SELF-EQUIVALENCES OF $S^n \times S^k(1)$

BY JEROME LEVINE

Introduction. Topology is primarily concerned with classifying various (topological) objects with respect to various equivalence relations. Given two equivalent objects, a secondary problem is then to classify the group (under composition) of equivalences between these objects.

We will deal with the following three categories:

- \mathcal{H} : Topological spaces and homotopy classes of maps,
- P: Piecewise-linear manifolds and piecewise-linear maps,
- 2: Smooth manifolds and smooth maps.

The equivalences (i.e. invertible maps) in these categories are homotopy equivalences, piecewise-linear homeomorphisms, and diffeomorphisms, respectively. We will be concerned with the group of *self*-equivalences of an object, with respect to some suitable relation between equivalences. The most interesting relation, aside from the equality relation, is *isotopy*. Two equivalences are isotopic if they can be joined by a continuous family of equivalences. We will work with the ostensibly weaker relation of *concordance* or *weak isotopy*. Two equivalences $f_0, f_1: X \to Y$ are *concordant* if there is an equivalence $F: I \times X \to I \times Y$ such that $F(t, x) = (t, f_t(x))$ for t = 0, 1 and $x \in X$ (in \mathcal{D} , some elaboration is needed if X has a boundary). In \mathcal{H} , both isotopy and concordance are equality.

The simplest nontrivial object in any of the categories is the *n*-sphere S^n . The group of concordance classes of self-equivalences is largely determined. In the category \mathscr{H} and \mathscr{P} , it is Z_2 , generated by a reflection. This follows, in \mathscr{P} , from the Alexander process (see [6]). In \mathscr{D} , the group is a semidirect product $\Gamma_{n+1} \times Z_2$, where Γ_{n+1} is the subgroup of concordance classes of orientation-preserving diffeomorphisms of S^n ; the generator of Z_2 acts on Γ_{n+1} by inversion. Γ_{n+1} has been extensively studied by Kervaire and Milnor [12].

In this work we will study the group of concordance classes of self-equivalences of $S^n \times S^k$. In §1, the induced homological automorphisms are examined; it then suffices to study a certain subgroup $A^{n,k}$ containing all the homologically trivial self-equivalences. In §2, a group theoretic structure for $A^{n,k}$ is established, in terms of certain subgroups of $A^{n,k}$ and group actions involving these subgroups. In §3, the subgroups are identified with certain groups of knots, in the categories \mathcal{P} and \mathcal{D} , and with the homotopy groups of the space of self-equivalences of a sphere, in

Received by the editors May 2, 1968.

⁽¹⁾ Research supported in part by NSF Grant no. 6868. The author is a Sloan Foundation Fellow.

the category \mathcal{H} . In §4, the group actions are investigated. We conclude, in §5, with a number of consequences. For example, in a metastable range of dimensions, we see that there are no unfamiliar self-equivalences of $S^n \times S^k$. Another application is the classification of a certain family of objects in each of our categories, up to equivalence. A special case gives an example of a smooth closed manifold tangential homotopy equivalent, but not piecewise-linearly homeomorphic, to $S^6 \times S^2$.

Of perhaps, independent interest, we obtain an extension of Whitney's technique for removing intersections of submanifolds to the case where one of the manifolds is two-dimensional (see Lemma 3.6).

It is interesting to compare our results with the general obstruction theory developed in [23]. We also refer the reader to [10] for another treatment of the special case of homotopy equivalences of $S^n \times S^n$. Related results have been obtained by Morlet (Comptes Rendus, 1968) and Cerf (Proceedings International Congress of Mathematicians, Moscow 1966), and Lashof-Shaneson [35].

1. Automorphisms of homology.

1.1. \mathscr{A} will denote any of the categories \mathscr{H} , \mathscr{P} or \mathscr{D} . The group of concordance classes of self-equivalences of $S^n \times S^k$ in the category \mathscr{H} , \mathscr{P} or \mathscr{D} , will be denoted $\overline{H}^{n,k}$, $\overline{P}^{n,k}$ or $\overline{D}^{n,k} - \overline{A}^{n,k}$ will denote any of them. We have natural homomorphisms:

$$\bar{D}^{n,k} \xrightarrow{\mu_1} \bar{P}^{n,k} \xrightarrow{\mu_2} \bar{H}^{n,k}.$$

 μ_1 is defined by the process of approximating a diffeomorphism by a piecewise-linear homeomorphism [27]; μ_2 is defined by considering a piecewise-linear homeomorphism as merely a homotopy equivalence.

1.2. Let Auto $H^*(S^n \times S^k)$ be the group of graded ring automorphisms of $H^*(S^n \times S^k)$. If n > k, it is isomorphic to $Z_2 + Z_2$. If n = k, we can obviously identify Auto $H^*(S^n \times S^n)$ with a subgroup of the group of 2×2 -unimodular matrices GL (2, Z), by associating to such an automorphism its matrix representative in $H^n(S^n \times S^n)$ with respect to the natural basis (see [10]). It follows easily from the commutativity of $H^*(S^n \times S^n)$, that Auto $H^*(S^n \times S^n) = GL(2, Z)$, if n is odd, but consists only of the eight matrices:

$$\begin{pmatrix} \pm 1 & 0 \\ 0 & +1 \end{pmatrix}$$
 and $\begin{pmatrix} 0 & \pm 1 \\ +1 & 0 \end{pmatrix}$

if n is even.

Let $\Phi: \overline{A}^{n,k} \to \text{Auto } H^*(S^n \times S^k)$ be the obvious homomorphism.

PROPOSITION. If n > k, or n = k = 1, 3 or 7, or n = k is even, then Φ is onto. If n = k is odd, but $\neq 1, 3$ or 7, then Image Φ is the subgroup of GL (2, Z) consisting of matrices

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

where $ab \equiv cd \equiv 0 \mod 2$.

Proof. If n > k or n = k is even, this is easy to verify. If n = k is odd, but $\neq 1, 3$ or 7, this is proven in [24, Lemma 5]. The proof of [24, Lemma 5] can be simplified to also prove the case n = k = 1, 3 or 7 as follows. It is proved in [13, Appendix B] that GL (2, Z) is generated by

$$\begin{pmatrix} \pm 1 & 0 \\ 0 & \pm 1 \end{pmatrix} \begin{pmatrix} 0 & \pm 1 \\ \pm 1 & 0 \end{pmatrix} \text{ and } \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}.$$

But the corresponding automorphisms of $H^n(S^n \times S^n)$ are induced by diffeomorphisms; one for

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

is defined by $(x, y) \mapsto (x, \phi(x) \cdot y)$, where $\phi \colon S^n \to SO_{n+1}$ is a map such that $p \circ \phi$ has degree +1 if $p \colon SO_{n+1} \to S^n$ is the usual evaluation map.

1.3. It now seems reasonable to consider the subgroup, Kernel Φ , of $\overline{A}^{n,k}$. But our final results are simpler to state if we, instead consider the somewhat larger subgroup defined by orientation-preserving self-equivalences f such that $f|x_0 \times S^k$ is homotopic to the inclusion, for any $x_0 \in S^n$. We denote this subgroup by $A^{n,k}$. Since $n \ge k$, Kernel $\Phi \subset A^{n,k}$; if n > k, clearly Kernel $\Phi = A^{n,k}$. If n = k is even, it follows from (1.2) that Kernel $\Phi = A^{n,n}$. But if n = k is odd, $A^{n,n}/\text{Kernel }\Phi$ is infinite cyclic; in fact by (1.2) $\Phi(A^{n,n})$ is the subgroup of GL (2, Z) consisting of matrices of the form

$$\begin{pmatrix} 1 & 0 \\ a & 1 \end{pmatrix}$$
,

where a is any integer, if n=1, 3 or 7, or a is even if n is otherwise odd.

Notice that $A^{n,n}$ is not normal in $\overline{A}^{n,n}$, if n is odd, because $\Phi(A^{n,n})$ is not normal in GL $(2, \mathbb{Z})$. In this case, we leave it to the reader to deduce explicit results on Kernel Φ from the results to be obtained concerning $A^{n,k}$.

2. A decomposition of $A^{n,k}$.

- 2.1. Recall the notion of *semidirect product* of groups. If G is a group with subgroups G_0 and G_2 satisfying:
 - (i) $G_0G_2=G$, $G_0\cap G_2=\{1\}$,
 - (ii) G_0 is normal in G,

then the group structure of G is entirely determined by the left action of G_2 on G_0 , $\phi: G_2 \to \operatorname{Auto} G_0$, defined by $\phi(g) \cdot g_0 = gg_0g^{-1}$. Conversely, given groups G_0 and G_2 and such an action $\hat{\phi}$, the Cartesian product $G_0 \times G_2$ is given a group structure G by the multiplication:

$$(g_0, g_2) \cdot (g'_0, g'_2) = (g_0 \cdot (\hat{\phi}(g_2) \cdot g'_0), g_2 \cdot g'_2).$$

2.2. Suppose, in addition, that G_0 is abelian and has a direct sum splitting $G_0 = G_1 \oplus \gamma$. Also, suppose that the action $\hat{\phi}$ is trivial on γ , i.e. $\hat{\phi}(g)|_{\gamma}$ is the inclusion, for every $g \in G_2$.

PROPOSITION. There is a unique left action, i.e. homomorphism $\phi: G_2 \to \text{Auto } G_1$ and function $\tau: G_2 \to \text{Hom } (G_1, \gamma)$ satisfying:

- (i) $\hat{\phi}(g) \cdot g' = \phi(g) \cdot g' + \tau(g) \cdot g'$, for $g \in G_2$, $g' \in G_1$,
- (ii) $\tau(g_1g_2) = \tau(g_1)\phi(g_2) + \tau(g_2)$, for $g_1, g_2 \in G_2$.

Proof. ϕ and τ are defined by (i), but it must be checked that $\phi(g)$ is an automorphism, ϕ is a left action and that $\tau(g)$ is a homomorphism. These are straightforward computations, as is the verification of (ii).

It is a simple matter to reverse this procedure. Given abelian groups G_1 and γ , and a group G_2 with an action ϕ of G_2 on G_1 and a function τ satisfying (ii), one can define by (i) an action $\hat{\phi}$ of G_2 on $G_1 \oplus \gamma$ and use $\hat{\phi}$ to construct the semidirect product. We will denote the resulting group by:

$$(G_1 \oplus \gamma) \times_{\phi,\tau} G_2$$
.

- 2.3. Let $A = A^{n,k}$ be as defined in 1.3. Define subgroups A_0 , A_1 , A_2 and α of A to consist of those elements represented by $f: S^n \times S^k \to S^n \times S^k$ satisfying:
 - $(A_0) f|D_+^n \times S^k = inclusion,$
 - (A_1) f extends to a self-equivalence of $S^n \times D^{k+1}$,
 - (A_2) f extends to a self-equivalence of $D^{n+1} \times S^k$,
 - (a) For some (n+k)-disk $D \subseteq S^n \times S^k$, $f(D) \subseteq D$ and $f(S^n \times S^k D) = inclusion$.

PROPOSITION. $\alpha = 0$ in \mathcal{H} and \mathcal{P} , while $\alpha \approx \Gamma^{n+k+1}$ in \mathcal{D} .

Proof. In \mathcal{H} and \mathcal{P} , any two self-equivalences of a disk, which agree on the boundary, are concordant, by the Alexander process in \mathcal{P} (see [6]). In \mathcal{D} , Γ^{n+k+1} is precisely the group of concordance classes of self-equivalences of the (n+k)-disk which are the identity on the boundary; thus there is an epimorphism:

$$\eta: \Gamma^{n+k+1} \to \alpha$$
.

If f represents $\eta(\sigma)$, for any $\sigma \in \Gamma^{n+k+1}$, then the smooth manifold $S^n \times D^{k+1} \cup_f D^{n+1} \times S^k$ is a topological (n+k+1)-sphere representing σ . This observation implies that η is injective.

Notice that α is abelian.

- 2.4 THEOREM. $A = (A_1 \oplus \alpha) \times_{\phi, \tau} A_2$, for suitable ϕ and τ , assuming $n \ge 3$ if $\mathscr{A} = \mathscr{P}$ or \mathscr{D} . Moreover A_1 and A_2 are abelian, and, if $\mathscr{A} = \mathscr{P}$ or \mathscr{D} , $A_0 = A_1 \oplus \alpha$.
- 2.5. We first deal with $\mathcal{A} = \mathcal{H}$. Notice that a homotopy equivalence $f: S^n \times S^k \to S^n \times S^k$ represents an element of H_i if and only if $p_i \circ f \cong p_i$, where p_i is projection on the *i*th factor (i=1 or 2). It follows immediately that $H_1 \cap H_2 = \{1\}$.

We now show $H_2H_1 = H$. Suppose f represents an element of H and $f_i = p_i \circ f$ are the coordinate functions. By definition of H, the map $y \mapsto f_2(x, y)$ has degree +1, for any $x \in S^n$. Therefore the map g defined by $g(x, y) = (x, f_2(x, y))$ represents an element of H and, by the above paragraph, of H_1 . Now let $h: S^n \times S^k \to S^n \times S^k$ be a map satisfying $h \circ g \cong f$. It follows that f_2 is homotopic to the map (x, y)

 $\mapsto h_2(x, f_2(x, y))$, where $h_2 = p_2 \circ h$. Since we can consider f_2 and h_2 as representing elements of $\pi_n(G_{k+1}) - G_{k+1}$ is the space of maps $S^k \to S^k$ of degree +1—we can interpret this fact as saying that h_2 represents the zero element of $\pi_n(G_{k+1})$. But this means $h_2 \cong p_2$, which implies that h represents an element of H_2 .

We now show H_1 is normal in H. Let g represent an element of H_1 —we may assume $p_1 \circ g = p_1$. If $g_2 = p_2 \circ g$, then the map $y \mapsto g_2(x, y)$ has degree +1, for any $x \in S^n$. Thus we may assume $g_2|D_+^n \times S^k = p_2|D_+^n \times S^k$ and, therefore, $g|D_+^n \times S^k = \text{inclusion}$. Now suppose f represents any element of H. By definition of H we may assume that $f|D_-^n \times S^k = \text{inclusion}$. We must show that a map h, satisfying $f \circ g \cong h \circ f$, represents an element of H_1 , i.e. $p_1 \circ h \cong p_1$. Notice that $p_1 \circ f \circ g = p_1 \circ f$, since $g|D_+^n \times S^k = \text{inclusion}$, $p_1 \circ g = p_1$, and $f|D_-^n \times S^k = \text{inclusion}$. Now we observe $p_1 \circ h \circ f \cong p_1 \circ f \circ g \cong p_1 \circ f$; since f is a homotopy equivalence, we have $p_1 \circ h \cong p_1$. Finally, we show H_1 and H_2 are abelian. As pointed out above, any representative g of an element of H_1 may be assumed to satisfy $p_1 \circ g = p_1$ and $g|D_+^n \times S^k = \text{inclusion}$. But it follows that another such g' may be assumed to satisfy $p_1 \circ g' = p_1$

2.6. We now assume $\mathscr{A} = \mathscr{P}$ or \mathscr{D} and $n \ge k$, $n \ge 3$.

LEMMA. Every element of A can be represented by f satisfying $f(D_+^n \times S^k) = D_+^n \times S^k$.

and $g'|D_{-}^{n} \times S^{k} = \text{inclusion}$. Now we observe that $g \circ g' = g' \circ g$. Similarly for H_{2} .

Proof. By definition of A, $f|x_0 \times S^k$ is homotopic to the inclusion. Choose $x_1 \in S^n - x_0$; then we may isotopically deform f so that $f(x_0 \times S^k)$ is disjoint from $x_1 \times S^k$. If n > k, this follows from general position; if n = k, we use the technique of Whitney [28] (see [25] or 3.6 below for the piecewise-linear case) since $n \ge 3$. Note that the intersection number of $f(x_0 \times S^k)$ and $x_1 \times S^k$ is 0.

We may now move $f(x_0 \times S^k)$ inside $D_+^n \times S^k$, by another isotopy. In fact we may even move $f(D_+^n \times S^k)$ inside $D_+^n \times S^k$, if $x_0 \in D_+^n$. For $n+k \ge 6$, it follows from the h-cobordism theorem [21] if k > 1, or the s-cobordism theorem [17] if k = 1, that $\operatorname{Cl}(D_+^n \times S^k - f(D_+^n \times S^k))$ is equivalent to $I \times S^{n-1} \times S^k$. Using this equivalence, there is an obvious isotopy to make $f(D_+^n \times S^k) = D_+^n \times S^k$.

If $n+k \le 5$ (and $n \ge 3$), we may assume $f|_{X_0 \times S^k} = \text{inclusion}$ —by general position if k=1, or [29], [30] if k=2. Then $D_+^n \times S^k$ and $f(D_+^n \times S^k)$ are both tubular or regular neighborhoods of $f(x_0 \times S^k)$; therefore, by the tubular or regular neighborhood theorem, an ambient isotopy of $S^n \times S^k$ will carry $D_+^n \times S^k$ onto $f(D_+^n \times S^k)$.

2.7 Lemma. Suppose f represents an element of A_2 (A_1) and satisfies $f|D_+^n \times S^k$ = inclusion $(f|S^n \times D_+^k = \text{inclusion})$. Then f is concordant to the identity.

Proof. Suppose $f|D_+^n \times S^k =$ inclusion and f extends to a self-equivalence F of $D^{n+1} \times S^k$. We may assume that F is the "product extension" in a neighborhood of $S^n \times S^k$ i.e.

$$F(tx, y) = (tf_1(x, y), f_2(x, y))$$

for $(x, y) \in S^n \times S^k$ and t near 1. Therefore F|V = inclusion, where V is a neighborhood of $D_+^n \times S^k$. If D_0^{n+1} is the disk of radius 1/2 in D^{n+1} , then, by an isotopy, we may move $D_0^{n+1} \times S^k$ inside V. So we may assume $F|D_0^{n+1} \times S^k =$ inclusion. But now $F|(D^{n+1} - D_0^{n+1}) \times S^k$ defines a concordance between f and the identity.

A similar argument works for A_1 .

2.8 Lemma. Any element of A_1 (A_2) admits a representative f satisfying $f|D_+^n \times S^k$ = inclusion ($f|S^n \times D_+^k$ = inclusion).

Proof. Given f representing an element of A_1 , we will construct a self-equivalence g, concordant to the identity, which agrees with f on a neighborhood of $x_0 \times S^k$. After expanding this neighborhood, by an isotopy, to contain $D_+^n \times S^k$ we may assume g agrees with f on $D_+^n \times S^k$. Then $g^{-1} \circ f$ is concordant to f and satisfies the condition of the lemma.

Let F be a self-equivalence of $S^n \times D^{k+1}$ extending f. Given $x_0 \in S^n$, we may assume that f | U is the inclusion, for some neighborhood U of $(x_0, 0)$ in $S^n \times D^{k+1}$. We would now like to alter F by an isotopy so that $F(x_0 \times D^{k+1})$ meets $S^n \times 0$ only at $(x_0, 0)$.

If k=1, it follows from general position for $n \ge 4$ and [29] or [30] for n=3, that $f|x_0 \times D^{k+1}$ is isotopic to the inclusion. If $k \ge 2$, we can apply Whitney's technique to remove the undesired intersections, since $S^n \times 0$ and $F(x_0 \times D^{k+1})$ have intersection number ± 1 and an intersection of precisely this sign already occurs at $(x_0, 0)$.

It now follows that for sufficiently small disk neighborhoods V_1 of x_0 (in S^n) and V_2 of 0 (in D^{k+1}), $F(V_1 \times D^{k+1})$ meets $S^n \times V_2$ only at $F(V_1 \times V_2) = V_1 \times V_2$, and $F(V_1 \times V_2) = I$ inclusion.

We now begin to define a self-equivalence G of $S^n \times D^{k+1}$ by $G|S^n \times V_2 =$ inclusion, and $G|V_1 \times D^{k+1} = F|V_1 \times D^{k+1}$. It follows from our considerations that this defines an imbedding $G_0 \colon S^n \times V_2 \cup V_1 \times D^{k+1} \to S^n \times D^{k+1}$. If k=1, we have shown that $F(x_0 \times D^{k+1}) = x_0 \times D^{k+1}$ and, therefore, we may assume G_0 maps onto $S^n \times V_2 \cup V_1 \times D^{k+1}$. The extension to a self-equivalence of $S^n \times D^{k+1}$ is, then, formally equivalent to the extension of a self-equivalence of $S^{n-1} \times I \times S^k \cup D^n \times 0 \times S^k$ to one of $D^n \times I \times S^k$. But this is always possible.

Now assume $k \ge 2$. Let

$$X = S^n \times D^{k+1} - \text{Image } G_0, \qquad X_0 = \text{Cl } (S^n \times S^k - G_0(V_1 \times S^k)),$$

$$X_1 = G_0 \text{ (Cl } (S^n - V_1) \times \partial V_2), \text{ and } Y = G_0(\partial V_1 \times \text{Cl } (D^{k+1} - V_2)).$$

Then X is an h-cobordism from X_0 to X_1 , extending the h-cobordism Y from ∂X_0 to ∂X_1 . If we choose V_2 to be a concentric disk in D^{k+1} , then G_0 defines an obvious equivalence of Y with $\partial V_1 \times \partial V_2 \times I$. According to the h-cobordism theorem (dim $X \ge 6$ and X, X_0 , X_1 are 1-connected) this extends to an equivalence of X with $Cl(S^n - V_1) \times \partial V_2 \times I$. This equivalence can be used to extend G_0 to the desired self-equivalence G, since $Cl(D^{k+1}) - V_2$ is equivalent to $\partial V_2 \times I$.

Now define $g = G|S^n \times S^k$. Since $G|S^n \times V_2 = \text{inclusion}$, $G|S^n \times \text{Cl}(D^{k+1} - V_2)$ defines a concordance from g to the identity. Also $g|V_1 \times S^k = F|V_1 \times S^k = f|V_1 \times S^k$. Thus g is as desired at the beginning of the proof.

When f represents an element of A_2 , the argument is easier. Let F be a self-equivalence of $D^{n+1} \times S^k$ extending f. Then $F|0 \times S^k$ is isotopic to the inclusion (by general position if n > k, and [29] or [30] if n = k). Furthermore, since F is orientation-preserving, we may assume that F|D is the inclusion for any (n+k+1)-disk D cinterior $(D^{n+1} \times S^k)$. If V is a concentric disk neighborhood of 0 in D^{n+1} , we may assume by the tubular or regular neighborhood theorem that $F(V \times S^k) = V \times S^k$. If D contains $V \times D^k_+$, then F|C1 $(D^{n+1} - V) \times S^k$ defines a concordance from f to a self-equivalence with the desired property.

2.9. We are now ready to prove Theorem 2.4 for \mathscr{P} or \mathscr{D} .

 $A = A_0 A_2$. Suppose f represents an element of A. By Lemma 2.6 we may assume $f(D_+^n \times S^k) = D_+^n \times S^k$. Now extend $f|D_+^n \times S^k$ to a self-equivalence G of $D^{n+1} \times S^k$; the restriction g to $S^n \times S^k$ represents an element of A_2 . Clearly $f \circ g^{-1}$ represents an element of A_0 , and $f = (f \circ g^{-1}) \circ g$ is the desired factorization of f.

 $A_0 \cap A_2 = \{1\}$. This is implied by Lemma 2.7.

 A_0 is normal in A. Let f represent an element of A and g an element of A_0 . Then we may assume $f(D_+^n \times S^k) = D_+^n \times S^k$, by Lemma 2.6, and $g|D_+^n \times S^k = \text{inclusion}$, by definition. But then $f \circ g \circ f^{-1}|D_+^n \times S^k = \text{inclusion}$, and, therefore, represents an element of A_0 .

 $\alpha \subseteq A_0$. This follows from the definitions by choosing *D* disjoint from $D_+^n \times S^k$. $A_1 \subseteq A_0$. This follows from Lemma 2.8.

 $A_1 \cap \alpha = \{1\}$. This follows from Lemma 2.7 by choosing D disjoint from $S^n \times D_+^k$.

 $A_0 = A_1 \alpha$. Suppose f is a self-equivalence of $S^n \times S^k$ satisfying $f \mid D_+^n \times S^k = \text{inclusion}$. We can extend f to a self-equivalence F_0 of a neighborhood U of $S^n \times S^k \cup x_0 \times D^{k+1}$ in $S^n \times D^{k+1}$ by the "product extension" (see proof Lemma 2.7) near $S^n \times S^k$ and the identity near $x_0 \times D^{k+1}$. The complement of U in $S^n \times D^{k+1}$ is an (n+k+1)-disk D. It is well known that, after changing F_0 on a disk in ∂D , $F_0 \mid \partial D$ may be extended to a self-equivalence of D. But such a change in F_0 can be effected by changing f on a disk in $S^n \times S^k$.

This argument shows that a representative of any element of A_0 , after being changed on a disk, extends to a self-equivalence of $S^n \times D^{k+1}$.

 $\alpha \subset center \ of \ A$. Any orientation-preserving self-equivalence of $S^n \times S^k$ may be assumed to leave a disk D fixed. It therefore commutes with any representative of an element of α , which is fixed outside of D.

 A_0 and A_2 are abelian. If f, g represent elements of A_0 (A_2), then, by definition (Lemma 2.8), we may assume that $f|D_+^n \times S^k$ and $g|D_-^n \times S^k(f|S^n \times D_+^k)$ and $g|S^n \times D_-^k)$ are inclusions.

Then f and g commute.

This completes the proof of Theorem 2.4.

2.10. Notice that the homomorphisms:

$$\bar{D}^{n,k} \xrightarrow{\mu_1} \bar{P}^{n,k} \xrightarrow{\mu_2} \bar{H}^{n,k}$$

defined in 1.1 preserve the subgroups A, A_0 , A_1 and A_2 , and, therefore, the action ϕ .

3. Determination of the groups A_1 and A_2 .

3.1. Let G_p denote the space of maps $S^{p-1} o S^{p-1}$ of degree +1. We write $H(m,p) = \pi_m (G_{p+1})$. In the categories \mathscr{P} and \mathscr{D} , let A(m,p) be the group of concordance classes of framed imbeddings $S^m o S^{m+p+1}$ i.e. imbeddings $S^m imes R^{p+1} o S^{m+p+1}$. Two such f_0, f_1 are concordant if there is an imbedding $F: I imes S^m imes R^{p+1} o I imes S^{m+p+1}$ such that $F(t,x) = (t,f_t(x))$, for t=0, 1 and $x \in S^m imes R^{p+1}$.

Observe that $D(m, p) = FC_m^{p+1}$, in the notation of [7]. Furthermore, one can show, using the arguments in [8, §3], that $P(m, p) \approx F\Gamma_m^{p+1}$, the group of concordance classes of smooth framed submanifolds Σ of R^{m+p+1} , where Σ is piecewise-smoothly homeomorphic to S^m . These groups are extensively studied in [7] and [16]. In particular there are monomorphisms:

$$D(m, p) \xrightarrow{\mu'_1} P(m, p) \xrightarrow{\mu'_2} H(m, p).$$

 μ'_1 is defined by the passage from a framed imbedding to the framed submanifold determined by its image; μ'_2 is defined in [16]. Recall from [7], [16] the exact sequences:

(a)
$$\Gamma_{m+1} \longrightarrow D(m,p) \xrightarrow{\mu'_1} P(m,p) \xrightarrow{\theta} \Gamma_m \longrightarrow \cdots$$

(b)
$$\cdots \longrightarrow P_{m+1} \xrightarrow{\partial} P(m,p) \xrightarrow{\mu'_2} H(m,p) \xrightarrow{\omega} P_m \longrightarrow \cdots .$$

 P_m is defined to be 0 for m odd, Z for $m=0 \mod 4$, and Z_2 for $m=2 \mod 4$. Sequences (a) and (b) are valid for $p \ge 2$, $m \ge 1$ (see [16], [7]).

3.2. We construct homomorphisms:

$$\lambda_1: A_1^{n,k} \to A(n,k), \qquad \lambda_2: A_2^{n,k} \to A(k,n).$$

 $\mathcal{A} = \mathcal{H}$. An element of H_1 is represented by a map of the form $(x, y) \mapsto (x, g(x, y))$, where $g: S^n \times S^k \to S^k$ represents an element of $\pi_n(G_{k+1}) = H(n, k)$. This induces the homomorphism λ_1 and, in a similar fashion, λ_2 is defined.

 $\mathscr{A} = \mathscr{P} \text{ or } \mathscr{D}$. Let f represent an element $\xi \in A_1^{n,k}$. Then $(x, t) \to (f(x), t)$ defines a self-equivalence \hat{f} of $S^n \times S^k \times R$. Choose an orientation-preserving imbedding $R^k \subset S^k$ and notice the standard imbeddings

$$S^n \times S^k \times R \subset S^n \times R^{k+1} = S^n \times R \times R^k \subset R^{n+1} \times R^k = R^{n+k+1}$$

defined by $(x, y, t) \rightarrow (x, e^t y), (x, t, y) \rightarrow (e^t x, y)$. Then the composite imbedding:

$$S^{n} \times R^{k+1} = S^{n} \times R^{k} \times R \subset S^{n} \times S^{k} \times R \xrightarrow{\hat{f}} S^{n} \times S^{k} \times R \subset S^{n} \times R^{k+1} \subset R^{n+k+1}$$

represents the element $\lambda_1(\xi) \in A(n, k)$. λ_1 is clearly well defined. λ_2 is defined similarly.

An alternative description of $\lambda_1(\xi)$ is as follows. Let F be an extension of f to a self-equivalence of $S^n \times D^{k+1}$. The standard equivalence of R^{k+1} with the interior of D^{k+1} induces an imbedding $S^n \times R^{k+1} \subset S^n \times D^{k+1}$. Now, the composition:

$$S^{n} \times R^{k+1} \subset S^{n} \times D^{k+1} \xrightarrow{F} S^{n} \times D^{k+1} \subset S^{n} \times R^{k+1} \subset R^{n+k+1}$$

represents $\lambda_1(\xi)$. This seems to depend upon F, but its equivalence to the first definition is easily verified. A similar description holds for λ_2 .

That λ_1 is a homomorphism follows by choosing representative self-equivalences which restrict to the inclusion on $D_+^n \times S^k$ or $D_-^n \times S^k$, by Lemma 2.8. The framed imbeddings constructed are then standard on D_+^n or D_-^n . The composition of the self-equivalences then clearly yields the sum of the framed imbeddings.

The functions μ_i and μ_i' are related by the λ_i according to the commutative diagram:

$$D_{1} \xrightarrow{\mu_{1}} P_{1} \xrightarrow{\mu_{2}} H_{1}$$

$$\begin{vmatrix} \lambda_{1} & \lambda_{1} & \lambda_{1} \\ \lambda_{1} & \lambda_{1} & \lambda_{1} \\ D(n, k) \xrightarrow{\mu'_{1}} P(n, k) \xrightarrow{\mu'_{2}} H(n, k).$$

Similarly for λ_2 .

3.3. The fibration $G_{n+1} \to S^n$ defined by evaluation at a point of S^n induces a homomorphism $H(k, n) = \pi_k(G_{n+1}) \to \pi_k(S^n)$. We define:

$$\varepsilon: A(k, n) \to \pi_k(S^n)$$

by composing this with the necessary μ'_i , and write $A_0(k, n) = \text{Kernel } \epsilon$. Notice that $A_0(k, n) = A(k, n)$ unless k = n is odd (see (1.2)).

THEOREM. (i) $P_1^{n,1} = 0$, $D_1^{n,1} \approx \theta^{n+1}/bP^{n+2}$ (see [12]) for $n \ge 3$,

- (ii) λ_1 is an isomorphism onto A(n, k) if either $\mathcal{A} = \mathcal{H}$ or $n \ge 3$ and $k \ge 2$,
- (iii) λ_2 is an isomorphism onto $A_0(k, n)$ if either $\mathscr{A} = \mathscr{H}$ or $n \ge 3$.

Compare [1, §5] for k=1.

- 3.4. The definition of A (see 1.3) implies that Image $\lambda_2 \subset A_0(k, n)$. The statements of the theorem for $\mathscr{A} = \mathscr{H}$ follow immediately from the previous (2.5) observation that elements of e.g. H_1 are represented by maps of the form $(x, y) \mapsto (x, g(x, y))$, where g represents an element of $\pi_n(G_{k+1})$. The correspondence, λ_1 , so defined, is clearly injective. Since any map $S^n \times S^k \to S^k$ extends to a map $S^n \times D^{k+1} \to D^{k+1}$, by radial extension, it follows that λ_1 is surjective. For λ_2 the same arguments work except that the definition of A (see above) restricts Image λ_2 to $A_0(k, n)$.
- 3.5. We now restrict ourselves to $\mathcal{A} = \mathcal{P}$ or \mathcal{D} . The surjectivity of λ_1 and λ_2 is seen as follows. Given a framed imbedding of S^n in S^{n+k+1} , we consider the restriction

 $F: S^n \times D^{k+1} \to S^{n+k+1}$. By an argument in [16, §3.5] which uses the *h*-cobordism theorem—since $k \ge 2$, $n \ge 3$ —we may assume that $F(S^n \times D^{k+1}) = S^n \times D^{k+1}$. It then follows from our second description of λ_1 that λ_1 is onto. A similar argument works for λ_2 , if k > 1. If k = 1, notice that $A(1, n) \approx Z_2$, and its generator is the image, under λ_2 , of the element of A_2^{n+1} represented by $(x, y) \mapsto (\phi(y) \cdot x, y)$, where $\phi: S^1 \to SO_{n+1}$ is essential.

3.6. Before continuing, we digress briefly to prove a slight extension of Whitney's theorem [28] on removing intersections of submanifolds. This will be needed so that we can apply Whitney's technique in all the dimensions needed. The result is stated for both the smooth and piecewise-linear category.

LEMMA. Suppose M, N are oriented connected locally flat submanifolds of the oriented simply-connected manifold V where $\dim M + \dim N = \dim V$, $\dim N \ge 2$ $\dim M > 2$, and M meets N in general position. If the intersection number of M and M is zero and, for $\dim N = 2$, $\Pi_1(V - M)$ is abelian, there is an isotopy of V, stationary on ∂V , which separates M and N.

Proof. We describe the necessary modifications in Whitney's proof [28] (see also [20])—placing ourselves in the differential situation. Recall that the intersections of M and N are removed by a sequence of local isotopies, each of which removes a pair of oppositely oriented intersections.

The construction of a local isotopy is begun by joining the points by arcs a_1 in M and a_2 in N and then constructing vector fields v_i along a_i such that v_1 is normal to M and inwardly tangent to a_2 at $a_1 \cap a_2$ —similarly for v_2 . If we push a_i slightly along v_i , we obtain new arcs a_i' in V which, we may assume, again meet at two points. Then $a_1' \cup a_2'$ contains a loop l in $V - (M \cup N)$. If M and N both have dimension > 2, it follows by general position that l is null-homotopic in $V - (M \cup N)$ and bounds an imbedded 2-disk D. If dimension N = 2, it is not necessarily true that l is null-homotopic in $V - (M \cup N)$. Now notice that $H_1(V - M)$ is generated by the element α represented by any small loop linking M once. But l may be modified, e.g. by adding twists to v_1 or letting a_2 wind around one of its endpoints extra times, to add any multiple of α to its homology class. Thus we may assume l is null-homologous, and so null-homotopic, in V - M. Since dim M > 2, a general position argument allows us to complete the construction of D.

The next step (see [20]) is to construct a normal frame w_1, \ldots, w_n to D, so that w_1, \ldots, w_k is tangent to N along a_2 and normal to M along a_1 , where dim V=n+2 and dim N=k+1. This is begun by constructing w_1, \ldots, w_k along $a_1 \cup a_2$ and extending over D. The obstruction to the extension is an element of $\pi_1(V_{n,k})$, where $V_{n,k}$ is the Stiefel manifold of k-frames in n-space; since $n-k=(\dim M)-1>1$, $\pi_1(V_{n,k})=0$.

The remainder of the proof is identical to Whitney's. For the piecewise-linear case, we can construct the arcs a_i as above and then smooth M and N in neighborhoods of a_1 and a_2 , respectively, to enable us to apply the procedures of Whitney

with the above modifications—see [3] for a description of the necessary smoothing. Alternatively, we could modify the arguments of [25] to obtain the piecewise-linear result.

3.7. It is illuminating to examine two simple examples toward understanding the necessity of the hypotheses of Lemma 3.6.

EXAMPLE 1. Let K_1 , $K_2 \subset S^3$ be trivial knots with linking number zero, and D_1 , $D_2 \subset D^4$ disks bounded by K_1 , K_2 respectively. Then the intersection number of D_1 and D_2 is zero, but, if K_1 and K_2 are nontrivially linked we cannot remove the intersections of D_1 and D_2 . Note that, we may choose D_1 , D_2 so that $\pi_1(D^4 - D_i)$ is abelian.

EXAMPLE 2. Let $K \subset S^{n+2}$ be an imbedded n-sphere such that $\pi_1(S^{n+2}-K)$ is not abelian. Let $C \subset S^{n+2}-K$ be an imbedded circle representing a nonzero element of the commutator subgroup of $\pi_1(S^{n+2}-K)$. If n>1, C is unknotted. Let $V=I\times S^{n+2}$, $M=I\times K$, and N an imbedded 2-disk in V bounded by $0\times C$. The intersection number of M and N is zero, but the intersections cannot be removed since C is essential in $S^{n+2}-K$.

3.8. We now return to the proof of Theorem 3.3. It remains to prove the injectivity of λ_1 and λ_2 , and assertion (i). We first consider $A_1^{n,k}$. Suppose F_0 , F_1 are self-equivalences of $S^n \times D^{k+1}$, and the compositions:

$$S^n \times R^{k+1} \subset S^n \times D^{k+1} \xrightarrow{F_i} S^n \times D^{k+1} \subset S^n \times R^{k+1} \subset R^{n+k+1}$$

are concordant framed imbeddings. Let $C: I \times S^n \times R^{k+1} \to I \times S^{n+k+1}$ be the concordance.

Recall the imbedding $S^n \times R^{k+1} = S^n \times R^k \times R \subset R^{n+k+1}$ defined by $(x, y, t) \to (e^t x, y)$. If S^{n+k+1} is represented as the one-point compactification of R^{n+k+1} , then the complement of this imbedding is a k-sphere Σ which links $S^n \times 0$ once. Now the intersection number of $C(I \times S^n \times 0)$ with $I \times \Sigma$ is 0. If k = 1, we assume $\pi_1(I \times S^{n+k+1} - C(I \times S^n \times 0))$ is abelian. Therefore we can apply Whitney's procedure, extended by Lemma 3.6, to change C so that $C(I \times S^n \times 0) \subset I \times S^n \times R^{k+1}$.

We can then move $C(I \times S^n \times 0)$ into an arbitrarily small neighborhood of $I \times S^n \times 0$. If D_0^{k+1} is a disk of small radius, we may assume $C(I \times S^n \times D_0^{k+1}) \subset I \times S^n \times D^{k+1}$. The annular region $Cl(I \times S^n \times D^{k+1} - C(I \times S^n \times D_0^{k+1}))$ is an h-cobordism between $I \times S^n \times S^k$ and $C(I \times S^n \times \partial D_0^{k+1})$, and F_0 , F_1 define an equivalence of

$$\dot{I} \times S^n \times (S^k \times I) = \dot{I} \times S^n \times \text{Cl}(D^{k+1} - D_0^{k+1})$$

with Cl $(I \times S^n \times D^{k+1} - C(I \times S^n \times D_0^{k+1}))$. By the *h*-cobordism theorem, for k > 1, and the *s*-cobordism theorem [17] if k = 1 (note that, if k = 1 and C as above, $\pi_1(I \times S^n \times D^{k+1} - C(I \times S^n \times D_0^{k+1})) \approx Z$), F_0 , F_1 and $C \mid I \times S^n \times D_0^{k+1}$ extend to a self-equivalence of $I \times S^n \times D^{k+1}$. Thus F_0 and F_1 are concordant, and we have proved (ii) when $k \ge 2$.

The proof that λ_2 is injective is the same, except that special consideration when n=1 is not required. On the other hand, when k=1, it is necessary to point out that $\pi_1(I \times S^{n+k+1} - I \times \Sigma) \approx Z$ in order to apply Lemma 3.6.

3.9. We now prove (i). Let F_0 be a self-equivalence of $S^n \times D^2$ and \tilde{F}_0 the imbedding

$$S^n \times D^2 \xrightarrow{F_0} S^n \times D^2 \subset S^n \times R^2 \subset R^{n+2} \subset S^{n+2};$$

notice that $S^{n+2} - \tilde{F}_0(S^n \times 0)$ is a homotopy circle. It is proved in [15] or [33] for $n \ge 4$, and [32] for n = 3, that any collared imbedded *n*-sphere in the (n+2)-sphere whose complement is a homotopy circle bounds a collared (n+1)-disk. From this it follows that, for some orientation-preserving self-equivalence h of S^n we can define a self-equivalence $F_1 = h \times 1$ of $S^n \times D^2$ such that the framed imbeddings:

$$S^n \times R^2 \longrightarrow S^n \times D^2 \xrightarrow{F_i} S^n \times D^2 \subset S^n \times R^2 \subset R^{n+2}$$

are isotopic. Now we can apply the argument in (3.8) to prove that F_0 and F_1 are concordant, since C can be chosen to be an *isotopy* from which it follows that $\pi_1(I \times S^{n+2} - C(I \times S^n \times 0))$ is abelian.

In \mathscr{P} all orientation-preserving self-equivalences of S^n are isotopic; thus we have shown that $P_1^{n,1} = 0$ for $n \ge 3$.

3.10. We can define a homomorphism $\theta: \Gamma^{n+1} \to D_1^{n,1}$ by associating to a self-equivalence h of S^n , the self-equivalence $h \times 1$ of $S^n \times S^1$. The argument of (3.9) shows θ is onto. Since $\Gamma^4 = 0$ ([5]), this proves $D_1^{3,1} = 0$; if $n \ge 4$, $\theta^{n+1} \approx \Gamma^{n+1}$. We will show that Kernel $\theta = bP^{n+2}$, completing the proof of (i).

If h represents an element of Kernel θ , then the imbedding $i \circ h$, where $i: S^n \to S^{n+2}$ is the standard inclusion, is concordant to i. By [31, Theorem III. 3], this proves h represents an element of bP^{n+2} . Thus Kernel $\theta \subset bP^{n+2}$.

Conversely if h represents an element of bP^{n+2} , let C' be a concordance between i and $i \circ h$. C' also defines a concordance between the framed imbedding

$$S^n \times R^2 \xrightarrow{h \times 1} S^n \times R^2 \subset S^{n+2}$$

and some framing of *i*. But since $\pi_n(SO_2) = 0$ $(n \ge 3)$, this is isotopic to $S^n \times R^2 \subset S^{n+2}$. Now, if we knew that $\pi_1(I \times S^{n+2} - C'(I \times S^n))$ were abelian, we could use the argument of (3.8) to prove that $h \times 1$ (on $S^n \times S^1$) is concordant to the identity (and so $bP^{n+2} \subset \text{Ker } \theta$).

3.11. It remains to construct C' as desired. Recall the argument of [31, p. 262]. Let $\Sigma^{n+1} = D^{n+1} \cup_h D^{n+1}$, representing an element of bP^{n+2} ; then Σ^{n+1} imbeds smoothly in S^{n+3} . In fact, if V^{n+2} is a [(n+1)/2]-connected parallelizable manifold bounded by Σ^{n+1} , we can imbed V^{n+2} in S^{n+3} . Notice also that, for an imbedding of Σ^{n+1} in S^{n+3} constructed this way, $\pi_1(S^{n+3} - \Sigma^{n+1})$ is abelian (see e.g. [15]). Let B_1 , B_2 be disjoint (n+3)-balls in S^{n+3} with $B_i \cap \Sigma^{n+1} = (n+1)$ -ball. There is a diffeomorphism $S^{n+3} - (B_1 \cup B_2) \approx I \times S^{n+2}$ which carries $\Sigma^{n+1} - (B_1 \cup B_2)$

onto the image of a concordance C' between $i \circ h$ and i (see [31, p. 262]). Then $\pi_1(I \times S^{n+2} - C'(I \times S^n)) \approx \pi_1(S^{n+3} - \Sigma^{n+1})$ which is abelian.

This completes the proof of Theorem 3.3.

4. Group structure of $A^{n,k}$.

4.1. We now study the action ϕ , and the function τ , which occur in the description of $A^{n,k}$ given by Theorem 2.4. By Theorem 3.3, ϕ corresponds to an action of $A_0(k, n)$ on A(n, k), also called ϕ , and τ corresponds to a bilinear pairing $D(n, k) \otimes D_0(k, n) \to \Gamma^{n+k+1}$, also called τ .

We first study ϕ in the category \mathscr{H} . The fibration $G_{m+1} \to S^m$ (see 3.3) has fiber F_m , the space of base-point preserving maps $S^m \to S^m$ of degree +1. There is a canonical isomorphism $\pi_p(F_m) \approx \pi_{p+m}(S^m)$ (see [26, p. 465]). Note F_m is not the usual loop space; in the notation of [26], $F_m = F_\iota^m(S^m, x)$. There are homomorphisms $\varepsilon \colon \pi_p(G_{m+1}) \to \pi_p(S^m)$ and $\nu \colon \pi_{p+m}(S^m) \to \pi_p(G_{m+1})$ induced by the fibration and inclusion of the fiber.

4.2 PROPOSITION. If $\xi \in \pi_{n+k}(S^n)$ and $\beta \in \pi_n(G_{k+1})$, then $\phi(\nu(\xi)) \cdot \beta = \beta - \nu(\varepsilon(\beta) \circ \xi)$. Note $H_0(k, n) = \nu(\pi_{n+k}(S^n))$.

Proof. Consider representatives $f: S^n \times S^k \to S^n$ of $\nu(-\xi)$, and $g: S^n \times S^k \to S^k$ of β . Let $\rho: (S^n, D^n_-) \to (S^n, x_0)$ be a map of degree +1; we may assume $f(x, y) = \rho(x)$ for $x \in D^n_+$ or $y \in D^k_+$.

Consider a new map $f': S^n \times S^k \to S^n$ defined by:

$$f'(x, y) = f(x, y) \quad \text{if } x \in D^n_-$$
$$= x_0 \quad \text{if } x \in D^n_+.$$

Recall from [26, p. 465] that ν is defined as a composition:

$$\pi_{m+p}(S^m) \xrightarrow{\nu'} \pi_{m+p}(F_m^0) \xrightarrow{\nu''} \pi_{m+p}(F_m),$$

where F_m^0 is the space of base-point preserving maps $S^{m-1} \to S^{m-1}$ of degree 0, ν' is the usual isomorphism and ν'' is induced by "adding" a fixed map of degree +1. Then f' represents $\nu'(-\xi)$.

Now it follows that $-\nu'(\varepsilon(\beta) \circ \xi) = \nu'(\varepsilon(\beta) \circ (-\xi))$ is represented by a map $h': S^n \times S^k \to S^k$ defined by $h'(x, y) = g(f'(x, y), y_0)$. Notice that $h'(x, y) = g(x_0, y_0)$ if $y \in D_+^k$; we may assume $g(x_0, y_0) = y_0$. Let $\gamma: (S^k, D_-^k) \to (S^k, y_0)$ be a map of degree +1; then $-\nu(\varepsilon(\beta) \circ \xi)$ is represented by $h: S^n \times S^k \to S^k$ defined by:

$$h(x, y) = h'(x, y) \quad \text{if } y \in D^k_-$$
$$= \gamma(y) \quad \text{if } y \in D^k_+.$$

Now $f'(x, y) = x_0$, if $y \in D_+^k$, and, therefore, the map $(D_+^k, S^{k-1}) \to (S^k, y_0)$, defined by $y \mapsto g(f'(x, y), \gamma(y))$, is independent of x. Let $\bar{\gamma}: (S^k, D_-^k) \to (S^k, y_0)$ be the extension of degree +1. Since, in the definition of h, γ was arbitrary, replace γ with $\bar{\gamma}$. Then it may be checked that:

$$h(x, y) = g(f'(x, y), \gamma(y)) \quad \text{for } x \in S^n, y \in S^k.$$

Since γ is homotopic to the identity, we can change the definition of h, without altering its homotopy class, to: h(x, y) = g(f'(x, y), y) for $x \in S^n$, $y \in S^k$.

Now β is also represented by the map $(x, y) \mapsto g(\rho(x), y)$. Therefore, by the definition of addition, $\beta - \nu(\varepsilon(\beta) \circ \xi)$ is represented by the map $l: S^n \times S^k \to S^k$ defined by:

$$l(x, y) = g(f'(x, g(\rho(x), y)), g(\rho(x), y)).$$

If g is chosen to satisfy $g(x_0, y) = y$, for $y \in S^k$, then it may be checked that l(x, y) = g(f(x, y), y). But this is also a representative of $\phi(\nu(\xi)) \cdot \beta$.

- 4.3. Proposition 4.2, together with Theorems 2.4 and 3.3, completely determine the group $H^{n,k}$ in terms of standard homotopy groups. Notice also that Proposition 4.2 gives us a great deal of information about ϕ in the categories \mathscr{P} and \mathscr{D} (see 2.10).
 - 4.4. We can define suspension homomorphisms:

$$\sigma_1: A_1^{n,k} \to A_1^{n,k+1}, \qquad \sigma_2: A_2^{n,k} \to A_2^{n+1,k}.$$

Suppose f represents an element $\xi \in A_1^{n,k}$ and F is an extension of f to a self-equivalence of $S^n \times D^{k+1}$. If we choose equivalences $\varepsilon_+: D_+^{k+1} \to D^{k+1}$ and $\varepsilon_-: D_-^{k+1} \to D^{k+1}$ extending the inclusion $S^k \to D^{k+1}$, then F determines a self-equivalence \hat{f} of $S^n \times S^{k+1}$, defined as follows:

$$\hat{f}(x, y) = F(x, \varepsilon_{+}(y)) \quad \text{if } y \in D_{+}^{k+1},$$

= $F(x, \varepsilon_{-}(y)) \quad \text{if } y \in D_{-}^{k+1}.$

The concordance class of \hat{f} depends only on that of f. For certainly it depends only on the concordance class of F. But F is isotopic to F', where F' is a "product extension" of f (see 2.7) in a neighborhood of $S^n \times S^k$. If we use F', instead of F, in the construction of \hat{f} , we see that \hat{f} is determined by f in $S^n \times U$, where U is some neighborhood of S^k in S^{k+1} . It now follows from Lemma 2.7 that \hat{f} is determined by f; notice that \hat{f} extends to a self-equivalence of $S^n \times D^{k+2}$. We define $\sigma_1(\hat{\xi})$ to be the concordance class of \hat{f} . Clearly σ_1 is a homomorphism. σ_2 is defined similarly.

Recall the suspension homomorphisms $\sigma: A(m, p) \to A(m, p+1)$ (see [7], [16]). The following diagrams are clearly commutative:

$$A_{1}^{n,k} \xrightarrow{\sigma_{1}} A_{1}^{n,k+1} \qquad A_{2}^{n,k} \xrightarrow{\sigma_{2}} A_{2}^{n+1,k}$$

$$\downarrow \lambda_{1} \qquad \qquad \downarrow \lambda_{1} \qquad \qquad \downarrow \lambda_{2} \qquad \qquad \downarrow \lambda_{2}$$

$$A(n,k) \xrightarrow{\sigma} A(n,k+1) \qquad A(k,n) \longrightarrow A(k,n+1).$$

4.5 Proposition. For any $\xi \in A_2$, $\phi(\xi)$ acts trivially on Image σ_1 .

Proof. If $\mathscr{A} = \mathscr{H}$, this follows immediately from Proposition 4.2, since $\varepsilon \circ \sigma = 0$. We assume $\mathscr{A} = \mathscr{P}$ or \mathscr{D} .

Let g represent $\xi \in A_2^{n,k}$ and f represent $\beta \in \sigma_1(A_1^{n,k-1})$. We may, therefore, assume that $f(S^n \times D_+^k) = S^n \times D_+^k$. By Lemma 2.8, we may also assume that $g|S^n \times D_+^k$ is the inclusion. Now $\phi(\xi) \cdot \beta$ is represented by $g \circ f \circ g^{-1} = f'$. But clearly $f'|S^n \times D_+^k = f|S^n \times D_+^k$; then Lemma 2.7 implies f and f' are concordant.

4.6. We now restrict ourselves to $\mathscr{A} = \mathscr{P}$. Referring to the exact sequence 3.1(b), the remarks of 4.3 tell us that the action ϕ of $P_0(k, n)$ on P(n, k) is determined, by Proposition 4.2, modulo the image of $\partial: P_{n+1} \to P(n, k)$. Hence, there remains indeterminacy in ϕ only if n is odd. If $n \equiv 3 \mod 4$, then $P_{n+1} = Z$ and ∂ is a monomorphism (see [16]). Therefore $\mu'_2|\text{Torsion }P(n, k)$ is injective and the indeterminacy will be resolved by: (except when n = k).

PROPOSITION. For any $\xi \in P_0(k, n)$ and $\beta \in P(n, k)$, $\phi(\xi) \cdot \beta - \beta$ is a torsion element of P(n, k), unless n = k is odd.

Proof. Suppose $H(n, k) = \pi_n(G_{k+1})$ is finite, i.e. $n \neq 2k-1$ for k even. Then $r\beta \in \partial P_{n+1}$, for some positive integer r, and $r(\phi(\xi) \cdot \beta) = \phi(\xi) \cdot r\beta$, by Proposition 4.5 $(\partial P_{n+1} \subset \text{Image } \sigma_1)$.

Suppose n=2k-1, k even. By Proposition 4.2, $\phi(\xi) \cdot \beta - \beta \in P_0(n, k)$ and it follows that $\mu'_2(\phi(\xi) \cdot \beta - \beta) \in H_0(n, k)$, which is finite (since $\pi_{n+k}(S^k)$ is finite). Therefore $r(\phi(\xi) \cdot \beta - \beta) \in \partial P_{n+1}$, for some positive integer r. We will now prove the formula:

$$\phi(\xi)^{s} \cdot \beta' - \beta' = s(\phi(\xi) \cdot \beta' - \beta') = rs(\phi(\xi) \cdot \beta - \beta)$$

where $\beta' = r\beta$, for any positive integer s. Since $P_0(k, n)$ is finite (k is even, and so $P_{k+1} = 0$), this will show that $\phi(\xi) \cdot \beta - \beta$ is torsion.

For s=1, the formula is obvious. Suppose it is true for s. Applying $\phi(\xi)$ to both sides, and observing from Proposition 4.5 that $\phi(\xi)$ acts trivially on the right-hand side, we obtain:

$$\phi(\xi)^{s+1} \cdot \beta' - \phi(\xi) \cdot \beta' = s(\phi(\xi) \cdot \beta' - \beta').$$

Adding $\phi(\xi) \cdot \beta' - \beta'$ to both sides yields the desired formula for s+1.

4.7 REMARK. One can consider the stable suspension:

$$P(m,p) = F\Gamma_m^{p+1} \xrightarrow{\hat{\sigma}} F\Gamma_m \approx \pi_m(PL)$$

where $PL = \lim_{q \to \infty} PL_q$ and PL_q is the semi-simplicial group of germs of piecewise-linear homeomorphisms of R^n onto itself (see e.g. [8]). It should not be difficult to verify the formula

$$\hat{\sigma}(\phi(\xi)\cdot\beta-\beta) = \pm \hat{\sigma}(\xi) \circ \varepsilon(\beta) \quad \text{for } \xi \in P_0(k, n), \beta \in P(n, k).$$

Since $\hat{\sigma}|\partial P_{n+1}$ is injective, unless, perhaps, $n=2^e-3$ for some integer e, (see [16], [4] and [2]), this would resolve the indeterminacy quite often. Notice, also, the implication that Proposition 4.6 is false when n=k is odd.

4.8. Finally we comment briefly on the pairing $\tau: D_1^{n,k} \otimes D_2^{n,k} \to \Gamma^{n+k+1}$. Recall the pairing

$$\pi_n(SO_{k+1}) \otimes \pi_k(SO_n) \to \Gamma^{n+k+1}$$

studied by Milnor in [18]. Also notice that there are homomorphisms:

$$\pi_n(SO_{k+1}) \to D_1^{n,k}$$
 and $\pi_k(SO_n) \to D_2^{n,k}$

defined by associating to a smooth map $f: S^n \to SO_{k+1}$, the diffeomorphism $(x, y) \mapsto (x, f(x) \cdot y)$ —similarly for $\pi_k(SO_n)$, except that we must suspend $SO_n \subset SO_{n+1}$ first. It is then clear that these homomorphisms make the pairing of Milnor a special case of τ .

In [14] a generalization of Milnor's pairing is also studied. By considerations of the above type, the construction of [14, §7] is also a special case of τ . Furthermore the results of [14] can be generalized, with little effort, to give analogous results about τ . We will not, at this time, present any details.

5. Examples and applications.

5.1. We begin by making some specific comparisons of self-equivalences of $S^n \times S^k$ in the three categories, which amounts to considering the homomorphisms μ_1 and μ_2 defined in (1.1). We concentrate on μ_2 , and leave a similar study of μ_1 to the reader. By (3.2) and (3.3), it suffices to consider μ'_2 in sequence 3.1(b).

The homomorphism $\omega \colon H(m,p) \to P_m$ is defined, using the Thom construction, by taking the index or Kervaire invariant of a closed framed m-dimensional submanifold of $S^m \times S^p$. According to the Index Theorem and results of Brown-Peterson-Browder ([2], [4]), $\omega = 0$ unless $m = 2^e - 2$, for some $e \ge 2$. On the other hand if e = 3, 4 or 5 and p is large, then $\omega \ne 0$ (see [12], [2]). More specifically, $\omega \ne 0$ when e = 3 and $p \ge 4$, or e = 4 and $p \ge 8$ and $\omega = 0$ when e = 3 and $p \le 3$, or e = 4 and $p \le 6$. These facts follow from the observation that the suspension $\pi_m(G_{p+1}) \to \pi_m(G)$ is onto (for $\omega \ne 0$) or zero (for $\omega = 0$) in the stated cases.

Now it follows immediately from 3.1(b) that $\mu_2': P(m-1, p) \to H(m-1, p)$ is not injective when $\omega = 0$ and $P_m \neq 0$ and $\mu_2': P(m, p) \to H(m, p)$ is not surjective when $\omega = 0$. These phenomena imply, therefore:

- 1. The existence of piecewise-linear homeomorphisms which are homotopic but not concordant on $S^m \times S^p$ when m (or p) is odd but not of the form $2^e 3$ —see [1] for $m \equiv 3 \mod 4$ —or when m = 5 and p = 2 or 3, or m = 13 and $2 \le p \le 6$. The lowest dimensional example is $S^5 \times S^2$.
- 2. The existence of a homotopy equivalence not homotopic to a piecewise-linear homeomorphism on $S^m \times S^p$ when m = 6, $p \ge 4$ or m = 14, $p \ge 8$ or m = 30, p large.

In fact, it follows from work of Sullivan ([23] and [34]) that "piecewise-linear" may be replaced by "topological" in these examples, since $H^*(S^m \times S^p)$ contains no 2-torsion.

5.2. We will now show that, in a certain metastable range of dimensions, every self-equivalence of $S^n \times S^k$ (in the categories \mathscr{P} and \mathscr{D}) is concordant to a composition of familiar ones.

Consider the following types of diffeomorphisms f of $S^n \times S^k$.

(a)
$$f(x, y) = (\rho(y) \cdot x, y)$$
, where $\rho: S^k \to O_{n+1}$ is a smooth map,

- (b) $f(x, y) = (x, \rho(x) \cdot y)$, where $\rho: S^n \to O_{k+1}$ is a smooth map and,
- (c) f is the identity outside an (n+k)-disk.

PROPOSITION. If n < 2k-1, $n \ge 3$, then every diffeomorphism of $S^n \times S^k$ is concordant to a composition of diffeomorphisms of types (a), (b) and (c).

Proof. First notice that every element of $\overline{D}^{n,k}/D^{n,k}$ is representable as desired. This follows immediately from §1 and the diffeomorphisms considered in [24, Lemma 5]. We can, therefore, consider only $D^{n,k} = (D_1^{n,k} \oplus \alpha) \times_{\phi,\tau} D_2^{n,k}$ (see Theorem 2.4).

By definition, every element of α is represented by a diffeomorphism of type (c). Consider the homomorphisms:

$$\pi_n(SO_{k+1}) \to D_1^{n,k}$$
 and $\pi_k(SO_n) \to D_2^{n,k}$

defined in 4.8. It is only necessary to show these are surjective. But they correspond to the homomorphism $\pi_m(SO_{p+1}) \to D(m, p+1) = FC_m^{p+1}$ defined by twisting the framing on a representative of the zero element in FC_m^{p+1} (see [7, §5.9]). There is an exact sequence:

$$\cdots \rightarrow \pi_m(SO_{p+1}) \rightarrow FC_m^{p+1} \rightarrow C_m^{p+1} \rightarrow \cdots$$

where C_m^{p+1} is the group of concordance classes of smooth imbeddings $S^m \to S^{m+p+1}$. But if m < 2p-1, this group is zero (see e.g. [7, §6.6]), and we have the desired surjectivity in the asserted range.

- 5.3. A similar result is true in the category \mathscr{P} . We define two types of piecewise-linear homeomorphisms of $S^n \times S^k$:
- (d) Let α be a smoothing of S^n such that $S^n_{\alpha} \times S^k$ is diffeomorphic to $S^n \times S^k$. Then consider the composition

$$S^n \times S^k \xrightarrow{1} S^n \times S^k \xrightarrow{h} S^n \times S^k$$

where 1 is the identity and h is a piecewise-linear approximation to a diffeomorphism.

(e) Similarly, using a smoothing of S^k .

PROPOSITION. Every piecewise-linear homeomorphism of $S^n \times S^k$ onto itself is concordant to a composition of types (d) and (e).

Proof. If $n+k \le 4$, this follows from the obstruction theory of Munkres [19], and the fact that $\Gamma_m = 0$ for $n \le 4$ [5]. We will show that type (d) generates the cokernel of $\mu_1 \colon D_1 \to P_1$ and type (e) generates the cokernel of $\mu_1 \colon D_2 \to P_2$. Referring to the sequence 3.1 (a), for n=m and k=p, S_α^n represents an element of the image $\theta \colon F\Gamma_m^{k+1} \to \Gamma_n$ if and only if $S_\alpha^n \times D^{k+1}$ is diffeomorphic to $S^n \times D^{k+1}$ —by the argument in 3.5. If $\xi \in F\Gamma_n^{k+1}$ is represented by a submanifold Σ of S^{n+k+1} , with some framing, then $\theta(\xi)$ is represented by Σ . It follows easily then that if α is a smoothing of S^n derived from an element ξ in the image of θ , we can use α to

construct a homeomorphism of type (d) and the image under θ (using the isomorphism λ_1) of the element of $P_1^{n,k}$ it represents is ξ . Similarly for μ_2 .

5.4. We now give an application which depends on the actual group structure of $A^{n,k}$. If f is a self-equivalence of $S^n \times S^k$, we can use f to identify the boundaries of two copies of $D^{n+1} \times S^k$. The resulting space X_f is an object in the category \mathscr{A} . Moreover its equivalence class in \mathscr{A} is easily seen to depend only upon the concordance class of f. Thus we have defined for $\alpha \in \overline{A}^{n,k}$ an equivalence class X_{α} of objects in \mathscr{A} .

Let $\overline{A}_2^{n,k} \subset \overline{A}^{n,k}$ be the subgroup of self-equivalences which extend to self-equivalences of $D^{n+1} \times S^k$. If n > k, we see easily that $\overline{A}_2/A_2 \to \overline{A}/A \approx Z_2 + Z_2$ is an isomorphism.

LEMMA. If n > k and α , $\alpha' \in \overline{A}^{n,k}$, then $X_{\alpha} = X_{\alpha'}$ if and only if $\alpha' = \beta_1 \alpha \beta_2$ for some $\beta_i \in \overline{A}_2^{n,k}$.

Proof. Suppose f, f' represent α, α' , respectively, and assume the existence of β_i , represented by g_i . Then f' is concordant to $g_1 \circ f \circ g_2$. Let \bar{g}_i be an extension of g_i to a self-equivalence of $D^{n+1} \times S^k$; by using \bar{g}_2 on one copy of $D^{n+1} \times S^k$ and \bar{g}_1^{-1} (or a homotopy inverse, in \mathscr{H}) on the other, we can define an equivalence $X_{f'} \to X_f$.

5.5. For the converse, we first deal with the category \mathscr{H} . Let $g = p_2 \circ f$, $g' = p_2 \circ f'$, where $p_2 \colon S^n \times S^k \to S^k$ is projection on the second factor. Then X_{α} (or $X_{\alpha'}$) can be constructed by using g (or g') to attach $D^{n+1} \times S^k$ to S^k . It will suffice to construct self-equivalences h of the pair $(D^{n+1} \times S^k, S^n \times S^k)$, and h' of S^k , such that $g' \circ h \cong h' \circ g$ on $S^n \times S^k$.

Suppose $h'': X_{\alpha} \to X_{\alpha'}$ is a homotopy equivalence. We may assume $h''(S^k) \subset S^k$; since n > k, h'' induces a self-equivalence h' of S^k . Let $q: (D^{n+1} \times S^k, S^k) \to (X_{\alpha}, S^k)$ be the identification map—similarly define q' from $X_{\alpha'}$. We want to complete the commutative diagram:

$$(D^{n+1} \times S^k, S^k) \xrightarrow{q} (X_{\alpha}, S^k)$$

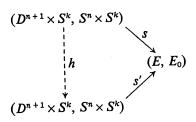
$$\downarrow h \downarrow \qquad \qquad \downarrow h''$$

$$(D^{n+1} \times S^k, S^k) \xrightarrow{q'} (X_{\alpha'}, S^k).$$

Let E be the space of paths in X_{α} , which start in $0 \times S^k$. Let $p: E \to X_{\alpha'}$ be the fibration defined by evaluating at the endpoint and $E_0 = p^{-1}(S^k)$; note that the fiber F is (n-1)-connected. Now $h'' \circ q$ and q' both lift to maps s and s'', respectively, $(D^{n+1} \times S^k, S^n \times S^k) \to (E, E_0)$, since the only obstruction lies in $\pi_{k-1}(F) = 0$.

By the homotopy excision theorem [22, p. 484], $q_*: \pi_i(D^{n+1} \times S^k, S^n \times S^k) \to \pi_i(X_\alpha, S^k)$, $q_*': \pi_i(D^{n+1} \times S^k, S^n \times S^k) \to \pi_i(X_{\alpha'}, S^k)$ are isomorphisms for $i \le 2n-1$ and epimorphisms for i = 2n. The same is, therefore, true of s_* and s_*' . Since $s, s': D^{n+1} \times S^k \to E$ are homotopy equivalences, the maps $S^n \times S^k \to E_0$, induced by s and s', are (2n-1)-connected.

We wish to complete the commutative diagram:



If we replace E by the mapping cylinder of s', we may assume s' is an inclusion. Since $s'(D^{n+1} \times S^k)$ is, then, a (weak) deformation retract of E, it is only necessary to deform s so that $s(S^n \times S^k) \subset s'(S^n \times S^k)$. But $(E_0, s'(S^n \times S^k))$ is (2n-1)-connected and $n+k \le 2n-1$.

- 5.6. To complete the proof of Lemma 5.4, we now consider $\mathscr{A} = \mathscr{P}$ or \mathscr{D} . Suppose f, f' represent $\alpha, \alpha' \in \overline{A}^{n,k}$, and an equivalence $h: X_f \to X_{f'}$ exists. Since n > k, $\pi_k(X_{f'})$ is infinite cyclic and $h|0 \times S^k$ represents a generator. After an isotopy, we may assume $h(0 \times S^k) = 0 \times S^k$ (by general position). By the tubular or regular neighborhood theorem, we may assume $h(D^{n+1} \times S^k) = D^{n+1} \times S^k$. Therefore h determines two self-equivalences h_1, h_2 of $D^{n+1} \times S^k$ —one for each copy used in constructing X_f and $X_{f'}$. Since h_1 and h_2 determine an equivalence $X_f \to X_{f'}$, it follows that $h_2 \circ f$ is equal to $f' \circ h_1$ on $S^n \times S^k$. We now let β_i be the self-equivalence of $S^n \times S^k$ determined by restricting h_i .
- 5.7. Now $\overline{A}_2/A_2 \approx \overline{A}/A \approx Z_2 + Z_2$ (recall n > k) and is generated by ρ , $\rho' \in \overline{A}_2$, where if r' and r are reflections of S^n and S^k , respectively, we can take $r' \times 1$ and $1 \times r$ as representatives of ρ' and ρ , respectively.

Suppose α , $\alpha' \in A_0$ and $X_{\alpha} = X_{\alpha'}$. Then, by Lemma 5.4, $\alpha' = \beta_1 \alpha \beta_2$ for some $\beta_i \in \overline{A}_2$. Projecting on \overline{A}/A tells us that $\beta_1 \beta_2 \in A$. It follows that we may write $\alpha' = \beta(\beta_1 \alpha \beta_2)\beta^{-1}$, where $\beta_i \in A_2$ and $\beta = 1$, ρ , ρ' or $\rho \rho'$. Now by projecting onto $A/A_0 \approx A_2$, we find $\beta_1 = \beta_2^{-1}$, since $\beta^{-1}\alpha'\beta \in A_0$.

We also point out that, if $\alpha \in A_0$, then $\rho'\alpha\rho' = -\alpha$. If $\mathscr{A} = \mathscr{H}$, this follows from the characterization of $H_0 = H_1$ as $\pi_n(G_{k+1})$. If $\mathscr{A} = \mathscr{P}$ or \mathscr{D} , suppose α is represented by f satisfying $f|D_-^n \times S^k =$ inclusion. We may extend $f|D_+^n \times S^k$ to a self-equivalence g of $D^{n+1} \times S^k$ in such a way that $g|D_-^n \times S^k = (r' \times 1) \circ f \circ (r' \times 1)|D_-^n \times S^k$. It follows easily that $(r' \times 1) \circ f \circ (r' \times 1) \circ f = g|S^n \times S^k$, by checking on $D_+^n \times S^k$ and $D_-^n \times S^k$ separately. Thus $\rho'\alpha\rho'\alpha \in A_2 \cap A_0 = \{1\}$.

We can summarize the above observations in:

PROPOSITION. If n > k and α , $\alpha' \in A_0^{n,k}$, then $X_{\alpha} = X_{\alpha'}$ if and only if there exists $\beta \in A_2^{n,k}$ such that:

$$\beta \alpha \beta^{-1} = \pm \alpha' \quad or \quad \pm \rho \alpha' \rho^{-1}.$$

5.8. The objects $\{X_{\alpha}\}$, for $\alpha \in A_0$, include the k-sphere bundles over S^{n+1} . In the category \mathcal{H} , Proposition 5.7, in light of Proposition 4.2, agrees with the classification given by James and Whitehead [9].

5.9. As one application of Proposition 5.7 we show:

COROLLARY. There exists a smooth closed manifold M, tangentially homotopy equivalent but not homeomorphic to $S^n \times S^k$, for n=6 and k=2, 3 or n=14 and $2 \le k \le 6$.

Proof. In these dimensions $P_n \approx Z_2$, $\partial: P_n \to P(n-1, k)$ is nonzero and $\theta \circ \partial: P_n \to \Gamma_{n-1}$ is zero (see (3.1) and (5.1)). Let $\alpha \in P(n-1, k) \approx P_1^{n-1, k}$ be the nonzero element of $\partial(P_n)$; since $\theta(\alpha) = 0$, let $\alpha = \mu_1(\alpha')$ (see 3.1(a)). Then $M = X_{\alpha'}$ is a smooth (n+k)-manifold. Because $\mu_2 \circ \mu_1(\alpha') = \mu_2(\alpha) = 0$, M is homotopy equivalent to $S^n \times S^k$ (Proposition 5.7). On the other hand M is not piecewise-linearly homeomorphic to $S^n \times S^k$, by Proposition 5.7, since α is not conjugate to 0. Therefore, by Sullivan [34], M is not homeomorphic to $S^n \times S^k$.

To complete the proof of the Corollary, we show that any homotopy equivalence $M \to S^n \times S^k$ is tangential. Since α' represents a diffeomorphism of $S^{n-1} \times S^k$ which extends to one of $S^{n-1} \times D^{k+1}$, we may use such an extension to attach two copies of $D^n \times D^{k+1}$ along $S^{n-1} \times D^{k+1}$, thereby obtained a smooth homology n-sphere bounded by M. This manifold, and, therefore, M, is stably parallelizable, since $\pi_{n-1}(SO) = 0$. But $S^n \times S^k$ is also stably parallelizable and the Euler class of a manifold is a homotopy invariant. Therefore, any homotopy equivalence $M \to S^n \times S^k$ is tangential.

5.10. Proposition 5.8 can also be used to study the *inertia group* of a smooth manifold (see [14]).

COROLLARY. Suppose $\alpha \in D_1^{n,k}$, $\beta \in D_2^{n,k}$ satisfy $\phi(\beta) \cdot \alpha = \alpha$. Then $\tau(\beta) \cdot \alpha \in \Gamma^{n+k+1}$ belongs to the inertia group of X_{α} .

Proof. We have $\beta\alpha\beta^{-1} = \phi(\beta) \cdot \alpha + \tau(\beta) \cdot \alpha = \alpha + \tau(\beta) \cdot \alpha$. If $\alpha' = \beta\alpha\beta^{-1}$, then $X_{\alpha'} = X_{\alpha}$. But it is easy to see (compare [1, Lemma 1]) that $X_{\alpha'} = X_{\alpha} \# \Sigma$, where Σ represents $\tau(\beta) \cdot \alpha$.

For example, if α is the suspension of an element of $D_1^{n,k-1}$, the hypothesis is satisfied for any β , by Proposition 4.5 (compare [14, Theorem 1]).

REFERENCES

- 1. W. Browder, Diffeomorphisms of 1-connected manifolds, Trans. Amer. Math. Soc. 128 (1967), 155-163.
- 2. ——, The Kervaire invariant of framed manifolds and its generalization, mimeographed notes, Princeton Univ., Princeton, N. J.
- 3. W. Browder and M. Hirsch, Surgery on piecewise-linear manifolds, Bull. Amer. Math. Soc. 72 (1966), 959-964.
- 4. E. Brown and F. Peterson, The Kervaire invariant of (8k+2)-manifolds, Bull. Amer. Math. Soc. 71 (1965), 190-193.
- 5. J. Cerf, La nullité du groupe Γ_4 , Séminaire H. Cartan, École Normale Supérieure, Paris, 1962/1963.
- 6. V. Guggenheim, *Piece-wise linear isotopy of elements and spheres*, Proc. London Math. Soc. 3 (1953), 29-53.
- 7. A. Haefliger, Differentiable embeddings of S^n in S^{n+q} for q > 2, Ann. of Math. (2) 83 (1966), 402-436.

- 8. A. Haefliger and C. T. C. Wall, Piecewise linear bundles in the stable range, Topology 4 (1965), 209-214.
- 9. I. James and J. H. C. Whitehead, *Homotopy theory of sphere bundles over spheres*. II, Proc. London Math. Soc. 5 (1955), 148-166.
- 10. P. Kahn, Self-equivalences of (n-1)-connected 2n-manifolds, Bull. Amer. Math. Soc. 72 (1966), 562-566.
- 11. M. Kervaire, On the Pontriagin classes of certain SO(n)-bundles over manifolds, Amer. J. Math. 80 (1958), 632-638.
- 12. M. Kervaire and J. Milnor, Groups of homotopy spheres. I, Ann. of Math. (2) 77 (1963), 504-537.
 - 13. A. G. Kurosh, Theory of groups. Vol. II, Chelsea, New York, 1955.
 - 14. J. Levine, Inertia groups of manifolds and diffeomorphisms of spheres, mimeographed.
 - 15. ——, Unknotting spheres in codimension two, Topology 4 (1965), 9-16.
 - 16. ——, A classification of differentiable knots, Ann. of Math. 82 (1965), 15-50.
- 17. B. Mazur, Relative neighborhoods and the theorems of Smale, Ann. of Math. (2) 77 (1963), 232-249.
 - 18. J. Milnor, Differentiable structures on spheres, Amer. J. Math. 81 (1959), 962-972.
- 19. J. Munkres, Obstructions to the smoothing of piecewise differentiable homeomorphisms, Ann. of Math. (2) 72 (1960), 521-524.
- 20. A. Shapiro, Obstructions to the embedding of a complex in a Euclidean space: I: The first obstruction, Ann. of Math. (2) 66 (1957), 256-269.
 - 21. S. Smale, On the structure of manifolds, Amer. J. Math. 84 (1962), 387-399.
 - 22. E. Spanier, Algebraic topology, McGraw-Hill, New York, 1966.
- 23. D. Sullivan, Triangulating and smoothing homotopy equivalences and homeomorphisms, mimeographed notes, Princeton University, Princeton, N. J., 1967.
- 24. C. T. C. Wall, Killing the middle homotopy groups of odd dimensional manifolds, Trans. Amer. Math. Soc. 103 (1962), 421-433.
- 25. C. Weber, L'élimination des points doubles dans le cas combinatoire, Comment. Math. Helv. 41 (1966), 179-182.
 - 26. G. Whitehead, Products in homotopy groups, Ann. of Math. (2) 47 (1946), 460-475.
 - 27. J. H. C. Whitehead, On C'-complexes, Ann. of Math. (2) 41 (1940), 809-814.
- 28. H. Whitney, The self-intersection of a smooth n-manifold in 2n-space, Ann. of Math. (2) 45 (1944), 220-246.
- 29. W. T. Wu, On the isotopy of C^r -manifolds of dimension n in Euclidean (2n+1)-space, Science Record N.S. 2 (1958), 271-275.
- 30. E. C. Zeeman, "Isotopies and knots in manifolds" in *Topology of 3-manifolds and related topics*, Prentice-Hall, Englewood Cliffs, N. J., 1962, pp. 187-193.
- 31. M. A. Kervaire, Les noeuds de dimensions supérieures, Bull. Soc. Math. France 93 (1965), 225-271.
- 32. J. L. Shaneson, Embeddings of spheres in spheres of codimension two and h-cobordisms of $S^1 \times S^3$, Bull. Amer. Math. Soc. 75 (1968), 972-973.
- 33. C. T. C. Wall, Unknotting tori in codimension one and spheres in codimension two, Proc. Cambridge Philos. Soc. 61 (1965), 659-664.
- 34. C. R. Rourke, *The hauptvermutung according to Sullivan*, mimeographed notes, Institute for Advanced Study, Princeton, N. J. 1967.
- 35. R. Lashof and J. Shaneson, Classification of knots of codimension two, Bull. Amer. Math. Soc. 75 (1969), 171-175.

BRANDEIS UNIVERSITY,

WALTHAM, MASSACHUSETTS