
$$D(z, K) = \sum D_n(K)z^n$$

where $D_n(K)$ is the *n*th Taylor coefficient of D(z, K). Since D(z, K) is entire, we must have $||D_n(K)|| \to 0$ as $n \to \infty$. Now put

(34)
$$\Delta(K) = \text{lub} \{ \mu > 0 : ||D_n(K)|| \le \text{const} (1/n!)^{\mu} \}$$

then $\Delta(K)$ is the corresponding order of decay of the $D_n(K)$ relative to 1/n!.

DEFINITION 11 (THE RESOLVENT). Again let K be a normal compact operator, and assume $\tau(K) < \infty$. For z any complex number with z^{-1} in the resolvent set of K, let $R(z^{-1}, K) = z(I - zK)^{-1}$. Then $R(z^{-1}, K)$ is an operator-valued function of z, meromorphic in the whole z-plane. In fact, we have $R(z^{-1}, K) = D(z, K)/d(z, K)$.

To estimate the rate of growth of $R(z^{-1}, K)$ as $|z| \to \infty$, we must replace the maximum modulus with something a little less sensitive to the presence of poles. For this purpose we introduce the *characteristic function of Nevanlinna*, defined as follows (cf. [3, p. 4]).

Let n(r, R) denote the number of poles of $R(z^{-1}, K)$ (i.e., the number of zeros of d(z, K)) lying inside the circle |z| = r, and define (note that n(0, R) = 0)

(35)
$$N(r,R) = \int_0^r n(t,R) \frac{dt}{t}$$

Furthermore, for x > 0, put $\log^+ x = \max \{\log x, 0\}$, and define

(36)
$$m(r, R) = \frac{1}{2\pi} \int_0^{2\pi} \log^+ \| R(r^{-1}e^{-i\theta}, K) \| d\theta.$$

Finally, define

(37)
$$T(r, R) = N(r, R) + m(r, R).$$

Then T(r, R) is Nevanlinna's characteristic function, designed to play the role of $\log M(r, D)$ for R. Clearly m(r, R) is a weighted average of the modulus of $R(z^{-1}, K)$ on the circle |z| = r, and N(r, R) counts the number of poles inside this circle. We shall see that T(r, R) is finite for all r, and that $T(r, R) \uparrow \infty$ as $r \uparrow \infty$ (cf. [3, p. 8]). The rate of growth of T(r, R) is measured by

(38)
$$\zeta(K) = \text{glb } \{\mu > 0 : T(r, R) \leq \text{const } r^{\mu} \}.$$

Clearly we have

(39)
$$\zeta(K) = \limsup_{r \to \infty} \frac{\log T(r, R)}{\log r}.$$

This completes our enumeration of possible measures of the "size" of K. We now propose to show that they are essentially all the same.

THEOREM 12. Let K be any compact operator acting on \mathcal{H} , and $A = (K^*K)^{1/2}$. Assume $\tau(K) < \infty$. Then (see Definitions 4-11)

(40)
$$2/(\beta(K)-1) = 1/\omega(K) = \rho(K) = \tau(K),$$

(41)
$$\gamma(A) = \Gamma(A) = 1/\delta(A) = 1/\Delta(A) = \zeta(A) = 1/\kappa(A) = \tau(A) = \tau(K)$$
.

If K is normal, then

(42)
$$\gamma(K) = \Gamma(K) = 1/\delta(K) = 1/\Delta(K) = \zeta(K) = 1/\kappa(K) = \tau(K).$$

If $2 \le \tau(K) < \infty$, then $\lambda(K, \Phi) = \lambda(K)$ is independent of Φ , and

$$\lambda(K) = \tau(K).$$

The proof of (40) depends on the following observations: Let $\{k_n\}$ be the eigenvalue sequence of K, counted with multiplicities and arranged in order of decreasing magnitude. For each $\varepsilon > 0$, let $n(\varepsilon) = \max\{n : |k_n| \ge \varepsilon\}$. Define

(44)
$$\kappa_{1}(K) = \operatorname{lub} \{ \mu : |k_{n}| \leq \operatorname{const} (1/n)^{\mu} \},$$

$$\kappa_{2}(K) = \operatorname{lub} \left\{ \mu : \left| \prod_{i=1}^{n} k_{i} \right| \leq \operatorname{const} (1/n!)^{\mu} \right\},$$

$$\tau_{1}(K) = \operatorname{glb} \{ \mu : n(\varepsilon) \leq \operatorname{const} (1/\varepsilon)^{\mu} \},$$

$$\tau_{2}(K) = \operatorname{glb} \left\{ \mu : \sum |k_{n}|^{\mu} < \infty \right\}.$$

LEMMA 13. With κ_1 , κ_2 and τ_1 , τ_2 as defined in (44), we have

(45)
$$\tau_1 = \tau_2 = 1/\kappa_1 = 1/\kappa_2.$$

Proof. That $\tau_1 = \tau_2$ is classic, and is proved e.g. in [4, p. 10]. That $\tau_1 = 1/\kappa_1$ is proved as follows (cf. [1]):

For any $\mu > \kappa_1$, we have $|k_n| \le \text{const} (1/n)^{\mu}$ for all n. Now given $\varepsilon > 0$, choose $n = n(\varepsilon)$, and note $\varepsilon \le |k_{n(\varepsilon)}| \le \text{const} (1/n(\varepsilon))^{\mu}$. Hence $n(\varepsilon) \le (\text{const}/\varepsilon)^{1/\mu}$ for all $\varepsilon > 0$, and so $\tau_1 \le 1/\mu$. Conversely, if $\mu < \kappa_1$, we have $|k_n| \ge \text{const} (1/n)^{\mu}$ for arbitrarily large n. Given such an n, choose $\varepsilon = |k_n|$, and note $\varepsilon = |k_n| \ge \text{const} (1/n(\varepsilon))^{\mu}$. Hence $n(\varepsilon) \le (\text{const}/\varepsilon)^{1/\mu}$ for arbitrarily small ε , and so $\tau_1 \ge 1/\mu$. Since μ is arbitrary, we have proved $\tau_1 \le 1/\kappa_1 \le \tau_1$.

To show that $\kappa_1 = \kappa_2$, note first that for any $\mu < \kappa_1$, $|k_n| \le \text{const} (1/n)^{\mu}$ for all n. Hence $|\prod_{i=1}^n k_i| \le (\text{const})^n (1/n!)^{\mu} \le \text{const} (1/n!)^{\nu}$ for any $\nu < \mu$. Hence $\kappa_1 \le \kappa_2$. Similarly, for any $\mu > \kappa_1$, $|k_n| \ge \text{const} (1/n)^{\mu}$ for arbitrarily large n, and so $|\prod_{i=1}^n k_i| \ge (\text{const})^n (1/n)^{n\mu} \ge \text{const} (1/n!)^{\nu}$ for any $\nu > \mu$. Hence $\kappa_2 \le \kappa_1$, and so $\kappa_1 = \kappa_2$.

To prove (40) we now simply observe that the image $\mathscr{E} = K(\mathscr{B})$ of the unit ball \mathscr{B} under K is a *compact ellipsoid*, whose semiaxes are just the eigenvalues a_n of A

(see [6]). It then follows directly that the *n*-dimensional metric volume V_n is given by

$$(46) V_n = B_n \prod_{i=1}^n a_i,$$

while the *n*-dimensional metric width w_n is given by

$$w_n = a_n$$

Hence

(47)

$$\beta(K) = \liminf_{n \to \infty} \frac{\log V_n}{\log B_n}$$

$$= \liminf_{n \to \infty} \frac{2 \log \prod_{i=1}^n a_i}{\log (1/n!)} + 1$$

$$= 2\kappa_2(A) + 1,$$

so $(\beta(K)-1)/2 = \kappa_2(A)$. Here we have used the known fact that

$$\lim_{n\to\infty} (\log B_n/\log 1/n!) = 1/2.$$

Since $w_n = a_n$ for all n, we have $\omega(K) = \kappa_1(A)$.

Furthermore, we know that the number $N(\varepsilon)$ of elements in an optimal ε -covering of \mathscr{E} is bounded above and below by (see [6])

(48)
$$\prod_{i=1}^{n(2\varepsilon)} \frac{a_i}{\varepsilon} \leq N(\varepsilon) \leq \prod_{i=1}^{n(\varepsilon/4\sqrt{2})} \frac{4\sqrt{2}a_i}{\varepsilon}.$$

Since $a_1 \ge a_2 \ge \cdots \ge a_n \ge 0$, we have

(49)
$$2^{n(2\varepsilon)} \leq N(\varepsilon) \leq (4\sqrt{2/\varepsilon})^{n(\varepsilon/4\sqrt{2})}.$$

Hence

(50)
$$n(2\varepsilon) \log 2 \le H(\varepsilon) \le n(\varepsilon/4\sqrt{2}) \log (4\sqrt{2}/\varepsilon).$$

By dividing through by $\log (1/\epsilon)$ and taking the limit supremum as $\epsilon \to 0$, we get

(51)
$$\tau_1(A) \leq \beta(K) \leq \tau_1(A).$$

From Lemma 13 we have $1/\kappa_1(A) = 1/\kappa_2(A) = \tau_1(A) = \tau_2(A) = \tau(A) = \tau(K)$. Hence

(52
$$2/(\beta(K)-1) = 1/\omega(K) = \beta(K) = 1/\kappa(A) = \tau(A) = \tau(K).$$

Moreover, if K is normal, then clearly $|k_n| = a_n$, and so $\kappa(K) = \kappa(A)$.

The proof of (41) depends on the following result: Let f(z) be an entire function of z, of finite genus. Let d_n be the nth coefficient of the Taylor series for f computed at the origin, and let z_n be the nth zero of f, counted with multiplicities and arranged in order of increasing magnitude. Define

(53)
$$\delta = \text{lub} \{ \mu : |d_n| \le \text{const} (1/n!)^{\mu} \},$$

$$\gamma = \text{glb} \{ \mu : |f(z)| \le \text{exp const} |z|^{\mu} \},$$

$$\tau = \text{glb} \{ \mu : \sum |z_n|^{-\mu} < \infty \}.$$

LEMMA 14. With γ , δ and τ as defined above, we have

$$(54) 1/\delta = \gamma = \tau.$$

Proof. The fact that $\gamma = \tau = \lim \sup_{n \to \infty} (n \log n / \log 1 / |d_n|)$ is classic (see[4, Chapter 1]). Here we need only observe that

(55)
$$\delta = \liminf_{n \to \infty} \frac{\log |d_n|}{\log (1/n!)}$$

Hence

(56)
$$1/\delta = \limsup_{n \to \infty_i} \frac{\log n!}{\log 1/|d_n|} = \gamma = \tau.$$

To prove (41), we observe that, if K is normal, and $\tau(K) < \infty$, then $d(z, K) = \det_k (I - zK)$ is given by

(57)
$$d(z, K) = \exp \operatorname{tr} \left\{ -\sum_{j=k+1}^{\infty} \frac{(zK)^{j}}{j} \right\}$$
$$= \prod_{n=1}^{\infty} \left\{ (1 - zk_{n}) \exp \sum_{j=1}^{k} \frac{(zk_{n})^{j}}{j} \right\}$$

(see [2, p. 1106]). Hence d(z, K) is an entire function of z, of finite genus, whose zeros are $z_n = 1/k_n$, and whose Taylor coefficients are $d_n(K)$. It follows immediately from Lemma 14 that

(58)
$$1/\delta(K) = \gamma(K) = \tau(K).$$

If now K is arbitrary, then A is normal, and

(59)
$$1/\delta(A) = \gamma(A) = \tau(A) = \tau(K).$$

A similar argument holds for D(z, K). Assume K is normal, and $\tau(K) < \infty$. Then for any eigenvalue k_n of K and any z with |z| > 1 we have

(60)
$$|z/(1-zk_n)| \ge 1/(1+|k_n|) \ge 1/(1+|k_1|).$$

It follows that the resolvent $R(z^{-1}, K)$ of K satisfies

(61)
$$||R(z^{-1}, K)|| \ge 1/(1 + ||K||)$$

for all z with |z| > 1. Hence $D(z, K) = d(z, K)R(z^{-1}, K)$ satisfies

(62)
$$||D(z,K)|| \ge |d(z,K)|/(1+||K||)$$

for all z with |z| > 1.

It follows that

(63)
$$\Gamma(K) \ge \gamma(K).$$

On the other hand, if $\mu > \tau(K)$, then we know that

(64)
$$||D(z, K)|| \le |z| \exp \{ \text{const } |z|^{\mu} ||K||_{\mu}^{\mu} \}$$

(see [2, p. 1112]). Hence $\Gamma(K) \leq \mu$, and so $\Gamma(K) \leq \tau(K) = \gamma(K)$.

The proof that $\Delta(K) = 1/\Gamma(K)$ is the operator analogue of the proof that $\delta(K) = 1/\gamma(K)$, and will not be presented here (see [4, p. 4]).

Thus when K is normal, we have $1/\Delta(K) = \Gamma(K) = \tau(K)$. When K is arbitrary, we have $1/\Delta(A) = \Gamma(A) = \tau(A) = \tau(K)$.

We note in passing that the order of decay of the Fredholm coefficients is of some interest in the problem of computing approximants to $R(z^{-1}, K) = D(z, K)/d(z, K)$. The asymptotic accuracy of the approximants can be estimated from the values of $\delta(K)$ and $\Delta(K)$, which in turn can be determined from the value of the invariant $\tau(K)$.

For the resolvent, we argue as follows: With N(r, R), m(r, R) and T(r, R) defined as in (35), (36) and (37), note that n(r, R) is the number of poles of $R(z^{-1}, K)$ inside |z|=r, i.e., the number of zeros of d(z, K) inside |z|=r, which is just the number of eigenvalues k_n of K with $|k_n| \ge 1/r$. By Lemma 13, then, n(r, R) has order of growth $\tau(K)$. It follows that

$$N(r, R) = \int_0^r n(t, R) \frac{dt}{t}$$

also has order of growth $\tau(K)$.

To compute the order of growth of m(r, R), first note that

$$||R(z^{-1}, K)|| = |d(z, K)^{-1}| ||D(z, K)||.$$

Hence

$$\log^+ \|R(z^{-1}, K)\| \le \log^+ |d(z, K)^{-1}| + \log^+ \|D(z, K)\|.$$

Thus $m(r, R) \leq m(r, 1/d) + m(r, D)$.

Now $m(r, D) \le \log^+ M(r, D) = \log M(r, D)$ for r sufficiently large. Here M(r, D) is the maximum modulus of D(z, K). The order of growth $\Gamma(K)$ of $\log M(r, D)$ we have shown to be equal to $\tau(K)$.

For m(r, 1/d), we observe that from Jensen's Theorem we have (cf. [3, p. 4])

(65)
$$m(r, 1/d) + N(r, 1/d) = m(r, d) + N(r, d).$$

But since d(z, K) is entire, N(r, d) = 0. Moreover, for large r, $m(r, d) \le \log M(r, d)$, whose order of growth $\gamma(K)$ is equal to $\tau(K)$. Finally N(r, 1/d) = N(r, R) has order of growth $\tau(K)$, as shown above. It follows that m(r, 1/d) has order of growth at most $\tau(K)$.

Hence T(r, R) = m(r, R) + N(r, R) has order of growth equal to the maximum of that of m(r, R) and N(r, R), which is just $\tau(K)$, as required.

We have shown that if K is normal, then $\zeta(K) = \tau(K)$. When K is arbitrary, then A is normal, and we have $\zeta(A) = \tau(A)$.

It remains to prove (43). Let K be any compact operator with $2 \le \tau(K) < \infty$, and $\Phi = \{\phi_n\}$ any orthonormal basis for \mathscr{E} . We know that if $2 \le \lambda(K, \Phi) < \mu$, then

19681

 $\sum \|K\phi_n\|^{\mu} < \infty$ and so $\|K\|_{\mu} < \infty$ (cf. [2, p. 1106]) and so $\lambda(K) < \mu$. Hence $\lambda(K) \le \lambda(K, \Phi)$.

Conversely, if $2 \le \tau(K) < \mu$, then we know that $||K||_{\mu} < \infty$, and so

$$\sum \|K\phi_n\|^{\mu} = \sum (A^2\phi_n, \phi_n)^{\mu/2} < \text{const}(\|A^2\|_{\mu/2}) = \text{const}(\|K\|_{\mu})^{\mu} < \infty$$

(cf. [2, p. 1138]). Thus $\lambda(K, \Phi) < \mu$, and so $\lambda(K, \Phi) \le \tau(K)$.

Note that this result is independent of the choice of basis Φ .

The argument also proves that if $\tau(K) \leq 2$, then $\lambda(K, \Phi) \leq 2$, and if $\lambda(K, \Phi) \leq 2$ then $\tau(K) \leq 2$. In these cases, however, $\lambda(K, \Phi)$ is no longer independent of the basis Φ and equals $\tau(K)$ only for bases "sufficiently close" to the eigenfunctions of A.

BIBLIOGRAPHY

- 1. R. M. Dudley, The sizes of compact subsets of Hilbert space and continuity of Gaussian processes (to appear).
- 2. N. Dunford and J. T. Schwartz, *Linear operators*. Part II: Spectral theory, Interscience, New York, 1963.
 - 3. W. K. Hayman, Meromorphic functions, Clarendon, Oxford, 1964.
- 4. B. Ja. Levin, Distribution of zeros of entire functions, Transl. Math. Monographs, Vol. 5, Amer. Math. Soc., Providence, R. I., 1964.
- 5. G. G. Lorentz, Metric entropy, widths, and superpositions of functions, Amer. Math. Monthly 69 (1962), 469-485.
- 6. R. T. Prosser and W. L. Root, The ε-entropy and ε-capacity of certain time-invariant channels, J. Math. Anal. Appl. 21 (1968), 233-241.

DARTMOUTH COLLEGE,

HANOVER, NEW HAMPSHIRE