THE C*-ALGEBRA GENERATED BY AN ISOMETRY. II

BY L. A. COBURN(1)

I. Introduction. In [2] it was shown that the C^* -algebra generated by any nonunitary isometry is *-isomorphic to the C^* -algebra $\mathscr{A}(S)$ generated by the unilateral shift of multiplicity one, S. Further, the ideal theory of $\mathscr{A}(S)$ was determined. The main point was that $\mathscr{A}(S)$ contains the full algebra of compact operators \mathscr{K} and $\mathscr{A}(S)/\mathscr{K}$ is *-isomorphic to C(T), the algebra of all complex-valued continuous functions on the unit circle, T.

Here, I examine the structure of $\mathscr{A}(S)$ and certain related C^* -algebras in greater detail. In particular, the irreducible *-subalgebras of $\mathscr{A}(S)$ are characterized and reasonable necessary and sufficient conditions are given for an operator in $\mathscr{A}(S)$ to generate $\mathscr{A}(S)$. Finally, I provide an example of a C^* -algebra which is irreducible and has the same ideal structure as $\mathscr{A}(S)$, but which is not *-isomorphic to $\mathscr{A}(S)$.

II. **Preliminary results.** Henceforth all Hilbert spaces are over the complex numbers. If \mathscr{H} is a Hilbert space and B is a bounded operator on \mathscr{H} then the smallest C^* -algebra of operators containing B and 1 is denoted by $\mathscr{A}(B)$. The full algebra of bounded operators on \mathscr{H} with the operator norm topology is called $\mathscr{B}(\mathscr{H})$ and the subalgebra of all compact operators on \mathscr{H} is called $\mathscr{H}(\mathscr{H})$ (or just \mathscr{H}). We let \mathscr{H} denote the usual quotient map from $\mathscr{B}(\mathscr{H})$ onto $\mathscr{B}(\mathscr{H})/\mathscr{H}$. In this paper, all ideals are closed and two-sided. We write $\sigma(B)$ for the spectrum of B in $\mathscr{B}(\mathscr{H})$.

In portions of this paper, we will be concerned with the algebra C(X) of all complex-valued continuous functions on a compact Hausdorff space X with supremum norm. More particularly, let T be the unit circle and let A be the uniformly closed subalgebra of C(T) consisting of those ϕ in C(T) which are uniform limits of polynomials in the complex variable z. Further, let μ be normalized Haar measure on T and let L^2 denote the associated Hilbert space of square-integrable functions on T. As usual, we let H^2 denote the L^2 -closure of A. In the following sections we will be interested in the C^* -algebras generated by Toeplitz operators [1] on H^2 associated with functions ϕ in C(T) by the relation $T_{\phi}f = P(\phi f)$, where P is the orthogonal projection from L^2 onto H^2 . We will also be concerned with the Laurent operators [1] on L^2 associated with ϕ in C(T) by the relation $M_{\phi}f = \phi f$. It should be pointed out that in general [1], [3]

$$||T_{\phi}|| = ||M_{\phi}|| = ||\pi(T_{\phi})|| = ||\pi(M_{\phi})||^{2} = ||\phi||.$$

Received by the editors January 4, 1968.

⁽¹⁾ Research supported by NSF Grant GP-7520.

Further, the Toeplitz operator T_z is just the unilateral shift S on H^2 since $\{z^n \mid n=0, 1, 2, \ldots\}$ is a basis for H^2 .

We will deal in the following sections with certain irreducible C^* -algebras and certain abelian C^* -algebras. The two propositions below will be among the necessary working tools.

PROPOSITION 1. Let \mathscr{A} be an irreducible C^* -algebra on \mathscr{H} and suppose $\mathscr{A} \cap \mathscr{K} \neq (0)$. Then $\mathscr{K} \subseteq \mathscr{A}$ and $\mathscr{K} \subseteq \mathscr{I}$ for any nontrivial ideal \mathscr{I} in \mathscr{A} .

Proof. Immediate from $[4, 4.1.10; 2.11.3 (i); and 1.8.2.]. <math>\Box$

If $\mathscr A$ is a C^* -subalgebra of C(X) which contains the constants then a natural equivalence relation is given on X by writing $x \sim y$ if and only if f(x) = f(y) for all f in $\mathscr A$. Let Q be the quotient space X/\sim and let q be the usual quotient map. To each f in $\mathscr A$ there corresponds a complex-valued function f on Q by the commutative diagram

We will consider two topologies on Q. The first (Q, ω) is the weak topology induced by all the \tilde{f} for f in \mathscr{A} . The second is the usual quotient topology, (Q, q). It is not hard to see that (Q, q) is stronger than (Q, ω) . Whether (Q, q) and (Q, ω) are equivalent will be left open.

PROPOSITION 2. The maximal ideal space of $\mathscr A$ is just (Q, ω) and $\mathscr A$ is *-isomorphic to $C(Q, \omega)$. A necessary and sufficient condition that (Q, q) and (Q, ω) are equivalent is that (Q, q) be Hausdorff.

Proof. Since \mathscr{A} is a closed symmetric subalgebra of C(X), every irreducible representation of \mathscr{A} extends to an irreducible representation of C(X) [6, p. 305]. Since complex-homomorphisms of \mathscr{A} are irreducible representations and the only irreducible representations of C(X) are point-evaluations at points of X, we see that every complex-homomorphism of \mathscr{A} is a point-evaluation at a point of X. Now since x and y in X induce the same homomorphism on \mathscr{A} if and only if $x \sim y$, it is clear that Q can be identified with the maximal ideal space of \mathscr{A} . Under this identification, \tilde{f} is the Gelfand transform of f in \mathscr{A} and so (Q, ω) is the usual maximal ideal space with the weak topology. The mapping $f \to \tilde{f}$ is clearly a *-isomorphism from \mathscr{A} into $C(Q, \omega)$. This mapping is also an isometry so the image $\tilde{\mathscr{A}}$ is a C^* -subalgebra of $C(Q, \omega)$. Since the \tilde{f} separate points of Q, the Stone-Weierstrass theorem implies that $\tilde{\mathscr{A}} = C(Q, \omega)$.

If (Q, q) and (Q, ω) are to be equivalent then (Q, q) must be Hausdorff since (Q, ω) is Hausdorff. But the map $f \to \tilde{f}$ is an isometric *-isomorphism from \mathscr{A} into

C(Q,q) and if (Q,q) is Hausdorff the Stone-Weierstrass theorem again applies to show that $\tilde{\mathscr{A}} = C(Q,q)$. Hence $(Q,q) = (Q,\omega)$. \square

III. The algebra $\mathscr{A}(T_z)$. We now focus on certain C^* -algebras on H^2 . Since T_z is the unilateral shift on H^2 , we will be interested in $\mathscr{A}(T_z)$ and its *-subalgebras. In this section we write $\mathscr{K} = \mathscr{K}(H^2)$ for the algebra of compact operators on H^2 . We begin with a "functional" characterization of $\mathscr{A}(T_z)$. Recall (cf. [1]) that for Ψ in C(T), $T^*_{\Psi} = T_{\overline{\Psi}}$. Also, if Ψ is in C(T) and ϕ is in A, then $T_{\overline{\Psi}}T_{\phi} = T_{\overline{\Psi}\phi}$.

LEMMA 1. If
$$\Psi_1$$
, Ψ_2 are in $C(T)$ then $T_{\Psi_1}T_{\Psi_2} = T_{\Psi_1\Psi_2} + K$ for some K in \mathcal{K} .

Proof. It follows from standard results on polynomial approximation that there are sequences $\{\alpha_n\}$, $\{\beta_n\}$, $\{\gamma_n\}$, $\{\delta_n\}$ of polynomials in A such that

$$\alpha_n + \bar{\beta}_n \to \Psi_1, \qquad \gamma_n + \bar{\delta}_n \to \Psi_2.$$

It follows from the fact that $||T_{\phi}|| = ||\phi||$ that

$$T_{\alpha_n} + T_{\overline{\beta}_n} \to T_{\Psi_1}$$
 and $T_{\gamma_n} + T_{\overline{\delta}_n} \to T_{\Psi_2}$.

Hence, we have

$$T_{\alpha_n}T_{\gamma_n}+T_{\bar{\beta}_n}T_{\bar{\delta}_n}+T_{\alpha_n}T_{\bar{\delta}_n}+T_{\bar{\beta}_n}T_{\gamma_n}\to T_{\Psi_1}T_{\Psi_2}.$$

But $T_{\alpha_n}T_{\gamma_n} = T_{\alpha_n\gamma_n}$, $T_{\bar{\beta}_n}T_{\gamma_n} = T_{\bar{\beta}_n\gamma_n}$ and $T_{\bar{\beta}_n}T_{\bar{\delta}_n} = (T_{\delta_n}T_{\bar{\beta}_n})^* = T_{\bar{\delta}_n\bar{\beta}_n}$. Further $T_{\bar{\delta}_n}T_{\alpha_n} = T_{\bar{\delta}_n\alpha_n}$ and

$$T_{\alpha_n}T_{\bar{\delta}_n}-T_{\bar{\delta}_n}T_{\alpha_n}$$

is in \mathscr{K} since $\mathscr{A}(T_z)/\mathscr{K}$ is abelian. Putting the above remarks together, we see that there is a sequence of $\{K_n\}$ in \mathscr{K} so that

$$T_{(\alpha_n + \overline{\beta}_n)(\gamma_n + \overline{\delta}_n)} + K_n \rightarrow T_{\Psi_1} T_{\Psi_2}$$

But

$$T_{(\alpha_n + \overline{\delta}_n)(\gamma_n + \overline{\delta}_n)} \to T_{\Psi_1 \Psi_2}$$

and it follows that there is a K in \mathcal{K} with $K_n \to K$ such that

$$T_{\Psi,\Psi} + K = T_{\Psi}, T_{\Psi_2}.$$

THEOREM 1. Let $\mathscr{B} = \{T_{\Psi} + K : \Psi \in C(T), K \in \mathscr{K}\}$. Then $\mathscr{A}(T_z) = \mathscr{B}$. Further, the representation as sums $T_{\Psi} + K$ is unique.

Proof. Clearly, if Ψ is in C(T) and $\varepsilon > 0$ is arbitrary then there are polynomials α, β in A so that $\|\Psi - \alpha - \overline{\beta}\| < \varepsilon$. Since T_{α} and T_{β}^* are in $\mathscr{A}(T_z)$ it follows that T_{Ψ} is in $\mathscr{A}(T_z)$. Further, by Proposition 1 or directly as in [2] it is easily seen that $\mathscr{K} \subset \mathscr{A}(T_z)$. Thus, we have $\mathscr{B} \subset \mathscr{A}(T_z)$. To show the reverse inclusion, it suffices since T_z is in \mathscr{B} to show that \mathscr{B} is a closed *-subalgebra of bounded operators. Clearly, we have 1 in \mathscr{B} . Also, if B_1 and B_2 are in \mathscr{B} then B_1^* , λB_1 and $B_1 + B_2$ are in \mathscr{B} . It follows immediately from Lemma 1 that B_1B_2 is in \mathscr{B} . Thus, it remains

to check that \mathscr{B} is closed. To this end, suppose we have $T_{\Psi_n} + K_n \to B$. Then $\{\pi(T_{\Psi_n})\}$ is a Cauchy sequence. But $\|\Psi\| = \|T_{\Psi}\| = \|\pi(T_{\Psi})\|$ so $\{\Psi_n\}$ is a Cauchy sequence in C(T) and hence $\Psi_n \to \Psi$ for some Ψ in C(T). It follows that $T_{\Psi_n} \to T_{\Psi}$ and hence $K_n \to K$ for some K in \mathscr{K} . Hence $B = T_{\Psi} + K$ and so \mathscr{B} is closed. To check uniqueness, suppose $T_{\Psi} + K = T_{\Psi_1} + K_1$ then $\pi(T_{\Psi - \Psi_1}) = 0$ so $\Psi = \Psi_1$ and $K = K_1$. \square

COROLLARY (1.1). If B is in $\mathcal{A}(T_z)$ then either $\sigma(B)$ contains a nontrivial component or $\sigma(B)$ has at most one limit point.

Proof. By Theorem 1, B has the form $B = T_{\Psi} + K$. Now, it is known [8] that $\sigma(T_{\Psi})$ is connected and [1] $\sigma(T_{\Psi})$ consists of one point only if Ψ is constant. Further, $\sigma(T_{\Psi}) \subset \sigma(T_{\Psi} + K')$ for all compact K' [3]. Thus, if $\sigma(T_{\Psi})$ is nontrivial then $\sigma(B)$ has a nontrivial component containing $\sigma(T_{\Psi})$. If $\sigma(T_{\Psi})$ is a one-point set, then $B = \lambda I + K$ so $\sigma(B)$ has at most one limit point. \square

COROLLARY (1.2). The mapping $\phi \to \pi(T_{\phi})$ gives a *-isomorphism from C(T) onto $\mathscr{A}(T_z)/\mathscr{K}$.

Proof. Using Theorem 1 and the fact that $\|\phi\| = \|\pi(T_{\phi})\|$, it is clear that the mapping $\phi \to \pi(T_{\phi})$ is an additive *-isomorphism and isometry from C(T) onto $\mathscr{A}(T_{z})/\mathscr{K}$. To check multiplicativity, recall that by Lemma 1 $T_{\Psi_{1}}T_{\Psi_{2}} = T_{\Psi_{1}\Psi_{2}} + K$. Hence, we have

$$\pi(T_{\Psi_1})\pi(T_{\Psi_2}) = \pi(T_{\Psi_1}T_{\Psi_2}) = \pi(T_{\Psi_1\Psi_2}),$$

which is the desired result.

COROLLARY (1.3). We have $\sigma(\pi(T_{\phi})) = \text{range } \phi \text{ for } \phi \text{ in } C(T)$.

Proof. In C(T), $\sigma(\phi) = \text{range } \phi$. This fact and the isomorphism of Corollary (1.2) give the desired result. \Box

We are now in a position to classify the irreducible C^* -subalgebras of $\mathscr{A}(T_z)$. First note that if a closed *-subalgebra \mathscr{D} is to be irreducible then \mathscr{D} is clearly nonabelian so \mathscr{D} contains a nontrivial commutator (i.e. element of the form BD-DB). But $\mathscr{A}(T_z)/\mathscr{K}$ is abelian so all commutators in $\mathscr{A}(T_z)$ are compact. Hence, \mathscr{D} contains a nontrivial compact operator and it follows from Proposition 1 that $\mathscr{K} \subseteq \mathscr{D}$. For any irreducible C^* -subalgebra \mathscr{D} of $\mathscr{A}(T_z)$, define \mathscr{D}' by

$$\mathscr{D}' = \{ \phi \text{ in } C(T) : T_{\phi} \text{ is in } \mathscr{D} \}.$$

THEOREM 2. \mathcal{D}' is a closed *-subalgebra of C(T).

Proof. If Ψ_1 , Ψ_2 are in \mathscr{D}' then clearly $\lambda \Psi_1$, $\overline{\Psi}_1$, and $\Psi_1 + \Psi_2$ are in \mathscr{D}' . Using Lemma 1 and the fact that $\mathscr{K} \subset \mathscr{D}$, we also see that $\Psi_1 \Psi_2$ is in \mathscr{D}' . Finally, it follows from the fact that $||T_{\Psi}|| = ||\Psi||$ that \mathscr{D}' is closed. \square

In fact, the correspondence between irreducible C^* -subalgebras of $\mathscr{A}(T_z)$ and C^* -subalgebras of C(T) induced by the map $\mathscr{D} \to \mathscr{D}'$ is 1-1 and onto.

THEOREM 3. Let \mathscr{A} be any C^* -subalgebra of C(T). Then there is an irreducible C^* -subalgebra \mathscr{D} of $\mathscr{A}(T_z)$ such that $\mathscr{D}' = \mathscr{A}$.

Proof. Let $\mathscr{D} = \{T_{\phi} + K : \phi \in \mathscr{A}, K \in \mathscr{K}\}$. We need only check that \mathscr{D} is closed under multiplication. This is a direct consequence of Lemma 1. \square

The ideal theory of $\mathcal D$ can be determined by combining Proposition 1 and the following result.

THEOREM 4. The mapping $\phi \to \pi(T_{\phi})$ gives a *-isomorphism from \mathscr{D}' onto \mathscr{D}/\mathscr{K} .

Proof. This follows from Corollary (1.2).

From now on, we will assume that \mathcal{D} is an irreducible C^* -subalgebra of $\mathcal{A}(T_z)$ and 1 is in \mathcal{D} .

THEOREM 5. Let \sim be the equivalence relation on T induced by \mathscr{D}' and let (Q, ω) be the quotient space T/\sim with the weak topology of §II. Then \mathscr{D}/\mathscr{K} is *-isomorphic to $C(Q, \omega)$.

Proof. This follows from Theorem 4 and Proposition 2.

THEOREM 6. If $\mathcal{D} = \mathcal{A}(T_{\phi} + K)$ for some fixed ϕ and K, then $\mathcal{D}' = \{\psi : \psi \text{ in the } C^*\text{-subalgebra of } C(T) \text{ generated by } \phi\}.$

Proof. Since \mathcal{D} is irreducible, $\mathcal{K} \subset \mathcal{D}$ and so T_{ϕ} is in \mathcal{D} . Hence, ϕ is in \mathcal{D}' and so \mathcal{D}' contains the C^* -subalgebra of C(T) generated by ϕ because of Theorem 2. Conversely, for any "polynomial" p(r, s) in two noncommuting indeterminates r, s, it follows from Lemma 1 that

$$p(T_{\phi}+K, T_{\phi}^*+K^*)-T_{p(\phi,\overline{\phi})}$$

is in \mathscr{K} . Hence, for B in $\mathscr{A}(T_{\phi}+K)$ there is a sequence of elements $\{\psi_n\}$ in the C^* -algebra generated by ϕ and a sequence of compact operators K_n such that $T_{\psi_n} + K_n \to B$. The proof of Theorem 1 then shows that there is a ψ in the C^* -algebra generated by ϕ such that $B = T_{\psi} + K'$ for K' in \mathscr{K} . Since representation in the form $T_{\psi} + K'$ is unique for elements of $\mathscr{A}(T_z)$, we see that \mathscr{D}' is contained in the C^* -algebra generated by ϕ . \square

COROLLARY (6.1). If $\mathcal{D} = \mathcal{A}(T_{\phi} + K)$ then \mathcal{D}/\mathcal{K} is *-isomorphic to C(range ϕ).

Proof. This follows from Corollary (1.3) since

$$\pi(T_{\phi}+K)=\pi(T_{\phi})$$

and $\pi(T_{\phi}+K)$ generates \mathcal{D}/\mathcal{K} as a C^* -algebra. \square

COROLLARY (6.2). $\mathscr{A}(T_{\phi}+K)=\mathscr{A}(T_{z})$ if and only if $T_{\phi}+K$ is irreducible and ϕ is 1-1 on T.

Proof. Clearly $\mathscr{A}(T_{\phi}+K)=\mathscr{D}=\mathscr{A}(T_z)$ if and only if $T_{\phi}+K$ is irreducible and $\mathscr{D}'=C(T)$. By Theorem 6, \mathscr{D}' is the C^* -subalgebra of C(T) generated by ϕ . Hence, by the Stone-Weierstrass theorem, $\mathscr{D}'=C(T)$ if and only if ϕ is 1-1. \square

COROLLARY (6.3). If ϕ is in A then $\mathcal{A}(T_{\phi}) = \mathcal{A}(T_z)$ if and only if ϕ is 1-1 on T.

Proof. If ϕ is in A and ϕ is 1-1 on T then by a result in [7], T_{ϕ} is irreducible. Hence, by Corollary (6.2) $\mathscr{A}(T_{\phi}) = \mathscr{A}(T_z)$. Conversely, if $\mathscr{A}(T_{\phi}) = \mathscr{A}(T_z)$ then ϕ is 1-1 on T by Corollary (6.2). \square

IV. Extension of \mathscr{K} by C(T). On the basis of the ideal theory developed in [2] and in the previous section, we can think of $\mathscr{A}(S)$ (or $\mathscr{A}(T_z)$) as an extension of \mathscr{K} by C(T). In this section, I construct a different extension of \mathscr{K} by C(T) and show that the new extension is not *-isomorphic to $\mathscr{A}(S)$. The construction is motivated by Theorem 1. Henceforth, we will deal with the Hilbert space L^2 described in §II and $\mathscr{K} = \mathscr{K}(L^2)$. Since H^2 and L^2 have the same dimension, we can think of $\mathscr{A}(S)$ as represented on L^2 by some spatial isomorphism.

THEOREM 7. Let $\mathscr{C} = \{M_{\phi} + K : \phi \in C(T), K \in \mathscr{K}\}$. Then \mathscr{C} is a C^* -subalgebra of $\mathscr{B}(L^2)$ and \mathscr{C}/\mathscr{K} is *-isomorphic to C(T).

Proof. Immediate from [4, 1.8.4].

Theorem 7 combined with Proposition 1 shows that \mathscr{C} is an irreducible C^* -algebra with the same ideal theory as $\mathscr{A}(S)$. To show that $\mathscr{A}(S)$ and \mathscr{C} are not *-isomorphic we need some machinery from the theory of Fredholm operators [5]. Recall that an operator B is semi-Fredholm if B has closed range R(B) and either the null space n(B) or $R(B)^{\perp}$ is of finite dimension. If B is semi-Fredholm, the index $\kappa(B)$ is defined by

$$\kappa(B) = \dim R(B)^{\perp} - \dim n(B).$$

It is well known that if B is semi-Fredholm and K is compact then K+B is semi-Fredholm and $\kappa(B) = \kappa(B+K)$.

THEOREM 8. There is no *-isomorphism from $\mathscr{A}(S)$ onto \mathscr{C} .

Proof. Suppose Φ is a *-isomorphism from $\mathscr{A}(S)$ onto \mathscr{C} . Then $\Phi(S)*\Phi(S)=1$ so $\Phi(S)$ must be a noninvertible isometry. Thus $\Phi(S)$ must be a semi-Fredholm operator with index other than zero. But M_{ϕ} is a normal operator for all ϕ in C(T) so

$$\dim n(M_{\phi}) = \dim R(M_{\phi})^{\perp}.$$

It follows that if $\Phi(S) = M_{\phi} + K$ then M_{ϕ} must be semi-Fredholm and

$$\kappa(\Phi(S)) = \kappa(M_{\phi} + K) = \kappa(M_{\phi}) = 0.$$

This contradiction completes the proof.

V. Some remarks. It is clear from the ideal theory of $\mathcal{A}(S)$ that $\mathcal{A}(S)$ is post-liminaire [4, 4.3.1] with a composition series of length 2. It is not hard to describe the usual spaces of primitive ideals, irreducible representations and pure states of $\mathcal{A}(S)$. Denoting these spaces as usual [4, §3] by Prim $(\mathcal{A}(S))$, $\mathcal{A}(S)^{\hat{}}$, and $\mathcal{A}(S)$,

we note that since $\mathscr{A}(S)$ is postliminaire, $\mathscr{A}(S) = \operatorname{Prim}(\mathscr{A}(S))$ [4, 4.4.1]. Further, $\operatorname{Prim}(\mathscr{A}(S))$ is the union of a circle and a point, the point being dense in the Jacobson topology. This is because $\{0\}$ is primitive and by Proposition 1, any other primitive ideal contains \mathscr{K} and so corresponds to a maximal ideal in C(T). The relative topology on the circle part of $\operatorname{Prim}(\mathscr{A}(S))$ is the usual one for T. Note also that for \mathscr{C} as in $\S V$, $\mathscr{C} = \operatorname{Prim}(\mathscr{C}) = \operatorname{Prim}(\mathscr{A}(S))$ since \mathscr{C} has the same ideal structure as $\mathscr{A}(S)$. Similarly, it is not hard to see that $P(\mathscr{A}(S))$ consists of vector states of \mathscr{K} extended to $\mathscr{A}(S)$ [4, 2.11.8] and multiplicative states corresponding to the points of T. Again $P(\mathscr{C}) = P(\mathscr{A}(S))$.

REFERENCES

- 1. A. Brown and P. R. Halmos, Algebraic properties of Toeplitz operators, J. Reine Angew. Math. 213 (1964), 89-102.
- 2. L. A Coburn, The C*-algebra generated by an isometry, Bull. Amer. Math. Soc. 73 (1967), 722-726.
- 3. L. A. Coburn, Weyl's theorem for non-normal operators, Michigan Math. J. 13 (1966), 285-288.
 - 4. J. Dixmier, Les C*-algèbres et leurs représentations, Gauthier-Villars, Paris, 1964.
- 5. J. C. Gohberg and M. G. Krein, The basic propositions on defect numbers, root numbers, and indices of linear operators, Amer. Math. Soc. Transl. (2) 13 (1960), 185-264.
 - 6. M. A. Naimark, Normed rings, Noordhoff, Groningen, 1959.
- 7. E. A. Nordgren, Reducing subspaces of analytic Toeplitz operators, Duke Math. J. 34 (1967), 175-182.
 - 8. H. Widom, On the spectrum of a Toeplitz operator, Pacific J. Math. 14 (1964), 365-375.

BELFER GRADUATE SCHOOL OF SCIENCE, YESHIVA UNIVERSITY, NEW YORK, NEW YORK