A CHARACTERIZATION OF THE RIESZ SPACE OF MEASURABLE FUNCTIONS

BY J. J. MASTERSON

1. **Introduction.** In [2], Kakutani has shown that any abstract (L)-space (Banach lattice such that ||u+v|| = ||u|| + ||v|| for $u \ge 0$ and $v \ge 0$) can be represented as a space $L_1(X, \mathcal{S}, \mu)$ of equivalence classes of μ -summable functions, where μ is a completely additive measure on a σ -algebra of subsets of some set X. This result can also be viewed as a characterization of the class of spaces $L_1(X, \mathcal{S}, \mu)$ by properties of the norm and order.

The purpose of this note is to show that an analogous classification exists for the class of spaces $\mathcal{M}(X, \mathcal{S}, \mu)$ (the set of equivalence classes of almost-everywhere finite valued μ -measurable functions on the measure space (X, \mathcal{S}, μ)) as long as μ is restricted to be a σ -finite measure. Since such spaces can not be normed, the characterization will involve only order properties. The above-mentioned classical theorem of Kakutani will be of significant value in obtaining our result.

The principal condition needed is a reflexivity property for Riesz spaces (vector lattices) which we will study in §2. Lastly, we examine the non σ -finite case.

2. Riesz space preliminaries. Let L be an Archimedean Riesz space throughout this paper. A linear functional φ defined on L is said to be a normal integral if $0 \le u_{\tau} \downarrow 0$ in L implies that inf $|\varphi(u_{\tau})| = 0$. The space L_{n}^{\sim} of normal integrals is a closed ideal in the order-bound dual of L. (Further explanation of the definitions and notations used may be found in [3].)

In [3], the concept of the normal integral is generalized by considering functionals that are normal integrals for some dense ideal $D \subset L$. This gives rise to an extended dual space which we denote by $\Gamma(L)$. The space $\Gamma(L)$ is a Dedekind complete and universally complete Riesz space, containing L_n^{\sim} as an ideal [3, Theorems 2.5 and 2.6].

If $\Gamma(L)$ is separating on L, then L is an order-dense Riesz subspace of $\Gamma^2(L)$. If $\Gamma^2(L)=L$, we say that L is perfect in the extended sense. This is the reflexivity condition referred to in the introduction. The following result [3, Theorem 2.7] is a characterization which will be used:

(A) A Riesz space L, for which $\Gamma(L)$ is separating, is perfect in the extended sense if and only if $0 \le u_{\tau} \in L$, $u_{\tau} \uparrow$ and

 $\sup \varphi(u_{\tau}) < \infty$

for every $0 \le \varphi \in \Gamma(L)$ which belongs to some order-dense ideal in $\Gamma(L)$, implies that $\sup (u_t) = u$ exists.

Notice that the condition $\Gamma^2(L) = L$ implies that L is Dedekind complete but that in the general non σ -finite case, $\mathcal{M}(X, \mathcal{S}, \mu)$ need not be Dedekind complete. This gives rise to the restriction on the measure μ .

We recall some définitions and facts about order completions of a Riesz space. L is said to be universally complete if $0 \le u_\tau \in L$ and inf $(u_{\tau_1}, u_{\tau_2}) = 0$ for $\tau_1 \ne \tau_2$ imply that $u = \sup(u_\tau)$ exists in L. Nakano has shown [5] that every Archimedean Riesz space can be embedded as a dense Riesz subspace, in a Dedekind complete and universally complete Riesz space L' in such a way that suprema taken in L are preserved when taken in L'. The latter space is unique (up to isomorphism) and is called the universal completion of L. Moreover, if L is Dedekind complete, then it is an ideal in L'. From the uniqueness it follows that if L is universally complete and Dedekind complete and D is a dense ideal in L, then L is the universal completion of D. Hence, if $\Gamma(L)$ is separating on L, implying L is dense in $\Gamma^2(L)$, then L is Dedekind complete and universally complete if and only if L is perfect in the extended sense.

3. The characterization. Given any element ψ in $\Gamma(L)$, there is a unique largest order-dense ideal to which $|\psi|$ can be extended finitely. We denote it by D_{ψ} . $\psi|D_{\psi}$ is a normal integral. Moreover, a positive element u in L is in D_{ψ} if and only if

$$\sup \{\psi(v): 0 \le v \le u, v \in I_{\psi}\} < \infty,$$

where I_{ψ} is any dense ideal on which ψ is defined (that is, finitely defined) [3]. Moreover, Theorem 2.5 of the paper just cited says that if $\Gamma(L)$ is separating on L, there exists in $\Gamma(L)$ a strictly positive linear functional φ , that is, one such that $\varphi(u) > 0$ for all $u \in D_{\varphi}$, u > 0. We now state the central result.

THEOREM. Let L be a Riesz space which is Dedekind complete, universally complete and such that $\Gamma(L)$ is separating on L. Then L contains a dense ideal which is an abstract (L)-space.

Proof. Let φ be a strictly positive element in $\Gamma(L)$. Let D be the (unique) largest order-dense ideal to which $|\varphi|$ can be extended finitely. For any u in L define $||u|| = \varphi(|u|)$. Then $||u|| \ge 0$; equals zero if and only if u = 0 since φ is strictly positive. ||uu|| = |a| ||u|| for a scalar a and $||u+v|| \le ||u|| + ||v||$ follow from the linearity of φ . That $|u| \le |v|$ implies $||u|| \le ||v||$ results from the positivity of φ . So, with $||\cdot||$ as norm, D is a normed vector lattice. If $u \ge 0$ and $v \ge 0$, $||u+v|| = \varphi(|u+v|) = \varphi(u+v) = \varphi(u) + \varphi(v) = \varphi(|u|) + \varphi(|v|) = ||u|| + ||v||$. To show that D is an abstract (L)-space then, it remains only to prove that D is a complete space under $||\cdot||$.

Let $\langle u_n \rangle$ be an absolutely convergent series in D. So, there is M such that $\sum_{n=1}^{\infty} \|u_n\| \le M < \infty$. But then $\|u_n^+\| \le \|u_n\|$ and $\|u_n^-\| \le \|u_n\|$ imply that $\langle u_n^+ \rangle$ and $\langle u_n^- \rangle$ are absolutely convergent series in D with the same absolute bound M.

Let $v_n = \sum_{k=1}^n u_k^+$. Then, $\langle v_n \rangle$ is an increasing sequence in D and $||v_n|| \leq M$, n=1, 2, So, $\varphi(v_n) \leq M$, n=1, 2, ... and hence $\sup_n \varphi(v_n) < \infty$. For any ψ in I, then, where I is the principal ideal generated by φ , we have

$$\sup_{n} \psi(v_n) < \infty.$$

However, since φ is strictly positive, I is an order-dense ideal in $\Gamma(L)$. Hence, the conditions in the conclusion of (A) are satisfied for the sequence $\{v_n\}$. Since L is perfect in the extended sense (being Dedekind complete and universally complete) then, $v = \sup(v_n)$ must exist in L. Now, $\sup \varphi(v_n) \leq M$ implies that

$$\sup \{\varphi(w): 0 \le w \le v, w \in D\} < \infty.$$

(For if $0 \le w \le v$, sup (inf (w, v_n)) = w, hence $\varphi(w) \le M$.) By remarks made above, then, v is in D, and since φ is a normal integral on D, $\lim \varphi(v_n) = \varphi(v)$. So, $\lim \|v - v_n\| = 0$, hence $\lim \|v - \sum_{k=1}^n u_k^+\| = 0$. In the same way, we obtain v' in D such that $\lim \|v' - \sum_{k=1}^n u_k^-\| = 0$. But then, $\lim \|(v - v') - \sum_{k=1}^n u_k\| = 0$. We have shown that every absolutely summable series in D is summable. Hence, D is complete, finishing the proof.

Using Kakutani's representation theorem, the ideal D is isomorphic to a space $L_1 = L_1(X, \mathcal{S}, \mu)$ (μ may not be σ -finite). Let $\mathcal{M} = \mathcal{M}(X, \mathcal{S}, \mu)$ be the associated space of equivalence classes of measurable functions. Now D (or L_1) may be regarded as a dense ideal in both \mathcal{M} and L. Hence, using [3, Theorems 2.6 and 2.3] (along with the hypotheses of the theorem) we have $\mathcal{M} \subseteq \Gamma^2(\mathcal{M}) = \Gamma^2(L) = L$. Moreover, L is the universal completion of \mathcal{M} . So,

COROLLARY 1. Let L be a Riesz space which is Dedekind complete, universally complete and such that $\Gamma(L)$ is separating on L. Then, L contains a dense Riesz subspace which is isomorphic to $\mathcal{M}(X, \mathcal{S}, \mu)$.

The Riesz space L is said to be *super Dedekind complete* if L is Dedekind complete and if any subset $A \subseteq L$ which is bounded above contains an, at most, countable subset having the same least upper bound as the whole set A.

This property was introduced by Luxemburg and Zaanen in [4] and studied in their later papers under the same title.

It can now be shown that if this condition is added to the hypotheses of the theorem, the measure μ obtained in the corollary above must be σ -finite.

Let $\{X_{\alpha}\}$ be the class of all sets of finite μ -measure. We must have then, that $\chi_X = \sup (\chi_{X_{\alpha}})$ in L (χ_E being the class containing the characteristic function of E). There must then be an at most countable subset $\{\chi_{X_n}\}$ such that $\chi_X = \sup (\chi_{X_n})$. But then $X = \bigcup_{n=1}^{\infty} X_n$ (except possibly for a set of μ measure zero). Hence, μ is a σ -finite measure on S.

With μ σ -finite, we can show that $\mathcal{M} = L$. First of all, if μ is σ -finite, then \mathcal{M} is Dedekind complete. [1, IV, p. 335.] The following two facts are also readily obtained

- (a) \mathcal{M} contains a complete element i.e., there is $0 \le e \in \mathcal{M}$ such that inf (e, x) = 0 implies x = 0.
 - (b) *M* contains the supremum of any countable disjoint set of its elements.

Nakano has shown [5] that for a Dedekind complete Riesz space, (a) and (b) are necessary and sufficient for universal completeness. So, \mathcal{M} is universally complete and hence, $\mathcal{M} = L$.

We have obtained one half of the characterization described in the introduction. The other half is a rather routine verification. We state the result:

COROLLARY 2. Let L be a Riesz space. In order that there exist a completely additive σ -finite measure space (X, \mathcal{S}, μ) such that $L = \mathcal{M}(X, \mathcal{S}, \mu)$, the following conditions are necessary and sufficient:

- (1) $\Gamma(L)$ is separating on L,
- (2) L is universally complete,
- (3) L is super Dedekind complete.
- 4. The non σ -finite case. The last corollary cannot be modified to include any measure μ , since even the condition that $\Gamma(L)$ be separating restricts the measure μ to have the *finite subset property*, that is, any set of μ -positive measure has a subset of μ -finite measure (a fact we used in proving the last corollary).

As can be seen from the first two corollaries, a characterization in the non σ -finite case will obtain if a condition on μ can be found which guarantees that $\mathcal{M}(X, \mathcal{S}, \mu)$ is Dedekind complete. Such a condition appears in a paper of A. C. Zaanen [6] concerning an extension of the Radon-Nikodym Theorem. Namely, the measure μ is said to be *localizable* if the lattice of equivalence classes of μ -measurable sets is complete. (The term is originally due to I. E. Segal.) We discuss a characterization of this property.

Given a set E of finite μ -measure, let M_E^* be the collection of equivalence classes f^* of μ -measurable functions f vanishing almost everywhere off E. If for each such E we select f_E^* in M_E^* in such a way that for E and F of finite measure we have $(f_{E\cap F})^* = (f_{EXE\cap F})^* = (f_{FXE\cap F})^*$, then the collection $\{f_E^*\}$ is called a *cross-section* of X. Theorem 9.4 in [6] states that the measure μ is *localizable* if and only if for every cross-section $\{f_E^*\}$, there is a measurable f defined on all of f such that f such that f in the finite measure.

The value of localizability is that it characterizes those measure spaces for which there is a Radon-Nikodym Theorem.

Assuming now that μ is localizable, let $\{f_{\alpha}^*\}$ be a collection of nonnegative elements in $\mathcal{M} = \mathcal{M}(X, \mathcal{S}, \mu)$, bounded above by g. Then, $(f_{\alpha \chi_E})^*$ is in M_E^* for each set E of finite measure. But, M_E^* is Dedekind complete since the restriction of μ to E is a finite measure. Moreover, $(f_{\alpha \chi_E})^* \leq (g\chi_E)^*$. Hence, sup $(f_{\alpha \chi_E}^*) = f_E^*$ (supremum taken in \mathcal{M} since M_E^* is an ideal in \mathcal{M}) exists and is an element of M_E^* . Now it is easily verified that the collection $\{f_E^*\}$ is a cross-section, and hence there exists f^* in \mathcal{M} such that $(f\chi_E)^* = f_E^*$ for each set E of finite measure. This last

statement is true, however, only if $f^* = \sup (f_{\alpha}^*)$. So, \mathcal{M} is complete and we have the following:

COROLLARY 3. Let L be a Riesz space. The following conditions are necessary and sufficient that there exist a completely additive localizable measure μ such that $L = \mathcal{M}(X, \mathcal{S}, \mu)$:

- (1) $\Gamma(L)$ is separating,
- (2) L is Dedekind complete and universally complete.

REFERENCES

- 1. N. Dunford and J. T. Schwartz, Linear operators, Part I, Interscience, New York, 1958.
- 2. S. Kakutani, Concrete representation of abstract (L)-space and the mean ergodic theorem, Ann. of Math. 42 (1941), 523-537.
- 3. W. A. J. Luxemburg and J. J. Masterson, An extension of the concept of the order dual of a Riesz space, Canad. J. Math. 19 (1967), 488-498.
- 4. W. A. J. Luxemburg and A. C. Zaanen, *Notes on Banach function spaces*. VII, Nederl. Akad. Wetensch. Proc. Ser. A 66 (1963), 669-681.
 - 5. H. Nakano, Modern spectral theory, Maruzen, Tokyo, 1950.
- 6. A. C. Zaanen, *The Radon-Nikodym theorem*. II, Nederl. Akad. Wetensch. Proc. Ser. A 64 (1961), 171-187.

MICHIGAN STATE UNIVERSITY, EAST LANSING, MICHIGAN