ISOTOPISMS OF SEMIGROUPS OF FUNCTIONS

BY KENNETH D. MAGILL, JR.

1. **Introduction.** Let G and H be two groupoids. An isotopism [1, p. 57] from G onto H is an ordered triple (β, γ, δ) of bijections from G onto H such that $\beta(ab) = \gamma(a)\delta(b)$ for all $a, b \in G$. In this paper, we determine all isotopisms between certain semigroups of functions which were referred to in [2] as α -semigroups. This result is then applied to semigroups of continuous functions, semigroups of closed functions and semigroups of connected functions. For example, let X and Y be S^* -spaces [3] and let S(X) and S(Y) denote the semigroups, under composition, of all continuous selfmaps of X and Y respectively. Then for each isotopism (β, γ, δ) of S(X) onto S(Y), there exist three unique homeomorphisms h, j and k from X onto Y such that $\beta(f) = h \circ f \circ k^{-1}$, $\gamma(f) = h \circ f \circ j^{-1}$ and $\delta(f) = j \circ f \circ k^{-1}$ for each f in S(X). Similar results are obtained for semigroups of closed functions and also for semigroups of connected functions.

2. Isotopisms between α -semigroups.

Definition (2.1). An α -semigroup is any semigroup, under composition, of selfmaps of a set which contains the identity function and all constant functions.

 α -semigroups of functions occur quite naturally. For example, if X is any topological space, the semigroup of all continuous selfmaps of X and the semigroup of all connected selfmaps (the image of each connected set is connected) of X are α -semigroups and if X is a T_1 space, the semigroup of all closed selfmaps (the image of each closed set is closed) is an α -semigroup.

THEOREM (2.2). Let $\alpha(X)$ and $\alpha(Y)$ denote α -semigroups of functions on the sets X and Y respectively and suppose (β, γ, δ) is any isotopism from $\alpha(X)$ onto $\alpha(Y)$. Then there exist three unique bijections h, k and j from X onto Y such that the following conditions hold for each f in $\alpha(X)$:

$$\beta(f) = h \circ f \circ k^{-1},$$

$$(2.2.2) \gamma(f) = h \circ f \circ i^{-1},$$

$$\delta(f) = j \circ f \circ k^{-1}.$$

We first prove a sequence of lemmas which will assist in proving the theorem. In what follows, $\langle x \rangle$ will denote the constant function in $\alpha(X)$ which maps each point of X into x and i_x will denote the identity of $\alpha(X)$. It is not difficult to show that the family of all constant functions of $\alpha(X)$ is precisely the set of left zeros of $\alpha(X)$. This fact will be used repeatedly.

LEMMA (2.3). For each left zero $\langle x \rangle$ in $\alpha(X)$, $\beta \langle x \rangle = \gamma \langle x \rangle$.

Proof. Since δ is bijective, there is some $f \in \alpha(X)$ such that $\delta(f) = i_Y$. Then

$$\beta\langle x\rangle = \beta(\langle x\rangle \circ f) = \gamma\langle x\rangle \circ \delta(f) = \gamma\langle x\rangle \circ i_{Y} = \gamma\langle x\rangle.$$

LEMMA (2.4). $\beta\langle x\rangle$ (and consequently, $\gamma\langle x\rangle$) is a left zero of $\alpha(Y)$ for each left zero $\langle x\rangle$ in $\alpha(X)$.

Proof. For any $g \in \alpha(Y)$, there exists an $f \in \alpha(X)$ such that $\delta(f) = g$. Then we can use the previous lemma to get

$$\beta\langle x\rangle \circ g = \gamma\langle x\rangle \circ \delta(f) = \beta(\langle x\rangle \circ f) = \beta\langle x\rangle.$$

LEMMA (2.5). β (and hence γ) maps the left zeros of $\alpha(X)$ bijectively onto the left zeros of $\alpha(Y)$.

Proof. The fact that β is injective follows from the definition of an isotopism. Furthermore, it is immediate that $(\beta^{-1}, \gamma^{-1}, \delta^{-1})$ is an isotopism from $\alpha(Y)$ onto $\alpha(X)$. Thus, Lemma (2.4) implies that for any $\langle y \rangle \in \alpha(Y)$, $\beta^{-1}\langle y \rangle$ is a left zero of $\alpha(X)$. Since $\beta(\beta^{-1}\langle y \rangle) = \langle y \rangle$, the conclusion follows.

LEMMA (2.6). δ also maps the left zeros of $\alpha(X)$ bijectively onto the left zeros of $\alpha(Y)$.

Proof. There exists a function f in $\alpha(X)$ such that $\gamma(f) = i_Y$. Then for any $\langle x \rangle \in \alpha(X)$,

$$\delta\langle x\rangle = i_{\mathbf{v}} \circ \delta\langle x\rangle = \gamma(f) \circ \delta\langle x\rangle = \beta\langle f(x)\rangle$$

which, by Lemma (2.4), is a left zero of $\alpha(Y)$. It is immediate that δ is injective and since $(\beta^{-1}, \gamma^{-1}, \delta^{-1})$ is an isotopism from $\alpha(Y)$ onto $\alpha(X)$, it follows from the first portion of this proof that $\delta^{-1}\langle y \rangle$ is a left zero of $\alpha(X)$ for each $\langle y \rangle \in \alpha(Y)$. Thus, the desired conclusion follows since $\delta(\delta^{-1}\langle y \rangle) = \langle y \rangle$.

Proof of Theorem (2.2). Let any $x \in X$ be given. By Lemma (2.4), there exists a $y \in Y$ such that $\beta\langle x \rangle = \gamma\langle x \rangle = \langle y \rangle$. We define a mapping h from X into Y by h(x) = y and we note that

$$(2.2.4) \beta \langle x \rangle = \gamma \langle x \rangle = \langle h(x) \rangle$$

for each $x \in X$. Furthermore, it follows from Lemma (2.5) that h maps X bijectively onto Y.

From Lemma (2.6), we conclude the existence of a $z \in Y$ such that $\delta \langle x \rangle = \langle z \rangle$. We define j(x) = z and we note that

$$(2.2.5) \delta\langle x\rangle = \langle j(x)\rangle$$

for each $x \in X$. It also follows from Lemma (2.6) that j maps X bijectively onto Y. Finally, we define a function t from Y into X. Let any $y \in Y$ be given. Then $\delta(i_X) \circ \langle y \rangle$ is a left zero of $\alpha(Y)$ (the set of left zeros of $\alpha(Y)$ is the minimal two-sided ideal of $\alpha(Y)$) and, by Lemma (2.6), $\delta^{-1}(\delta(i_X) \circ \langle y \rangle)$ is a left zero of $\alpha(X)$

and consequently, is equal to $\langle x \rangle$ for some $x \in X$. We define t(y) = x and note that $\langle t(y) \rangle = \delta^{-1}(\delta(i_X) \circ \langle y \rangle)$ or, equivalently

$$(2.2.6) \delta\langle t(y)\rangle = \delta(i_x) \circ \langle y\rangle$$

for each $y \in Y$. We defer for the moment the verification that t maps Y bijectively onto X.

Now let f be any function in $\alpha(X)$ and let y be an arbitrary element from Y. Using both (2.2.4) and (2.2.6), we get

$$(h \circ f \circ t)(y) = \langle h(f(t(y)))\rangle(y) = \beta \langle f(t(y))\rangle(y)$$

$$= \beta(f \circ \langle t(y)\rangle)(y) = (\gamma(f) \circ \delta \langle t(y)\rangle)(y)$$

$$= (\gamma(f) \circ \delta(i_X) \circ \langle y\rangle)(y) = (\beta(f \circ i_X) \circ \langle y\rangle)(y)$$

$$= (\beta(f) \circ \langle y\rangle)(y) = \beta(f)(y).$$

Therefore,

$$\beta(f) = h \circ f \circ t$$

for each f in $\alpha(X)$. We use (2.2.4) and (2.2.5) to get

$$(h \circ f \circ j^{-1})(y) = \langle h(f(j^{-1}(y)))\rangle(y) = \beta \langle f(j^{-1}(y))\rangle(y)$$

= $\beta (f \circ \langle j^{-1}(y)\rangle)(y) = (\gamma(f) \circ \delta \langle j^{-1}(y)\rangle)(y)$
= $(\gamma(f) \circ \langle y\rangle)(y) = \gamma(f)(y)$.

Hence, we have

for each f in $\alpha(X)$.

Now choose g in $\alpha(X)$ such that $\gamma(g) = i_Y$ and use (2.2.7) and (2.2.8) to get

$$\delta(f) = i_{Y} \circ \delta(f) = \gamma(g) \circ \delta(f) = \beta(g \circ f)$$

$$= h \circ g \circ f \circ t = (h \circ g \circ j^{-1}) \circ (j \circ f \circ t)$$

$$= \gamma(g) \circ (j \circ f \circ t) = i_{Y} \circ (j \circ f \circ t) = j \circ f \circ t.$$

Therefore,

$$\delta(f) = j \circ f \circ t$$

for each f in $\alpha(X)$.

Next, we show that t is bijective. Among other things, we have shown thus far that if (β, γ, δ) is an isotopism from $\alpha(X)$ onto $\alpha(Y)$ then there exists a bijection j from X onto Y and a function t from Y into X such that the third element δ of the triple (β, γ, δ) has the form (2.2.9). Applying this to the isotopism $(\beta^{-1}, \gamma^{-1}, \delta^{-1})$, we conclude the existence of a bijection v from Y onto X and a function v from Y into Y such that

$$\delta^{-1}(g) = v \circ g \circ w$$

for each $g \in \alpha(Y)$. Then (2.2.9) and (2.2.10) together yield $i_X = \delta^{-1}(\delta(i_X)) = v \circ j \circ t \circ w$ and $i_Y = \delta(\delta^{-1}(i_Y)) = j \circ v \circ w \circ t$. Therefore $t \circ w = (v \circ j)^{-1}$ and $w \circ t = (j \circ v)^{-1}$ and since both v and j are bijections from Y onto X and X onto Y respectively, it follows that $t \circ w$ is a bijection from X onto X and X onto X and X onto X on

To complete the proof, we need only show that the bijections h, j and k are unique. Suppose conditions (2.2.1), (2.2.2) and (2.2.3) hold while at the same time

$$\beta(f) = u \circ f \circ w^{-1},$$

$$(2.2.12) \gamma(f) = u \circ f \circ v^{-1},$$

$$\delta(f) = v \circ f \circ w^{-1}$$

for three bijections u, v, and w which map X onto Y. Then for any $x \in X$ (2.2.1) and (2.2.11) imply that $\langle h(x) \rangle = \beta \langle x \rangle = \langle u(x) \rangle$ and (2.2.3) and (2.2.12) imply that

$$\langle j(x) \rangle = \delta \langle x \rangle = \langle v(x) \rangle$$

from which it readily follows that h=u and j=v. Using this information together with (2.2.1) and (2.2.11), we get $u \circ k^{-1} = h \circ k^{-1} = \beta(i_x) = u \circ w^{-1}$ which implies that k=w. This concludes the proof of Theorem (2.1).

3. **Isotopisms of semigroups of continuous functions.** We recall a definition from [3].

DEFINITION (3.1). A topological space X is an S^* -space if it is T_1 and for each closed subset F of X and each point p in X-F, there exists a point $y \in X$ and a continuous selfmap f of X such that f(x) = y for x in F and $f(p) \neq y$.

The class of all S^* -spaces is rather extensive. For example, [3, p. 296, Theorems 2 and 3] every 0-dimensional Hausdorff space and every completely regular Hausdorff space which contains an arc is an S^* -space. For two such spaces X and Y, we can apply Theorem (2.1) to get the following result:

THEOREM (3.2). Let S(X) and S(Y) denote the semigroups under composition, of all continuous selfmaps on the S^* -spaces X and Y respectively and suppose (β, γ, δ) is an isotopism from S(X) onto S(Y). Then there exist three unique homeomorphisms h, j and k from X onto Y such that for each f in S(X), the following conditions hold:

$$\beta(f) = h \circ f \circ k^{-1},$$

$$(3.2.2) \gamma(f) = h \circ f \circ j^{-1},$$

$$\delta(f) = j \circ f \circ k^{-1}.$$

Proof. It follows immediately that there exist three unique bijections h, j and k

mapping X onto Y such that conditions (3.2.1), (3.2.2) and (3.2.3) hold. Our task here is to show that they are, in fact, homeomorphisms.

First, we note that $\gamma(i_X) \circ \delta(\beta^{-1}(i_Y)) = \beta(i_X \circ \beta^{-1}(i_Y)) = i_Y$ and also that

$$\delta(\beta^{-1}(i_{v})) \circ \gamma(i_{v}) = i \circ (h^{-1} \circ k) \circ k^{-1} \circ (h \circ i^{-1}) = i_{v}.$$

That is, $\gamma(i_X)$ is a unit of the semigroup S(Y) or, equivalently, $\gamma(i_X)$ is a homeomorphism mapping Y onto Y.

Now, it is a straightforward matter to show that for any $p \in X$ and f in S(X), $h[f^{-1}(p)] = \gamma(i_X)[(\gamma(f))^{-1}(h(p))]$ which is a closed subset of Y since $\gamma(i_X)$ is a homeomorphism. One readily shows that $\{f^{-1}(p): p \in X, f \in S(X)\}$ is a basis for the closed subsets of X since X is an S^* -space. Consequently, the image under h of each closed subset of X is a closed subset of X. Since everything we have done thus far applies equally well to the isotopism $(\beta^{-1}, \gamma^{-1}, \delta^{-1})$ we may conclude also that h^{-1} takes closed subsets of X into closed subsets of X. Thus, X is a homeomorphism.

Similar techniques yield the fact that j is also a homeomorphism. First one shows that $j[f^{-1}(p)] = (\gamma(f))^{-1}(h(p))$. This, coupled with the fact that X is an S^* -space allows us to conclude that j is a closed function. If one uses γ^{-1} in place of γ , one shows that j^{-1} is also a closed function and hence that j is a homeomorphism.

Finally, one shows that $k^{-1}[K] = h^{-1}[\beta(i_X)[K]]$ for each closed subset K of Y. Since $\beta(i_X)$ is a homeomorphism from Y onto Y and h is a homeomorphism from X onto Y, it follows that $k^{-1}[K]$ is a closed subset of X. For similar reasons, k[H] is a closed subset of Y for each closed subset H of X. Thus, K is a homeomorphism and the proof is complete.

By taking $\beta = \gamma = \delta$ in the previous result we immediately get the following corollary which is Theorem 1 of [3].

COROLLARY (3.3). Let X and Y be S*-spaces. Then for each isomorphism β from S(X) onto S(Y), there exists a unique homeomorphism h from X onto Y such that $\beta(f) = h \circ f \circ h^{-1}$ for each f in S(X).

4. Isotopisms of semigroups of selfmaps on \Re -spaces. In this section, we investigate isotopisms of semigroups which include semigroups of closed functions and semigroups of connected functions as special cases. First we recall some definitions and results from [4]. In what follows, $\mathscr{P}(X)$ will denote the family of all subsets of a nonempty set X.

DEFINITION (4.1). Let \mathscr{F} be any subfamily of $\mathscr{P}(X)$. A selfmap f of X is said to be \mathscr{F} -invariant if $f[H] \in \mathscr{F}$ for each $H \in \mathscr{F}$.

DEFINITION (4.2). A subfamily \mathscr{F} of $\mathscr{P}(X)$ is an \Re -family if it contains X and all singletons of X and for each set H in \mathscr{F} , there exists an \mathscr{F} -invariant selfmap f on X such that f[X] = H.

For a discussion of \Re -families, see §2 in [4, pp. 526-530]. We quote without proof several results from these pages.

THEOREM (4.3). Let X be a nonempty set and let \mathcal{F} be a family of subsets of X which satisfies the following conditions:

(4.3.1)
$$\mathcal{F}$$
 contains X and all singletons of X ,

$$(4.3.2)$$
 \mathscr{F} is closed under finite intersections,

$$(4.3.3) if $H \in \mathcal{F}, then \ H \cup \{p\} \in \mathcal{F} for \ each \ p \in X.$$$

Then F is an R-family.

From this latter theorem, one immediately gets

COROLLARY (4.4). The family of all closed subsets of a T_1 topological space is an \Re -family.

Theorem (4.5). Any family of connected subsets of a completely regular Hausdorff space with cardinality c (the cardinality of the continuum) together with all singletons and the space itself is an \Re -family.

Actually, this latter result was stated with less generality in [4] as Theorem (2.8). However, the proof given there can easily be modified to produce the stronger result stated here.

DEFINITION (4.6). An \Re -space is a pair (X, \mathscr{F}_X) where X is a nonempty set and \mathscr{F}_X is an \Re -family of subsets of X.

DEFINITION (4.7). Let (X, \mathcal{F}_X) and (Y, \mathcal{F}_Y) be two \Re -spaces. A function f from X into Y is an \Re -function if $f[H] \in \mathcal{F}_Y$ for each H in \mathcal{F}_X . If f is a bijection from X onto Y and both f and f^{-1} are \Re -functions then f is referred to as an \Re -bijection.

DEFINITION (4.8). Let (X, \mathcal{F}_X) be any \Re -space. The semigroup, under composition, of all \Re -functions mapping X into X will be denoted by $\Re(X, \mathcal{F}_X)$.

Now we are in a position to determine all isotopisms between semigroups of the form $\Re(X, \mathscr{F}_X)$.

THEOREM (4.9). Let (X, \mathcal{F}_X) and (Y, \mathcal{F}_Y) be \Re -spaces and let (β, γ, δ) be an isotopism from $\Re(X, \mathcal{F}_X)$ onto $\Re(Y, \mathcal{F}_Y)$. Then there exist three unique \Re -bijections h, j and k from X onto Y such that the following conditions hold for each f in $\Re(X)$:

$$\beta(f) = h \circ f \circ k^{-1},$$

$$(4.9.2) \gamma(f) = h \circ f \circ j^{-1},$$

$$\delta(f) = j \circ f \circ k^{-1}.$$

Proof. Theorem (2.2) guarantees us the existence of three unique bijections h, j and k which satisfy conditions (4.9.1), (4.9.2) and (4.9.3). We must show that these three functions are \Re -bijections. Suppose $H \in \mathscr{F}_X$. Then f[X] = H for some $f \in \Re(X, \mathscr{F}_X)$ and we use (4.9.1) to get

$$h[H] = h[f[X]] = h[f[k^{-1}[Y]]] = (\beta(f))[Y].$$

Therefore, $h[H] \in \mathscr{F}_Y$. In a similar manner, one shows that $j[H] = (\delta(f))[Y]$ which implies that j[H] also belongs to \mathscr{F}_Y . Analogous arguments for the isotropism $(\beta^{-1}, \gamma^{-1}, \delta^{-1})$ result in the conclusion that $h^{-1}[K]$ and $j^{-1}[K]$ belong to \mathscr{F}_X whenever K belongs to \mathscr{F}_Y . Thus, both h and j are \Re -bijections. Finally, one observes that for any $H \in \mathscr{F}_X$ and $K \in \mathscr{F}_Y$, $k[H] = h[(\beta^{-1}(i_Y))[H]]$ and $k^{-1}[K] = h^{-1}[(\beta(i_X))[K]]$. Since h is an \Re -bijection, it follows that $k[H] \in \mathscr{F}_Y$ and $k^{-1}[K] \in \mathscr{F}_X$. Thus, k is also an \Re -bijection.

We recall that by a closed selfmap of a topological space X, we mean a function f with the property that f[H] is closed whenever H is closed. If f[H] is connected whenever H is connected, we refer to f as a connected function. Connected functions have been studied by Tanaka [6] and Pervin and Levine [5]. We investigated semigroups of connected functions in [2]. In keeping with the notation there, we denote the semigroup, under composition of all connected selfmaps of a topological space X by F(X) and we denote the semigroup, under composition, of all closed selfmaps by F(X). The following result is an immediate consequence of Corollary (4.4) and Theorem (4.9).

THEOREM (4.10). Let X and Y be T_1 topological spaces and let (β, γ, δ) be an isotopism from $\Gamma(X)$ onto $\Gamma(Y)$. Then there exist three unique homeomorphisms h, j and k from X onto Y such that the following conditions hold for each f in $\Gamma(X)$:

$$\beta(f) = h \circ f \circ k^{-1},$$

$$(4.10.2) \gamma(f) = h \circ f \circ j^{-1},$$

$$\delta(f) = j \circ f \circ k^{-1}.$$

A biconnected mapping from a topological space Y onto a topological space Y is any bijection h with the property that both h and h^{-1} are connected mappings. Theorems (4.5) and (4.9) immediately result in

THEOREM (4.11). Let X and Y be completely regular connected Hausdorff spaces with cardinality c and let (β, γ, δ) be an isotopism from T(X) onto T(Y). Then there exist three unique biconnected mappings from X onto Y, such that the following conditions hold for each f in T(X):

$$\beta(f) = h \circ f \circ k^{-1},$$

$$(4.11.2) \gamma(f) = h \circ f \circ j^{-1},$$

$$\delta(f) = j \circ f \circ k^{-1}.$$

It is shown in [5, p. 495, Theorem 3.10] that if X and Y are locally connected compact Hausdorff spaces, then any biconnected mapping from X onto Y is, in fact, a homeomorphism. This fact and Theorem (4.11) immediately imply

THEOREM (4.12). Let X and Y be connected locally connected compact Hausdorff spaces with cardinality c and suppose (β, γ, δ) is an isotopism from T(X) onto T(Y).

Then there exist three unique homeomorphisms h, j and k from X onto Y such that the following conditions hold for each f in T(X):

$$\beta(f) = h \circ f \circ k^{-1},$$

$$(4.12.2) \gamma(f) = h \circ f \circ j^{-1},$$

$$\delta(f) = j \circ f \circ k^{-1}.$$

In conclusion, we remark that if one takes $\beta = \gamma = \delta$ in Theorem (4.10) of this paper, one gets Theorem (2.10) of [2].

REFERENCES

- 1. R. H. Bruck, A survey of binary systems, Springer-Verlag, New York, 1966.
- 2. K. D. Magill, Jr., Semigroups of functions on topological spaces, Proc. London Math. Soc. (3) 16 (1966), 507-518. MR 33 #7992.
- 3. ——, Another S-admissible class of spaces, Proc. Amer. Math. Soc. 18 (1967), 295-298. MR 34 #8363.
- 4. ——, Semigroup structures for families of functions. III: \mathfrak{N}_T^* -semigroups, J. Austral. Math. Soc. 7 (1967), 524-538. MR 36 #3901.
- 5. W. J. Pervin and N. Levine, Connected mappings of Hausdorff spaces, Proc. Amer. Math. Soc. 9 (1958), 488-496. MR 20 #1970.
- 6. T. Tanaka, On the family of connected subsets and the topology of spaces, J. Math. Soc. Japan 7 (1955), 389-393. MR 17, 1116.

STATE UNIVERSITY OF NEW YORK, BUFFALO, NEW YORK