TRIANGULATIONS OF THE 3-BALL WITH KNOTTED SPANNING 1-SIMPLEXES AND COLLAPSIBLE rTH DERIVED SUBDIVISIONS

BY
W. B. R. LICKORISH AND J. M. MARTIN(1)

It has been shown by R. H. Bing [1] that if K is a simplicial complex which triangulates a 3-ball, σ is a spanning 1-simplex of K (i.e. $\sigma \cap \partial K = \partial \sigma$) and $K^{(r)}$ simplicially collapses (where $K^{(r)}$ is an rth derived subdivision), then the bridge number of σ , br (σ), is less than or equal to $2^r + 1$. The proof is to be found in [3]. The following theorem shows that, in a sense, Bing's result is the best possible.

THEOREM. Suppose that κ is a knot in E^3 and br $(\kappa) \leq 2^r + 1$. Then there is a simplicial complex K, a triangulation $\tau: |K| \to B^3$ of a 3-ball, and a spanning 1-simplex σ of K such that

- (i) $K^{(r)}$ simplicially collapses, and
- (ii) $\tau(\sigma)$ has the same knot type as $\kappa(^2)$.

REMARK. br (κ) is defined later. $\tau(\sigma)$ is said to have the same knot type as κ if, regarding B^3 as polyhedrally contained in E^3 , and joining the end points of $\tau(\sigma)$ by an arc α in ∂B^3 , $\tau(\sigma) \cup \alpha$ is a simple closed curve with the same knot type as κ . Then one can define bridge numbers of spanning arcs by br $(\sigma) = \text{br } (\tau(\sigma)) = \text{br } (\kappa)$.

1. Introduction.

DEFINITIONS. Each polyhedral knot of S^1 in E^3 can, for some integer n, be represented as n straight linear arcs running from the top face of the unit 3-cube to its bottom face (and otherwise contained in the interior of the cube), together with n polyhedral arcs on the boundary of the cube. If κ is a knot of S^1 in E^3 , then its bridge number, br (κ) , is the smallest integer n for which such a representation is possible. If S^1 is a simple closed curve in a 3-ball B^3 , S^1 is in n-bridge position in B^3 if there is a polyhedral homeomorphism of B^3 to the unit 3-cube sending S^1 to n straight spanning arcs of the cube and n arcs in its boundary, as described above. Schubert's paper [5] contains most of the fundamental work on bridge numbers. Note that a knot with bridge number one is always unknotted, but that there are many interesting knots with bridge number two (e.g. the trefoil and the four-knot).

Presented to the Society, April 20, 1968 under the title Collapsible triangulations of the 3-cell with knotted spanning 1-simplexes; received by the editors March 25, 1968.

⁽¹⁾ This paper was written while the second author was a fellow of the Alfred P. Sloan Foundation.

⁽²⁾ This same result has been announced for r=0 by Hamstrom and Jerrard [4].

Throughout, the notation $X \setminus Y$ means that the polyhedron X polyhedrally collapses to a subpolyhedron Y. $K \setminus L$ means that the simplicial complex K simplicially collapses to a subcomplex L. Definitions of these concepts are to be found in [6].

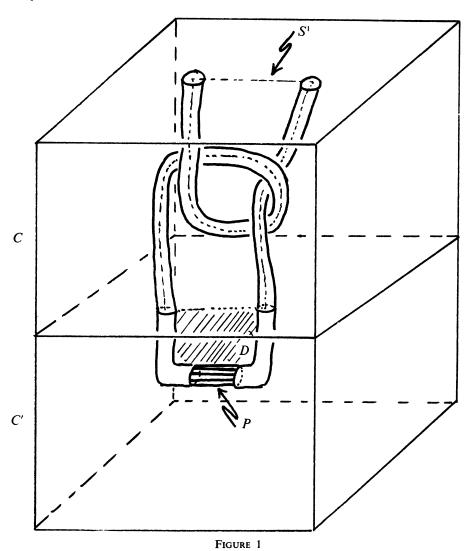
The purpose of this paper is to prove the theorem stated above. The main idea of the proof is fairly simple although the details become a little involved. Figure 1 illustrates the principal idea when r=0. The theorem then says that given any knot with bridge number two, the 3-ball can be triangulated by a simplicially collapsible complex which contains a spanning 1-simplex knotted with the given knot type. Take the given knot S^1 in 2-bridge position in a cube C, with one of the arcs of $S^1 \cap \partial C$ in the top face of C, the other in the bottom face. Figure 1 shows the trefoil knot in this way. Remove from C the interior of a regular neighbourhood of the two spanning arcs, glue a second cube C' onto the bottom face of C (as shown) and remove from C' a neighbourhood of a standard (i.e. unknotted) U-shaped spanning arc of C', so that a knotted hole has now been bored out of $C \cup C'$. Insert a cylinder P to plug the hole, (see Figure 1), at the bottom of the U-shaped hole, to obtain a ball B. A straight arc σ in P from the left-hand face to the right-hand face is a spanning arc of B knotted in the required way. B collapses polyhedrally as follows. Collapse C' to its top face (less two discs), together with the boundary of the U-tube, P, and the disk D (see Figure 1 again). P can now be collapsed onto its two vertical disk faces, D_1 and D_2 , say, plus $P \cap D$. D can now be removed. What remains is C, less two standard holes (as S^1 was in 2-bridge position in C), with a disk across an end of each hole (these disks are the boundaries of the "arms" of the U-tube together with D_1 and D_2) and this collapses. This polyhedral collapse can be triangulated, but the triangulation would (probably) not give a 1-simplex σ , as mentioned above, going straight across P. However, by a cone construction it is fairly simple to extend the triangulation of $\partial P - (D_1^{\circ} \cup D_2^{\circ})$ to a new triangulation of P which does have such a 1-simplex, so that the collapsing, in so far as it affects P, can still be performed in a simplicial way, and the remainder of the simplicial collapse is as before.

When r>0, the proof is similar, but one then has 2^r+1 tubes removed from C and 2^r tubes removed from C'. It is then expedient to have the "plug" P occupying most of the hole removed from $C \cup C'$. In the polyhedral collapsing, P is then collapsed onto 2^r+1 disks together with an arc.

The details of the proof will follow some preliminary lemmas.

2. Preliminary results.

LEMMA 1. Let S^1 be a simple closed polyhedral curve in n-bridge position in a 3-ball B^3 . Let s_1, s_2, \ldots, s_n be the arcs of S^1 which span B^3 and for each $i=1, 2, \ldots, n$, let N_i be a regular neighbourhood of s_i in B^3 such that $N_i \cap N_j = \emptyset$ if $i \neq j$, and $N_i \cap \partial B^3$ is a pair of disks. Let D_i be one of these two disks. Then the closure of $(B^3 - \bigcup_{i=1}^n N_i) \cup \bigcup_{i=1}^n D_i$ collapses polyhedrally.



Proof. As S^1 is in *n*-bridge position it may be assumed that B^3 is the unit cube C, and that the s_i are straight spanning arcs of C. It may further be assumed, (after a homeomorphism of C), that the s_i are actually vertical, that the D_i lie in the bottom face, F^B , of the cube, and (by the uniqueness theorem for regular neighbourhoods) that $N_i = \pi^{-1}D_i$ where $\pi: C \to F^B$ is the vertical projection. Then clearly

$$\overline{\left(C-\bigcup_{i=1}^{n}N_{i}\right)}\cup\bigcup_{i=1}^{n}D_{i}\searrow F^{B},$$

vertically, and $F^B \searrow 0$.

LEMMA 2. Let D be a 2-simplex, r a nonnegative integer, and let $n=2^r$. Suppose that $a \in \partial D$, $q \in D^\circ$ and that T is a simplicial subdivision of $\partial D \times [0, n]$ such that

- (i) a subdivision of $\{a\} \times [0, n]$ is a subcomplex of T,
- (ii) for each integer i, $0 \le i \le n$ a subdivision of $\partial D \times \{i\}$ is a subcomplex of T.

Then there is a simplicial subdivision L of $D \times [0, n]$ extending T, and an rth derived subdivision $L^{(r)}$ of L such that

- (i) $q \times [0, n]$ is a 1-simplex of L,
- (ii) for each integer i, $0 \le i \le n$, a subdivision of $D \times \{i\}$ is a subcomplex of $L^{(r)}$,
- (iii) $L^{(r)} \stackrel{s}{\searrow} (\{a\} \times [0, n]) \cup (\bigcup_{i=0}^n D \times \{i\}).$

Proof. We subdivide $D \times [0, n]$ as follows: First we subdivide $D \times \{0\}$ by joining $q \times 0$ to the given subdivision of $\partial D \times \{0\}$. Then we subdivide $D \times [0, n]$ by joining the subdivision of $D \times \{0\} \cup \partial D \times [0, n]$ to the point $q \times n$. In this way we arrive at a subdivision L of $D \times [0, n]$. Notice that $\{q\} \times [0, n]$ is a 1-simplex of L. We now take a 1st derived subdivision of L, $L^{(1)}$, by starring each simplex at an interior point with the restriction that if $\gamma \in L$ and int $\gamma \cap D \times \{n/2\} \neq \emptyset$, then we star γ from a point of $D \times \{n/2\}$. Hence in $L^{(1)}$, a subdivision of $D \times \{n/2\}$ is a subcomplex. Now it follows from a theorem of Chillingworth [2], applied to both $D \times [0, n/2]$ and $D \times [n/2, n]$, that $L^{(1)}$ collapses simplicially to $D \times \{0\} \cup D \times \{n/2\} \cup D \times \{1\} \cup \{a\}$ \times [0, n]. Notice that if a simplex of $L^{(1)}$ intersects $D \times \{n/2\}$ in an interior point of the simplex, then that simplex lies in $D \times \{n/2\}$. We now take a 1st derived subdivision $L^{(2)}$ of $L^{(1)}$ by starring each simplex of $L^{(1)}$ at an interior point, with the restriction that if $\gamma \in L^{(1)}$ and int $\gamma \cap D \times \{n/4\} \neq \emptyset$, then we star γ from a point of $D \times \{n/4\}$ and if int $\gamma \cap D \times \{3n/4\} \neq \emptyset$, then we star γ from a point of $D \times \{3n/4\}$. Notice that no simplex of L^1 intersects both of $D \times \{n/4\}$ and $D \times \{3n/4\}$ in an interior point of the simplex. Now a subdivision of each of $D \times \{jn/4\}$, $0 \le j \le 4$, is a subcomplex of L^2 and it follows from [2] that $L^{(2)}$ collapses simplicially to $\{a\} \times [0, n] \cup [\bigcup_{i=0}^4 D \times \{jn/4\}]$. Continuing this process, we arrive at an rth derived $L^{(r)}$ of L which has a subdivision of each $D \times \{i\}$, $0 \le i \le n$, as a subcomplex and which collapses simplicially to $\{a\} \times [0, n] \cup [\bigcup_{i=0}^{n} D \times \{i\}]$. This establishes the lemma.

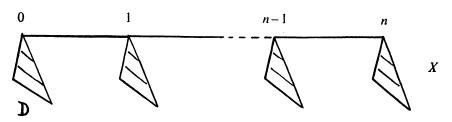
Let D be a 2-simplex, a be a point of ∂D , and let D^+ denote D with a collar attached to ∂D ; i.e. $D^+ = D \cup (\partial D \times I)$. If $p \in \partial D$ we identify p with $(p, 0) \in \partial D \times I$. Let b denote the point (a, 1) of $\partial D \times I$, and let α denote the arc $\{a\} \times I \subset \partial D \times I$. Throughout we let r be a nonnegative integer and let $n = 2^r$. Now it is clear that $D \times [0, n] \setminus X$, where $X = (a \times [0, n]) \cup [\bigcup_{i=0}^n (D \times i)]$. Now let $Y \subset D^+$ denote

$$(b\times [0,n]) \cup \left[\bigcup_{i=0}^{n} (D^{+}\times i)\right] \cup \left[\bigcup_{i=0}^{n-1} (\partial D^{+}\times [i,i+1/2])\right].$$

See Figure 2.

Lemma 3.
$$D^+ \times [0,n] \searrow [(D \times [0,n]) \cup (\alpha \times [0,n]) \cup Y] \searrow [(\alpha \times [0,n]) \cup Y] \searrow Y$$
.

Proof. For each integer i, $0 \le i \le n-1$, we first collapse $D^+ \times [i, i+1]$ onto $(D^+ \times [i, i+1/2]) \cup [(D \cup \alpha) \times [i+1/2, i+1]] \cup (D^+ \times (i+1))$. Now collapsing in



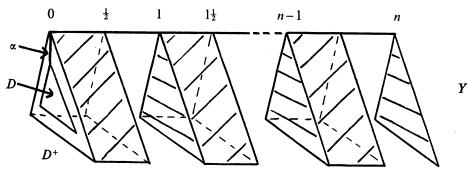


FIGURE 2

the cylinders, $D^+ \times [i, i+1/2]$ collapses to $(D^+ \times i) \cup [(D \cup \alpha \cup \partial D^+) \times [i, i+1/2]]$. Combining the above collapses we have

$$D^+ \times [0, n] \setminus (D \times [0, n]) \cup (\alpha \times [0, n]) \cup Y$$
.

Now the second of the required collapses is induced by the collapse of $D \times [0, n]$ onto X, and the third follows because $(\alpha \times [0, n]) \setminus [\bigcup_{i=0}^{n} (\alpha \times i)] \cup (b \times [0, n])$. This establishes Lemma 3.

3. **Proof of the theorem.** Let κ be a knot of S^1 in E^3 with br $(\kappa) \le n+1$, where $n=2^r$. Let C be the unit 3-dimensional cube in E^3 . Then κ may be regarded as being in (n+1)-bridge position in C, κ being the union of polyhedral spanning arcs s_0, s_1, \ldots, s_n of C, together with polyhedral arcs b_0, b_1, \ldots, b_n in ∂C . By a proper choice of notation we may assume that the arcs occur in the order $b_0, s_0, b_1, s_1, \ldots, b_n, s_n$ on κ . For each $i, 0 \le i \le n$, let P_i be the point $b_i \cap s_i$, and let $P_{i+1/2}$ be the point $s_i \cap b_{i+1}$. An adjustment by a homeomorphism will insure that b_0 is in the top face of C, and that each of b_1, b_2, \ldots, b_n is in the bottom face of C. Let C' be a second 3-dimensional cube, whose top face agrees with the bottom face of C.

Now for each i, $1 \le i \le n$, let E_i be a polyhedral disk in C' such that (1) $E_i \cap \partial C' = \partial E_i \cap \partial C' = b_i$, and (2) if $i \ne j$, $E_i \cap E_j = \emptyset$. Now for each i, $1 \le i \le n$, let c_i be the closure of $\partial E_i - b_i$. Figure 3 illustrates this notation.

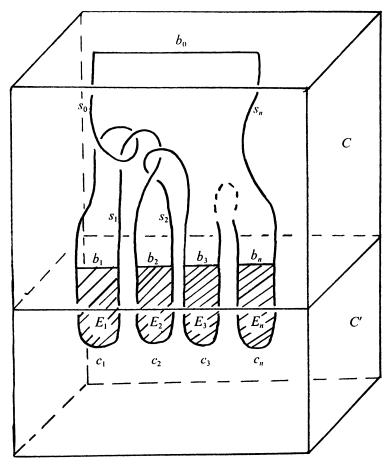


FIGURE 3

We now choose a triangulation of $C \cup C'$ with respect to which all of the polyhedra which have previously been defined become subcomplexes. If Z_1 is such a subcomplex, and Z_2 is a subcomplex of the second derived subdivision of this triangulation, with $|Z_1| \subseteq |Z_2|$, let $N(Z_1, Z_2)$ denote the polyhedron underlying the simplicial neighbourhood of $|Z_1|$ in Z_2 . This particular triangulation will be used only to define various regular neighbourhoods.

Let M be the closure in $C \cup C'$ of $(C \cup C') - N(s_n, C)$. Then M is a polyhedral 3-ball. Let T be $N(s_0 \cup c_1 \cup s_1 \cup c_2 \cup \cdots \cup c_n, M)$, and for each $i, 0 \le i \le n$, let D_i be $N(P_i, \partial C)$, and let $D_{i+1/2}$ be $N(P_{i+1/2}, \partial C)$. Recall the disk D^+ of Lemma 3, with $D \subset D^+$. Now there is a polyhedral homeomorphism $H: D^+ \times [0, n] \to T$ such that (1) if $0 \le i \le n$, $H(D^+ \times i) = D_i$, (2) if $0 \le i \le n - 1$, $H(D^+ \times \{i+1/2\}) = D_{i+1/2}$, and (3) if $1 \le i \le n$, $H(b \times [i-1/2, i]) = T \cap E_i$. Now for each $i, 1 \le i \le n$, let c_i' denote $T \cap E_i$, and let F_i be the closure of $E_i - T$. Notice that F_i is a disk whose boundary is $c_i' \cup b_i'$ where b_i' is a subarc of b_i .

We now describe a polyhedral collapse of M. Let C^- denote the closure in C of $C - \bigcup_{i=0}^{n} N(s_i, C)$.

First we notice that we have the collapse $M \searrow C^- \cup T \cup [\bigcup_{i=1}^n F_i]$. Now notice that T intersects $C^- \cup [\bigcup_{i=1}^n F_i] \cup [\bigcup_{i=1}^n D_i]$ in H(Y). (Recall the set Y from Lemma 3.) Now the polyhedral collapse $D^+ \times [0, n] \searrow Y$, given by Lemma 3 can be transferred under the polyhedral homeomorphism H so as to obtain the collapse $C^- \cup T \cup [\bigcup_{i=1}^n F_i] \searrow C^- \cup [\bigcup_{i=0}^n D_i] \cup [\bigcup_{i=1}^n F_i]$. Each F_i now has the free edge c_i' , and so F_i can be collapsed onto b_i' . Combining these collapses we have $M \searrow C^- \cup [\bigcup_{i=0}^n D_i]$, which collapses by Lemma 1.

Our task now is to triangulate M so that the collapse described above can be carried out simplicially in an rth derived of the triangulation, and so that the triangulation has a spanning 1-simplex which is of the same knot type as κ . To this end, let K be a simplicial complex and $\tau: |K| \to M$ be a triangulation such that each subpolyhedron of M already mentioned in the proof, and $H(D \times [0, n])$ is the image under τ of a subcomplex of K. After a subdivision of K we may assume that $H^{-1}\tau$ maps the subcomplex $\tau^{-1}H(D\times [0, n])$ isomorphically onto some subdivision of the convex linear cell structure on $D\times [0, n]$. We may also assume, by standard results of [6] (after further subdivision), that τ triangulates the polyhedral collapsing process described above; i.e. if $X_i \stackrel{e}{\searrow} X_{i+1}$ is an elementary collapse in the polyhedral collapsing sequence, then there are subcomplexes K_i and K_{i+1} of K such that $\tau(K_i) = X_i$, $\tau(K_{i+1}) = X_{i+1}$, and $K_i \stackrel{e}{\searrow} K_{i+1}$.

Now let L be a simplicial complex subdividing $D \times [0, n]$ which extends the subdivision of $\partial D \times [0, n]$ that is isomorphic under $\tau^{-1}H$ to a subcomplex of K, and which has the properties in the conclusion of Lemma 2. A new triangulation of M is now given by $\tau \mid |K_1| \to M$ where K_1 is the subcomplex of K such that $|K_1|$ is the inverse image under τ of the closure of $M - H(D \times [0, n])$, together with $H: |L| \to H(D \times [0, n])$. Notice that this triangulation contains the 1-simplex $H(q \times [0, n])$ and that this 1-simplex has the same knot type as κ .

The final step in the argument is to show that the rth derived of this triangulation collapses simplicially. Now, since K collapses, $K^{(r)}$, an rth derived of K, collapses, [2] or [6], and hence $\tau|K^r| \to M$ triangulates the previously described polyhedral collapse of M. Hence the polyhedral collapse can be followed simplicially in $K_1^{(r)}$ until we reach simplexes in $H(D \times [0, n])$. However, at this stage, the polyhedral collapse collapses $H(D \times [0, n])$ onto H(X). But the complex L has been chosen so that $L^{(r)}$ has a subcomplex L_1 such that $|L_1| = X$ and $L^{(r)} \stackrel{\$}{\searrow} L_1$. (Note: The sub division $K_1^{(r)}$ of K_1 can be chosen to be compatible with $L^{(r)}$.) Hence in our triangulation of M we may follow the polyhedral collapse as far as $M \stackrel{\searrow}{\searrow} C^- \cup [\bigcup_{i=0}^n D_i]$. C^- is triangulated by a subcomplex K_2 of $K_1^{(r)}$ and the disks D_i by subcomplexes of $L^{(r)}$. We may now collapse K_2 simplicially to a subcomplex K_3 which is 2-dimensional and such that $\tau(K_3) \cup [\bigcup_{i=0}^n D_i]$ is polyhedrally collapsible. But any polyhedrally collapsible 2-complex is simplicially collapsible and so the triangulation on the $\bigcup_{i=0}^n D_i$ is irrelevant. Hence an rth derived of

the triangulation we have described is simplicially collapsible. This establishes the theorem.

REFERENCES

- 1. R. H. Bing, Some aspects of the topology of 3-manifolds related to the Poincaré conjecture, Vol. 2, Lectures on modern mathematics, Wiley, New York, 1964.
- 2. D. R. J. Chillingworth, Collapsing three-dimensional convex polyhedra, Proc. Cambridge Philos. Soc. 63 (1967), 353-357.
- 3. R. Goodrick, Non-simplicially collapsible triangulations of I^n , Proc. Cambridge Philos. Soc. 64 (1968), 31-36.
- 4. M. E. Hamstrom and R. P. Jerrard, Collapsing a triangulation of a "knotted" cell, Notices Amer. Math. Soc. 15 (1968), 368.
 - 5. H. Schubert, Uber eine numerische Knoteninvariante, Math. Z. 61 (1954), 245-288.
- 6. E. C. Zeeman, Seminar on combinatorial topology, Mimeographed notes, Inst. Hautes Études Sci., Paris, 1963-1966.

University of Wisconsin, Madison, Wisconsin