SMOOTH HOMOLOGY SPHERES AND THEIR FUNDAMENTAL GROUPS

BY MICHEL A. KERVAIRE

Let M^n be a smooth homology *n*-sphere, i.e. a smooth *n*-dimensional manifold such that $H_*(M^n) \cong H_*(S^n)$. The fundamental group π of M satisfies the following three conditions:

- (1) π has a finite presentation,
- (2) $H_1(\pi) = 0$,
- (3) $H_2(\pi) = 0$,

where $H_1(\pi)$ denotes the *i*th homology group of π with coefficients in the trivial $Z\pi$ -module Z. Properties (1) and (2) are trivial and (3) follows from the theorem of Hopf [2] which asserts that $H_2(\pi) = H_2(M)/\rho\pi_2(M)$, where ρ denotes the Hurewicz homomorphism.

For n>4 we will prove the following converse

THEOREM 1. Let π be a group satisfying the conditions (1), (2) and (3) above, and let n be an integer greater than 4. Then, there exists a smooth manifold M^n such that $H_*(M^n) \cong H_*(S^n)$ and $\pi_1(M) \cong \pi$.

The proof is very similar to the proof used for the characterization of higher knot groups in [5]. Compare also the characterization by K. Varadarajan of those groups π for which Moore spaces $M(\pi, 1)$ exist [9].

Not much seems to be known for $n \le 4$. If M^3 is a 3-dimensional smooth manifold with $H_*(M) \cong H_*(S^3)$, then $\pi = \pi_1(M)$ possesses a presentation with an equal number of generators and relators. (Take a Morse function f on M with a single minimum and a single maximum. Then f possesses an equal number of critical points of index 1 and 2.)

Also, under restriction to finite groups there is the following

THEOREM 2. Let M^3 be a 3-dimensional manifold such that $H_*(M) \cong H_*(S^3)$. Suppose that $\pi_1(M)$ is finite. Then, either $\pi_1(M) = \{1\}$ or else, $\pi_1(M)$ is isomorphic to the binary icosahedral group with presentation

$$(x, y; x^2 = y^3 = (xy)^5).$$

This is implicitly well known: The hypotheses imply that $\pi = \pi_1(M)$ is a group of fix-point free transformations of a homotopy 3-sphere. Any such group belongs to a list established by Suzuki [8] and even to the shorter list of Milnor [7]. The

binary icosahedral group is the only (nontrivial) group in Milnor's list satisfying $H_1\pi=0$.

REMARK. Curiously enough, it seems that the trivial group and the binary icosahedral group are the only available examples of finite groups π satisfying $H_1\pi=0$ and having a presentation with an equal number of generators and relators.

For n=4, it follows from the proof below that every finitely presented group π with an equal number of generators and relators and satisfying $H_1\pi=0$ is the fundamental group of some homology 4-sphere. It seems unlikely that these conditions should characterize the fundamental groups of homology 4-spheres, but I do not know of a counterexample.

1. **Proof of Theorem 1.** We start with a finite presentation of π :

$$(x_1,\ldots,x_{\alpha};R_1,\ldots,R_{\beta})$$

and the manifold

$$M_0 = (S^1 \times S^{n-1}) \# \cdots \# (S^1 \times S^{n-1}),$$

connected sum of α copies of $S^1 \times S^{n-1}$. Choosing as usual a contractible open set U in M_0 as "base point", the condition n > 2 implies that $\pi_1(M, U)$ is free on α generators. After identification of free generators of $\pi_1(M, U)$ with x_1, \ldots, x_{α} , the elements R_1, \ldots, R_{β} of the free group on x_1, \ldots, x_{α} can be represented by disjoint differentiable imbeddings $\phi_i \colon S^1 \times D^{n-1} \to M_0$, $i = 1, \ldots, \beta$. Moreover, these can be chosen so that the spherical modification $\chi(\phi_1, \ldots, \phi_{\beta})$ can be framed (see [6]). The resulting manifold $M_1 = \chi(M_0; \phi_1, \ldots, \phi_{\beta})$ is stably parallelizable as was M_0 and $\pi_1(M_1) \cong \pi$ since n > 3.

From the homology exact sequences of the pairs $(M_0, \bigcup_i \phi_i(S^1 \times D^{n-1}))$ and $(M_1, \bigcup_i \phi_i'(D^2 \times S^{n-2}))$, where ϕ_i' denotes the natural imbedding $D^2 \times S^{n-2} \to M_1$ with $\phi_i'|S^1 \times S^{n-2} = \phi_i|S^1 \times S^{n-2}$, one concludes that $H_i(M_1) = 0$ for $i \neq 0, 2, n-2, n$, and that $H_2(M_1)$ is free abelian of rank $\gamma = \beta - \alpha$. (Observe that $\beta \ge \alpha$ since π abelianized is trivial.) Hence, there exist bases $\xi_1, \ldots, \xi_{\gamma}$ of $H_2(M_1)$ and $\eta_1, \ldots, \eta_{\gamma}$ of $H_{n-2}(M_1)$ respectively such that $\xi_i \cdot \eta_j = \delta_{ij}$, where $\xi_i \cdot \eta_j$ is the homology intersection number, and δ_{ij} is the Kronecker delta.

By the theorem of Hopf mentioned above, $H_2\pi = H_2(M_1)/\rho\pi_2(M_1)$, and so by condition (3) on π , the Hurewicz homomorphism $\rho: \pi_2(M_1) \to H_2(M_1)$ is surjective.

Since n>4, the classes $\xi_1, \ldots, \xi_{\gamma}$ can be represented by disjoint differentiable imbeddings $f_i\colon S^2\to M_1,\ i=1,\ldots,\gamma$, and M_1 being stably parallelizable, these extend to disjoint imbeddings $\psi_i\colon S^2\times D^{n-2}\to M_1$. It follows from the arguments in [6, §5] that the manifold $M=\chi(M_1;\psi_1,\ldots,\psi_{\gamma})$ obtained by spherical modification is a homology sphere with $\pi_1(M)\cong\pi$.

2. Many of the homology spheres occurring in the literature are constructed as the boundary of a contractible manifold. We investigate this question whether, in general, homology spheres bound contractible manifolds.

The following well-known construction provides an example of a 3-dimensional homology sphere which does not bound a contractible manifold.

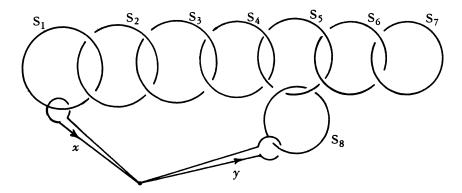
Let $W = D^4 + (\phi_1) + \cdots + (\phi_8)$ be the manifold obtained from the 4-disc by attaching eight handles of type 2 using unknotted imbeddings (with disjoint images) $\phi_i: S^1 \times D^2 \to S^3$, such that the matrix of linking numbers

$$L(\phi_i(S^1 \times x_0), \phi_i(S^1 \times x_1))$$

with $x_0 \neq x_1, x_0, x_1 \in D^2$, is:

$$L = \begin{bmatrix} 2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 2 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 2 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 2 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 2 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 2 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 2 \end{bmatrix}$$

This matrix is unimodular and has signature 8. The picture shows the images



 $S_i = \phi_i(S^1 \times 0)$ in $R^3 = S^3$ – point. From the handle decomposition of W one sees that $\pi_1 W = \{1\}$, and $H_2 W$ is free abelian on 8 generators. An easy calculation shows that $\pi_1(bW)$ is the group with presentation:

$$(x, y; x^5 = y^2 = (x^{-1}y)^3),$$

where x and y are the classes of the loops shown on the picture. Hence, bW is a homology sphere. If bW were the boundary of a contractible manifold V, one could form the closed 4-manifold $M=W \cup V$, and the above matrix L would be the matrix of intersection numbers of H_2M . From L one reads off the Stiefel-Whitney class $w_2M=0$ and the signature $\sigma(M)=8$, contradicting Rohlin's theorem

which says that if $w_2M = 0$ for a closed orientable 4-manifold M, then $\sigma(M) \equiv 0 \mod 16$. (Cf. [4].)

In contrast, we have

THEOREM 3. Every 4-dimensional homology sphere bounds a contractible manifold. If M^n is a smooth oriented homology sphere with $n \ge 5$, there exists a unique smooth homotopy sphere Σ_M^n such that $M^n \# \Sigma^n$ bounds a contractible smooth manifold.

This has been obtained independently by the Hsiang brothers [3].

Let first M^4 be a smooth 4-dimensional homology sphere which we think of as imbedded in S^{k+4} with k large. It is easy to see that M has trivial normal bundle. Indeed, the only obstruction to trivializing the normal bundle is an element $\emptyset \in H^4(M; \pi_3(SO_k)) = Z$. It is known that $2\emptyset = \pm p_1[M]$, where p_1 is the Pontryagin class. (Cf. e.g. [4].) The latter vanishes by the Thom-Hirzebruch formula $\frac{1}{3}p_1[M] = \sigma(M) = 0$. Now, choosing a trivialization of the normal bundle of M^4 in S^{k+4} , the Thom construction provides an element in $\pi_{k+4}(S^k)$. Since $\pi_{k+4}(S^k) = 0$, we see that M^4 is the boundary of a parallelizable manifold W^5 . This manifold can be modified to get a new 5-manifold V^5 with $bV^5 = bW^5 = M^4$ such that $\pi_1V = \{1\}$ and $\pi_2V = 0$. (Cf. [6, §5].) Clearly, V is contractible.

Assume then that $n \ge 5$.

We associate with the given smooth homology *n*-sphere M^n some smooth homotopy sphere Σ^n . Observe that M^n is stably parallelizable. Since

$$H^{i}(M; \pi_{i-1}(SO)) = 0$$
 for $i < n$,

there is only one possible obstruction $\emptyset \in H^n(M; \pi_{n-1}(SO)) = \pi_{n-1}(SO)$ to producing a trivialization of the stable tangent bundle of M. It is known that \emptyset belongs to the kernel of the homomorphism $J: \pi_{n-1}(SO) \to \Pi_{n-1}$, where $\Pi_{n-1} = \pi_{n+k-1}(S^k)$, k large. Thus $\emptyset = 0$ by the same arguments as in [6, §3].

We obtain Σ^n from M^n by framed surgery in dimensions 1 and 2. Let x_1, \ldots, x_{α} be a finite set of generators of $\pi_1(M, U)$, where U is a contractible open "base set" in M. Let $\phi_1, \ldots, \phi_{\alpha}$ be smooth imbeddings of $S^1 \times D^{n-1}$ into M^n with disjoint images representing x_1, \ldots, x_{α} respectively. We use $\phi_1, \ldots, \phi_{\alpha}$ to attach α handles of type 2 to $I \times M$ along $(1) \times M$, where I = [0, 1]. Let

$$V_0 = I \times M + (\phi_1) + \cdots + (\phi_n)$$

be the resulting (n+1)-manifold. We may assume that the imbeddings $\phi_1, \ldots, \phi_{\alpha}$ have been chosen so that V_0 is parallelizable. The manifold $N=bV_0-(0)\times M$ will be called the right-hand boundary of V_0 . It is easily checked that $\pi_1N=\pi_1V_0=\{1\}$, and $H_iN=0$ for $3\leq i\leq n-3$ (if $n\geq 6$). The groups H_2N and $H_{n-2}N$ are free abelian of rank α and the inclusion $N\subseteq V_0$ induces an isomorphism $H_2N\cong H_2V_0$.

Let $\xi_1, \ldots, \xi_{\alpha}$ and $\eta_1, \ldots, \eta_{\alpha}$ be bases of H_2N and $H_{n-2}N$ respectively such that $\xi_i \cdot \eta_j = \delta_{ij}$. Then, representing the classes $\xi_1, \ldots, \xi_{\alpha}$ by disjoint differentiable imbeddings $\psi_1, \ldots, \psi_{\alpha}$ of $S^2 \times D^{n-2}$ into N we construct

$$V_1 = I \times M + (\phi_1) + \cdots + (\phi_\alpha) + (\psi_1) + \cdots + (\psi_\alpha)$$

by attaching α handles of type 3 to V_0 along N using $\psi_1, \ldots, \psi_{\alpha}$. Again this can be done so that V_1 is parallelizable. Now, the right-hand boundary $bV_1 - (0) \times M$ is a smooth homotopy n-sphere Σ^n . We think of it as oriented so that the (oriented) boundary of V_1 is $-\Sigma^n - (0) \times M$, where the orientation of V_1 is given by the one of $I \times M$.

Claim: $M^n \# \Sigma^n$ bounds a contractible manifold. Indeed, let $t: (I \times D^n, bI \times D^n) \to (V_1, bV_1)$ be a smooth imbedding with $t(\text{int } I \times D^n) \subset \text{int } V_1$, then after rounding off corners we get a smooth contractible manifold $V = V_1 - t(I \times \text{int } D^n)$ whose boundary is diffeomorphic to $M \# \Sigma$.

It remains to prove the uniqueness of Σ . Let Σ_1 be a homotopy *n*-sphere such that $M \# \Sigma_1$ is the boundary of a contractible manifold W. Using a connected sum of V_1 (as constructed above) and $I \times \Sigma_1$ along $t(I \times S^{n-1})$ and $I \times \sigma^{n-1}$, where σ^{n-1} is the boundary of a smooth *n*-disc δ^n in Σ_1 , one gets a manifold W' whose homotopy type is S^n , and $bW' = (-\Sigma) \# \Sigma_1 + (-M) \# \Sigma_1$. (W' is obtained from the disjoint union

$$\{V_1 - t(I \times (0))\} + \{I \times \Sigma_1 - I \times (0)\}$$

under the identification of $t(x, ry) \in t(I \times D^n)$ with $(x, (1-r)y) \in I \times \delta^n$ for $x \in I$, $y \in S^{n-1}$ and 0 < r < 1.)

Now, paste the manifold W along the left boundary $((0) \times M) \# \Sigma_1$ of W' by the identity diffeomorphism

$$bW = M \# \Sigma_1 \rightarrow ((0) \times M) \# \Sigma_1$$

The resulting union $W \cup W'$ is a contractible manifold as follows easily using the van Kampen and Mayer-Vietoris theorems. The boundary of $W \cup W'$ is $(-\Sigma) \# \Sigma_1$. Therefore, Σ and Σ_1 are h-cobordant, and thus diffeomorphic since we assume $\dim \Sigma = \dim \Sigma_1 \ge 5$.

COROLLARY. Every combinatorial homology sphere K^n of dimension $n \neq 3$ is the boundary of a contractible combinatorial manifold.

By Hirsch's obstruction theory [1, Theorem 3.1], every combinatorial manifold K^n admits a smoothness structure in the neighborhood of its 7-skeleton. We need a smoothness structure in a neighborhood N of the 2-skeleton of K^n . Then N is parallelizable and we can apply the above surgery arguments requiring the imbeddings to have their images in the smooth subset. We obtain a manifold W^{n+1} such that $bW = \Sigma^n + M^n$, where Σ^n is a combinatorial homotopy n-sphere and the inclusion $\Sigma \subset W$ is a homotopy equivalence. Since $n \ge 5$, Σ^n is PL-homeomorphic to $b\Delta^{n+1}$, and pasting Δ^{n+1} to W^{n+1} by such a homeomorphism provides a contractible manifold V^{n+1} with boundary M^n .

Thus, as a by-product, we have proved the probably well-known fact that every combinatorial homology sphere admits a smoothness structure.

BIBLIOGRAPHY

- 1. M. Hirsch, Obstruction theories for smoothing manifolds and maps, Bull. Amer. Math. Soc. 69 (1963), 352-356.
- 2. H. Hopf, Fundamentalgruppe und zweite Bettische Gruppe, Comment. Math. Helv. 14 (1941), 257-309.
- 3. Wu-chung Hsiang and Wu-yi Hsiang, Differentiable actions of compact connected classical groups. I, Yale University Notes, 1966.
- 4. M. Kervaire, On the Pontryagin classes of certain SO(n)-bundles over manifolds, Amer. J. Math. 80 (1958), 632-638.
 - 5. ——, Les noeuds de dimensions superieures, Bull. Soc. Math. France 93 (1965), 225-271.
 - 6. M. Kervaire and J. Milnor, Groups of homotopy spheres, Ann. of Math. 77 (1963), 504-537.
 - 7. J. Milnor, Groups which act on Sⁿ without fixed points, Amer. J. Math. 79 (1957), 623-630.
- 8. M. Suzuki, On finite groups with cyclic Sylow subgroups for all odd primes, Amer. J. Math. 77 (1955), 657-691.
- 9. K. Varadarajan, Groups for which Moore spaces $M(\pi, 1)$ exist, Ann. of Math. 84 (1966), 368-371.

COURANT INSTITUTE OF MATHEMATICAL SCIENCES, NEW YORK UNIVERSITY, NEW YORK, NEW YORK