CHEBYSHEV APPROXIMATION BY FAMILIES WITH THE BETWEENESS PROPERTY

BY CHARLES B. DUNHAM

1. Introduction. In this note a theory of Chebyshev approximation is obtained for approximating families with a property which is a generalization of convexity, the betweeness property. This theory is of interest for several reasons. Most of the approximating families for which a tractable theory exists characterize best approximations by the extrema of their error curve. The betweeness property is the weakest easily verifiable condition giving such a characterization of best approximations. The development of the theory sheds considerable light on the well-known linear theory [2], [5] and rational theory [1], [2], [3]. A necessary and sufficient condition for the uniqueness of best approximations is obtained; it is the most general known necessary and sufficient condition for any theory.

Let X be a compact space and for a function g define $||g|| = \sup\{|g(x)| : x \in X\}$. Let $\mathscr G$ be a family of real continuous functions with elements F, G, H, \ldots . The Chebyshev problem is: given a continuous function f, to find an element G^* of $\mathscr G$ to minimize $e(G) = ||E(G, \cdot)||$ where E(G, x) = f(x) - G(x). Such an element G^* is called a best approximation in $\mathscr G$ to f on X. It will be assumed throughout the discussion that f is fixed, and mention of f is suppressed in the notation e(G) and $E(G, \cdot)$.

The author wishes to thank Professor E. Barbeau for his careful criticism of the hypotheses and proofs of this note.

2. The betweeness property.

DEFINITION. A family $\mathscr G$ of real continuous functions is said to have the betweeness property if for any two elements G_0 and G_1 , there exists a λ -set $\{H_{\lambda}\}$ of elements of $\mathscr G$ such that $H_0 = G_0$, $H_1 = G_1$, and for all $x \in X$, $H_{\lambda}(x)$ is either a strictly monotonic continuous function of λ or a constant, $0 \le \lambda \le 1$. (It should be noted that $H_{\lambda}(x)$ can be monotone in different senses for different x.)

LEMMA 1. Let $\{G_k\}$ be a sequence of continuous functions on a compact space X such that $\{G_k\}$ converges pointwise to a continuous function G_0 and for any $x \in X$, $G_k(x)$ is a monotonic sequence, then $\{G_k\}$ converges uniformly to G_0 .

Proof. The sequence $|G_k(x) - G_0(x)|$ is a decreasing sequence of continuous functions, which converges to the continuous limit 0. By Dini's theorem, the convergence is uniform. From this lemma it can be seen that if $\{H_{\lambda}\}$ is a λ -set for G_0 and G_1 then the sequence $\{H_{1/k}\}$ converges uniformly to G_0 .

Any linear family \mathscr{L} of continuous functions (and any convex subset of \mathscr{L}) has the betweeness property, for a λ -set is given by $H_{\lambda} = \lambda G_1 + (1 - \lambda)G_0$.

More generally let $\mathscr P$ and $\mathscr D$ be linear families and $\mathscr F$ a convex set of pairs $(p,q), p \in \mathscr P, q \in \mathscr D$ such that $(p,q) \in \mathscr F$ implies $(\alpha p, \alpha q) \in \mathscr F$ for $\alpha > 0$. A function is an $\mathscr F$ -admissible rational function if it is of the form p/q, $(p,q) \in \mathscr F, q > 0$. The set $\mathscr R(\mathscr F)$ of $\mathscr F$ -admissible rational functions has the betweeness property, for the λ -set corresponding to p_0/q_0 and p_1/q_1 is

$$H_{\lambda} = (\lambda p_1 + (1 - \lambda)p_0)/(\lambda q_1 + (1 - \lambda)q_0),$$

$$dH_{\lambda}/d\lambda = (p_1q_0 - p_0q_1)/(\lambda q_1 + (1 - \lambda)q_0)^2$$

being of constant sign for a given point x and vanishing identically at any point x at which $p_0/q_0-p_1/q_1$ vanishes. In the case where \mathscr{F} consists of all pairs we obtain the family

$$\mathcal{R} = \{p/q : p \in \mathcal{P}, q \in \mathcal{Q}, q > 0\}$$

of admissible rational functions.

If ϕ is a continuous strictly monotonic function from the real line into the real line and \mathcal{G} has the betweeness property, then the set of elements of the form $\phi(G)$, $G \in \mathcal{G}$ has the betweeness property, for if $\{H_{\lambda}\}$ is a λ -set for G_0 and G_1 , $\{\phi(H_{\lambda})\}$ is a λ -set for $\phi(G_0)$ and $\phi(G_1)$.

After the theory of this paper had been obtained it was noticed that Meinardus and Schwedt had used a condition [4, p. 304] quite close to the betweeness property, but developed a different type of theory.

3. Characterization of best approximation. The points at which $E(G, \cdot)$ attains its norm e(G) will be denoted by M(G). By compactness of X and continuity of $E(G, \cdot)$, M(G) is nonempty and closed.

THEOREM 1. Let \mathcal{G} have the betweeness property. An element G_0 of \mathcal{G} is a best approximation if and only if there exists no element $G_1 \in \mathcal{G}$ such that $|E(G_1, x)| < e(G_0)$ for all $x \in M(G_0)$.

Proof. The condition is obviously sufficient for G_0 to be a best approximation (we do not need the betweeness property). We now prove necessity. Let us suppose that $|E(G_1, x)| < e(G_0)$ for all $x \in M(G_0)$ then by continuity of $E(G_1, \cdot)$ there exists an open cover U of $M(G_0)$ on which this inequality holds. Let $V = X \sim U$, then if V is empty it is immediate that G_0 is not best. We therefore suppose that V is non-empty. Let H_{λ} be a λ -set corresponding to G_0 and G_1 , $H_0 = G_0$, $H_1 = G_1$. On the set U we have $E(H_{\lambda}, x)$ on the open interval between $E(G_0, x)$ and $E(G_1, x)$ for $0 < \lambda < 1$, hence

$$E(H_{\lambda}, x) < e(G_0), \quad 0 < \lambda < 1, x \in U.$$

Let $\eta = e(G_0) - \sup \{ |E(G_0, x)| : x \in V \}$. As V is compact and $E(G_0, \cdot)$ is continuous, $E(G_0, \cdot)$ attains its supremum on V and this supremum cannot be $e(G_0)$, as

 $M(G) \cap V$ is empty, hence $\eta > 0$. The sequence $\{H_{1/k}\}$ converges uniformly to G_0 . Choose $\delta > 0$ such that $||G_0 - H_{\delta}|| < \eta$. It follows that for $x \in V$,

$$|E(H_{\delta}, x)| = |f(x) - H_{\delta}(x)| \le |f(x) - G_{0}(x)| + |G_{0}(x) - H_{\delta}(x)| < e(G_{0}) - \eta + \eta = e(G_{0}).$$

Combining this inequality and the previous one for $x \in U$, we have

$$|E(H_{\delta}, x)| < e(G_0), \quad x \in X = U \cup V.$$

and G_0 is not best, proving necessity. The theorem is proven.

Let us suppose that $E(G_0, x) \cdot (G_1(x) - G_0(x)) > 0$ for all $x \in M(G_0)$ and $\{H_\lambda\}$ is a λ -set for G_0 and G_1 . For λ sufficiently small, $|E(H_\lambda, x)| < e(G_0)$ for all $x \in M(G_0)$. We then apply Theorem 1 to get

COROLLARY. Let \mathcal{G} have the betweeness property. An element G_0 of \mathcal{G} is a best approximation if and only if there exists no element $G_1 \in \mathcal{G}$ such that $E(G_0, x) \cdot (G_1(x) - G_0(x)) > 0$ for all $x \in M(G_0)$.

4. An error determining set on which best approximations agree. Let \mathscr{G}^* be the set of best approximations to f and $N = \bigcap M(G)$, $G \in \mathscr{G}^*$. We will show in this section that if \mathscr{G}^* is nonempty then N is nonempty, best approximations must agree on N and that N is an error determining set, that is, there exists no approximant F such that $|E(F,x)| < \inf \{e(G) : G \in \mathscr{G}\}$ for $x \in N$. In the cases of approximation by linear or rational families of finite dimension, it can easily be shown that if \mathscr{G}^* is nonempty, there exists an element $F \in \mathscr{G}$ such that M(F) = N; in the linear case any element of the convex interior of \mathscr{G}^* is such an F. This is not true in general, for let X = [0, 1] and \mathscr{G} be the set of monotonic continuous functions G with G zero in a neighborhood of the point zero. In the approximation of f = 1 any element G of \mathscr{G} such that $\|1 - G\| = 1$ is a best approximation and $N = \{0\}$, but there is no element G such that M(G) = N.

LEMMA 3. Let \mathscr{G} have the betweeness property and \mathscr{G}^* be nonempty. Given a finite number G_1, \ldots, G_n of elements of \mathscr{G}^* there exists an element G_0 of \mathscr{G}^* such that $\bigcap_{k=1}^n M(G_k) \supset M(G_0)$.

Proof. Let G_1 and G_2 be any two best approximations and \overline{G}_1 be any element of the λ -set corresponding to G_1 and G_2 , $0 < \lambda < 1$, then for all $x \in X$, $\overline{G}_1(x)$ lies between $G_1(x)$ and $G_2(x)$,

$$|E(\overline{G}_1, x)| \le \sup\{|E(G_1, x)|, |E(G_2, x)|\}$$

with equality only if $G_1(x) = G_2(x)$. It follows that \overline{G}_1 is a best approximation and $M(\overline{G}_1) \subseteq M(G_1) \cap M(G_2)$. Similarly, there exists $\overline{G}_k \in \mathscr{G}^*$ such that \overline{G}_k is in the λ -set corresponding to \overline{G}_{k-1} and G_{k+1} , $0 < \lambda < 1$, and $M(\overline{G}_k) \subseteq \bigcap_{j=1}^{k+1} M(G_j)$, $k = 2, \ldots, n-1$. The required approximant in \mathscr{G}^* is \overline{G}_{n-1} and the lemma is proven.

COROLLARY. Let G_0 , $G_1 \in \mathcal{G}^*$, then the λ -set $\{H_{\lambda}\}$ for G_0 and G_1 is contained in \mathcal{G}^* .

Lemma 4. Let \mathcal{G} have the betweeness property. If \mathcal{G}^* is nonempty, N is nonempty.

Proof. If N, an intersection of a nonempty family of closed sets, were empty, it could be expressed as a finite intersection of these sets.

$$N = \bigcap_{k=1}^{n} M(G_k), \qquad G_k \in \mathscr{G}^*.$$

By the previous lemma there exists $G_0 \in \mathcal{G}^*$ such that $\bigcap_{k=1}^n M(G_k) \supset M(G_0)$. It follows from the definition of N that $N = M(G_0)$. But $M(G_0)$ is nonempty and so we have a contradiction proving the lemma.

LEMMA 5. Let the family \mathscr{G} of real continuous functions have the betweeness property. Let G_0 , $G_1 \in \mathscr{G}^*$, then $G_0(x) = G_1(x)$ for all $x \in N$.

Proof. Let G_0 , $G_1 \in \mathcal{G}^*$ be given and select a λ -set $\{H_{\lambda}\}$ corresponding to G_0 and G_1 , $0 < \lambda < 1$. If $G_0(x) \neq G_1(x)$ for some x, then

$$|E(H_{\lambda}, x)| < \max\{|E(G_0, x)|, |E(G_1, x)|\}$$

for $0 < \lambda < 1$ and since $\{H_{\lambda}\} \in \mathcal{G}^*$, $x \notin N$.

LEMMA 6. Let \mathcal{G} have the betweeness property. If \mathcal{G}^* is nonempty there exists no approximant G such that $|E(G, x)| < \inf \{e(G) : G \in \mathcal{G}\}$ for all $x \in N$.

Proof. Suppose such a G exists, then by continuity of $E(G, \cdot)$, the inequality

$$|E(G, x)| < \inf \{e(G) : G \in \mathcal{G}\} = \Delta(f, \mathcal{G})$$

holds on an open cover U of N. Let $V = X \sim U$, then V is nonempty (for otherwise $e(G) < \Delta(f, \mathcal{G})$, which is impossible).

Since

$$\{ \cap (V \cap M(F)) : F \in \mathscr{G}^* \} = V \cap N = \emptyset$$

is an intersection of closed sets in a compact space, there exists a finite set G_1, \ldots, G_n of elements of \mathscr{G}^* such that $\bigcap_{k=1}^n (V \cap M(G_k)) = \varnothing$. Applying Lemma 3, there exists $G_0 \in \mathscr{G}^*$ such that $M(G_0) \subset \bigcap_{k=1}^n M(G_k) \subset U$. Now let $\{H_\lambda\}$ be a λ -set corresponding to G_0 and G, $H_0 = G_0$, $H_1 = G$. Since $E(H_\lambda, x)$ is between $E(G_0, x)$ and E(G, x) for $0 < \lambda < 1$ and $x \in U$,

$$E(H_{\lambda}, x) < e(G_0), \qquad 0 < \lambda < 1, x \in U.$$

Now let $\eta = e(G_0) - \sup\{|E(G_0, x)| : x \in V\}$. As the sequence $\{H_{1/k}\}$ converges uniformly to G_0 , there exists $\delta > 0$ such that $||G_0 - H_{\delta}|| < \eta$. For $x \in V$ we have

$$|E(H_{\delta}, x)| = |f(x) - H_{\delta}(x)|$$

$$\leq |f(x) - G_{0}(x)| + |G_{0}(x) - H_{\delta}(x)| < e(G_{0}) - \eta + \eta = e(G_{0}).$$

Combining this inequality for $x \in V$ with the earlier one for $x \in U$, we have $E(H_{\delta}, x) < e(G_0), x \in X$, and so

$$e(H_{\delta}) < \inf \{ e(G) : G \in \mathcal{G} \}.$$

This is a contradiction and the lemma is proven.

5. Uniqueness results. Lemmas 5 and 6 are very powerful results. Using them we can obtain many uniqueness results. We give below the most general uniqueness result, a generalization of Haar's classical result concerning necessary and sufficient conditions for best linear approximations to be unique. After this result was obtained it was noted that it includes a uniqueness result of Singer [6] for approximation by arbitrary linear subspaces of C(X).

DEFINITION. A family $\mathscr G$ of real continuous functions is said to have zero-sign compatibility if for any two distinct elements G and H, any closed subset Z of the zeros of G-H, and any continuous function s which takes the values +1 or -1 on Z, there exists $F \in \mathscr G$ such that

(*)
$$\operatorname{sgn}(F(x) - G(x)) = s(x), \quad x \in \mathbb{Z}.$$

Without loss of generality we can assume ||s|| = 1.

THEOREM 2. Let G have the betweeness property. A necessary and sufficient condition that for every continuous function a best approximation is unique is that G have zero-sign compatibility.

Proof. Suppose that for two distinct elements G and H, a closed subset Z of the zeros of G-H, and a continuous function s, ||s||=1, which takes the values +1 or -1 on Z, there exists no element F for which (*) holds.

Define:

$$f(x) = G(x) + s(x)[\|G - H\| - |G(x) - H(x)|],$$

then

$$E(G, \cdot) = s(x)[\|G - H\| - |G(x) - H(x)|].$$

For $x \in Z$ we have $E(G, x) = s(x) \|G - H\|$, hence $Z \subseteq M(G)$. If a better approximant F existed it would satisfy

$$\operatorname{sgn}(F(x)-G(x))=s(x), \quad x\in Z,$$

which is impossible by hypothesis. Hence G is a best approximation to f and since

$$|f(x) - H(x)| \le |f(x) - G(x)| + |G(x) - H(x)|$$

$$\le ||G - H|| - |G(x) - H(x)| + |G(x) - H(x)| = ||G - H||,$$

H is also a best approximation to f, proving necessity.

REMARK. The proof of necessity assumes nothing about \mathscr{G} and therefore shows that zero-sign compatibility is necessary for uniqueness, \mathscr{G} any approximating family.

Suppose now that \mathscr{G} has zero-sign compatibility and G, G_1 are distinct best approximations. Therefore $G(x) = G_1(x)$ for $x \in N$ by Lemma 5. Let the function s be $E(G, \cdot)/\|E(G, \cdot)\|$ then by zero-sign compatibility there exists an element F such that $\operatorname{sgn}(F(x) - G(x)) = \operatorname{sgn}(E(G, x))$ for $x \in N$. Let $\{H_{\lambda}\}$ be a λ -set for G and F, $H_0 = G$, $H_1 = F$. The sequence $\{H_{1/k}\}$ converges uniformly to G so for some $\delta > 0$, $E(H_{\delta}, x)$ will be between E(G, x) and -E(G, x) for all $x \in N$, hence $|E(H_{\delta}, x)| < |E(G, x)| = e(G)$ for all $x \in N$. This contradicts Lemma 6 so sufficiency is proven.

We now consider approximation on a compact subset Y of X. If the betweeness property holds on X, it holds on Y.

Lemma 7. Let X be a compact normal space and Y a compact subset of X. If $\mathscr G$ has zero-sign compatibility on X, $\mathscr G$ has zero-sign compatibility on Y.

Proof. Let (G, H) be a pair of distinct elements of \mathscr{G} . Let Z be a closed subset of $Y \cap \{x : G(x) - H(x) = 0\}$ then Z is a closed subset in X of the zeros of G - H. Let s' be a continuous mapping of Y into [-1, 1] taking values +1 or -1 on Z. Since X is a normal space, there exists by the Tietze extension theorem $s \in C(X)$, ||s|| = 1, s(x) = s'(x) for $x \in Y$. Let \mathscr{G} have zero-sign compatibility on X; then there exists $F \in \mathscr{G}$ such that

$$sgn (F(x)-G(x)) = s(x) = s'(x), \qquad x \in \mathbb{Z}.$$

From the lemma and Theorem 2 we obtain

COROLLARY. Let X be a compact normal space. Let \mathcal{G} have the betweeness property and best approximations on X to any continuous function be unique, then best approximations on any compact subset of X are unique to any continuous function.

We now consider approximation by an open subset \mathscr{G}' of \mathscr{G} . If \mathscr{G} has the betweeness property, it follows that the function F in the definition of zero-sign compatibility can be chosen arbitrarily close to the function G of that definition. If $G \in \mathscr{G}'$ it follows that F can be chosen such that $F \in \mathscr{G}'$. It follows that if \mathscr{G} has zero-sign compatibility, so does \mathscr{G}' . We obtain:

COROLLARY. Let both \mathcal{G} and \mathcal{G}' , an open subset of \mathcal{G} , have the betweeness property. If every continuous function has at most one best approximation from \mathcal{G} , every continuous function has at most one best approximation from \mathcal{G}' .

Less general but simpler uniqueness results can be developed in terms of the sign changing property and property Z.

DEFINITION. \mathscr{G} has the sign changing property of degree n at G if for any n distinct points $\{x_1, \ldots, x_n\}$ and n real numbers w_1, \ldots, w_n which are either +1 or -1, there exists an approximant F such that

$$\operatorname{sgn}(F(x_k) - G(x_k)) = w_k, \qquad k = 1, \dots, n.$$

We need not specify the closeness of F to G in the above definition since if such an F exists, there exists with the betweeness property such an F arbitrarily close to G.

DEFINITION. \mathscr{G} has property Z of degree n at G if G-F having n zeros implies F=G.

Let \mathscr{G} have the betweeness property. The F in the definition of the sign changing property can be chosen such that for given $\varepsilon > 0$, $||F - G|| < \varepsilon$. Let $G \in \mathscr{G}^*$. If \mathscr{G} has the sign changing property of degree n at G then G either coincides with the function f being approximated or N has at least n+1 points, for if it had less we could find F

such that |E(F, x)| < e(G) for $x \in N(X)$, which contradicts Lemma 6. If \mathscr{G} has property Z of degree n at G then by Lemma 5 best approximations must be identical if N has n or more points. We therefore have:

THEOREM 3. Let \mathcal{G} have the betweeness property and $G \in \mathcal{G}^*$. If \mathcal{G} has property Z of degree n+1 at G and the sign changing property of degree n at G then G is a unique best approximation.

BIBLIOGRAPHY

- 1. B. Brosowski, Über die Eindeutigkeit der rationalen Tschebyscheff Approximationen, Numer. Math. 7 (1965), 176-186.
 - 2. E. W. Cheney, Introduction to approximation theory, McGraw-Hill, New York, 1966.
- 3. E. W. Cheney and H. L. Loeb, *Generalized rational approximation*, SIAM J. Numer. Anal. 1 (1964), 11-25.
- 4. G. Meinardus and D. Schwedt, *Nicht-lineare Approximation*, Arch. Rational Mech. Anal. 9 (1964), 329-351.
- 5. John Rice, *Tchebycheff approximation in several variables*, Trans. Amer. Math. Soc. 109 (1963), 444-466.
- 6. Ivan Singer, On best approximation of continuous functions, Math. Ann. 140 (1960), 165-168.

University of Western Ontario, London, Ontario, Canada