EMBEDDING AS A DOUBLE COMMUTATOR IN A TYPE I AW^* -ALGEBRA(1)

BY HERBERT HALPERN

1. **Introduction.** The purpose of this paper is the characterization of those C*-algebras which can be written as their own double commutator in a type I AW*-algebra. In a previous paper [5] the present author considered the module structure induced on a C^* -algebra $\mathscr A$ by its center $\mathscr L$ which was taken to be a von Neumann algebra. It was shown that \mathcal{A} is a von Neumann algebra if and only if it could be identified with the space of all bounded module homomorphisms into \mathscr{Z} on a normed \mathscr{Z} -module. Here, an analogue of this theorem is obtained: a C^* -algebra $\mathscr A$ whose center is an AW^* -algebra $\mathscr Z$ can be isomorphically and isometrically embedded as a double commutator in a type I AW*-algebra with center \mathcal{Z} if and only if \mathcal{A} can be written as the set of all bounded module homomorphisms into \mathscr{Z} on a normed \mathscr{Z} -module M. The topology induced on the unit sphere of \mathscr{A} by pointwise convergence on M will be the weak topology on the unit sphere of \mathcal{A} . This result can be regarded as a generalization of Sakai's theorem relating to von Neumann algebras [12] and in a certain sense it also illustrates that the generality of such an AW^* -algebra $\mathcal A$ as compared to a von Neumann algebra lies in its center.

The problem of embedding an AW^* -algebra $\mathscr A$ in a type I AW^* -algebra so as to preserve the sums of orthogonal projections was studied by H. Widom [18]. He found that such an embedding was possible if and only if $\mathscr A$ possesses a complete set $\{\phi_n\}$ of positive module homomorphisms into the center $\mathscr L$ which mapped 1 into 1 and were completely additive on projections. He also studied those AW^* -algebras $\mathscr A$ which were embedded as double commutators in type I algebras and showed that a finite AW^* -subalgebra of a type I algebra $\mathscr B$ is its own double commutator in $\mathscr B$. T. Yen also studied the problem and showed that a type II AW^* -algebra with finite trace is its own double commutator in a type I algebra [19].

2. The weak topology. Let H be an AW^* -module [10]. For each x and y in H let $w_{x,y}$ and w_x be the functions defined on the algebra L(H) of all bounded linear operators on H by $w_{x,y}(A) = (Ax, y)$ and $w_x(A) = (Ax, x)$ respectively. The weak topology on a *-subalgebra $\mathscr A$ of L(H) is the weakest topology on $\mathscr A$ in

Received by the editors May 8, 1969.

⁽¹⁾ This work was partially supported by the National Science Foundation.

which each function $A \to \|w_{x,y}(A)\|$ $(x, y \in H)$ or equivalently in which each function $A \to \|w_x(A)\|$ $(x \in H)$ is continuous on \mathscr{A} .

PROPOSITION 1. Let H be an AW^* -module over the commutative AW^* -algebra \mathscr{Z} . Let \mathscr{A} be a *-subalgebra of L(H) which contains \mathscr{Z} and let \mathscr{A}_{\sim} be the algebraic \mathscr{Z} -module generated by the functions $w_{x,y}(x,y\in H)$ restricted to \mathscr{A} . Then \mathscr{A}_{\sim} is the set of weakly continuous \mathscr{Z} -module homomorphisms of the \mathscr{Z} -module \mathscr{A} into \mathscr{Z} .

Proof. It is sufficient to prove that \mathscr{A}_{\sim} contains the set of weakly continuous module homomorphisms because clearly \mathscr{A}_{\sim} is contained in the set of weakly continuous \mathscr{Z} -module homomorphisms. Let f be weakly continuous. There are elements x_i $(1 \le i \le n)$ in H such that $||f(A)|| \le 1$ whenever $||w_{x_i}(A)|| \le 1$ for every $i=1,2,\ldots,n$. If $A \in L(H)$, let $|A|=(A^*A)^{1/2}$. By setting $p(A)=\sum |w_{x_i}(A)|$ for $A \in L(H)$, we define a function of L(H) into \mathscr{Z}^+ such that $p(A+B) \le p(A)+p(B)$ and p(CA)=|C|p(A) for every A, B in L(H) and C in \mathscr{Z} . We have that $|f(A)| \le 1$ whenever $p(A) \le 1$. Therefore, $|f(A)| \le p(A)$ for every A in \mathscr{A} . Setting $g(A)=(f(A)+f(A)^*)/2$, we obtain a function of \mathscr{A} into the set of hermitian elements $H(\mathscr{Z})$ of \mathscr{Z} which is a module homomorphism when \mathscr{A} is considered to be an $H(\mathscr{Z})$ -module. We still have that $g(A) \le p(A)$ for every A in \mathscr{A} . There is a module homomorphism h of the $H(\mathscr{Z})$ -module L(H) into $H(\mathscr{Z})$ such that h(A)=g(A) for every A in \mathscr{A} and $h(A) \le p(A)$ for every A in L(H) [17]. Let L(H) and if L(H) is a partial isometric operator in \mathscr{Z} with L(H) into \mathscr{Z} . If L(H) and if L(H) is a partial isometric operator in \mathscr{Z} with L(H) [19, Lemma 2.1], then

$$|k(A)| = k(U^*A) \le p(U^*A) \le p(A).$$

We also have that $k(A)+k(A^*)=f(A)+f(A^*)$ for every A in \mathscr{A} . However, this means that k(A)=f(A) for every A in \mathscr{A} . This proves that k is a module homomorphism of L(H) into \mathscr{Z} which coincides with f on \mathscr{A} and which satisfies $|k(A)| \le p(A)$.

Now for each x_i $(1 \le i \le n)$ there is a C_i in \mathcal{Z}^+ and a y_i in H such that $C_i y_i = x_i$ and such that $|y_i|$ is a projection in \mathcal{Z} . Let E_i be the abelian projection in L(H) defined by $E_i x = (x, y_i) y_i$ [10, Lemma 13]. We have that

$$k(A(1-E)) = k((1-E)A) = 0,$$

where E is the least upper bound of E_1, E_2, \ldots, E_n . The projection E is in the closed two-sided ideal I_a of L(H) generated by the abelian projections of L(H) due to the relation

lub
$$\{E_1, E_2\} - E_1 \sim E_2 - \text{glb}\{E_1, E_2\}$$
 [8, Theorem 5.4]

and to the fact that $E_2 - \exists ib \{E_1, E_2\}$ is abelian. There are orthogonal projections P_1, P_2, \ldots, P_m in \mathscr{Z} whose sum P is the central support of E such that each algebra $EL(H)EP_i$ is either zero or homogeneous of degree i (cf. [4, Theorem 2.1]). Since

$$f(A)(1-P) = k(A(1-P)) = 0$$

for every A in \mathscr{A} , it is sufficient to prove that each function $P_i f$ is in \mathscr{A}_{\sim} . So we may assume that EL(H)E is homogeneous of degree m. There are equivalent orthogonal abelian projections $\{F_i \mid 1 \le i \le m\}$ of sum E and partial isometric operators $\{U_{ij} \mid 1 \le i, j \le m\}$ such that

- (1) $U_{ij}U_{ki} = \delta_{il}U_{kj}$;
- (2) $U_{ij} = U_{ii}^*$; and
- (3) $U_{ii} = F_i$ for all i, j, k, l.

Thus $f(A) = k(A) = k(EAE) = \sum \tau_{F_j}(U_{ij}A)k(U_{ji})$. Here $\tau_{F_j}(B)$ denotes the unique element in $\mathscr{Z}P$ such that $\tau_{F_j}(B)F_j = F_jBF_j$ [8, Lemma 4.7]. Let z_j be an element in H such that $F_jx = (x, z_j)z_j$ [10, Lemma 13]. Then

$$\tau_{F_i}(U_{ij}A) = (U_{ij}Az_j, z_j) = (A\dot{z}_j, U_{ji}z_j).$$

This proves that $f \in \mathcal{A}_{\sim}$. Q.E.D.

Let M be a normed vector space which is also an algebraic module over a commutative AW^* -algebra \mathscr{Z} ; then M is said to be a normed \mathscr{Z} -module if $||Ax|| \le ||A|| ||x||$ for every $A \in \mathscr{Z}$ and $x \in M$. A bounded module homomorphism of M into \mathscr{Z} will be called a functional of the module M. By defining operations in a pointwise fashion, we obtain an algebraic \mathscr{Z} -module structure on the set of all functionals of the module M. The function

$$\|\phi\| = \text{lub} \{ \|\phi(x)\| \mid x \in M, \|x\| \le 1 \}$$

defines a norm on the \mathscr{Z} -module of functionals. With this norm the module becomes a normed \mathscr{Z} -module. We call this module the dual of M and denote it by M^{\sim} .

THEOREM 2. Let H be an AW^* -module over the commutative AW^* -algebra $\mathscr Z$ and $\mathscr A$ be a *-subalgebra of the algebra L(H) of all bounded linear operators on H such that $\mathscr A$ is equal to its own second commutator in L(H). For each A in $\mathscr A$ let F_A be the function defined on the $\mathscr Z$ -module $\mathscr A_{\sim}$ (considered as a submodule of $\mathscr A^{\sim}$) of weakly continuous module homomorphisms of $\mathscr A$ into $\mathscr Z$ by $F_A(\phi) = \phi(A)$. Then $A \to F_A$ defines an isometric isomorphism of $\mathscr A$ onto the dual of $\mathscr A_{\sim}$.

Proof. First let $\mathscr{A} = L(H)$. If $\Phi \in (A_{\sim})^{\sim}$, then $\Phi(w_{x,y}) = \langle x, y \rangle$ defines a \mathscr{Z} -valued hermitian form on H such that

$$\|\langle x, y \rangle\| \le \|\Phi\| \|w_{x,y}\| \le \|\Phi\| \|x\| \|y\|.$$

The function $x \to \langle x, y \rangle$ is a bounded \mathscr{Z} -linear function of H into \mathscr{Z} . Therefore, there is a unique element A_y in H with $\langle x, y \rangle = (x, A_y)$ for every x in H [10, Theorem 5]. We have that $||A_y|| \le ||\Phi|| ||y||$. From the uniqueness of A_y we conclude that there is an A in L(H) such that $Ay = A_y$ for every y in H. Thus, $\Phi(w_{x,y}) = w_{x,y}(A)$ for every $w_{x,y}$. Since functions of the form $w_{x,y}$ generate \mathscr{A}_{\sim} , we have that $\Phi(\phi) = \phi(A)$ for every $\phi \in \mathscr{A}_{\sim}$.

Now we have that $A \to F_A$ defines a \mathscr{Z} -linear function of \mathscr{A} into $(\mathscr{A}_{\sim})^{\sim}$. We have that $||F_A|| \le ||A||$ since $||\phi(A)|| \le ||\phi|| ||A||$ for every $\phi \in \mathscr{A}_{\sim}$. But

$$||A|| = \text{lub} \{||w_{x,y}(A)|| \mid ||w_{x,y}|| \le 1\}$$

and so $||A|| = ||F_A||$. Thus $A \to F_A$ is an isometric isomorphism of $\mathscr A$ into $(\mathscr A_{\sim})^{\sim}$. The preceding paragraph allows us to conclude that $A \to F_A$ is onto $(\mathscr A_{\sim})^{\sim}$.

Now assume that \mathscr{A} is an arbitrary *-subalgebra of L(H) which is equal to its own double commutator. Let G be the bounded \mathscr{Z} -linear map which takes an element in $L(H)_{\sim}$ onto its restriction to \mathscr{A} . Then G is a map of $L(H)_{\sim}$ onto \mathscr{A}_{\sim} (Proposition 1). If Φ is an element of $(\mathscr{A}_{\sim})^{\sim}$, then $\Phi \cdot G$ defines an element of $(L(H)_{\sim})^{\sim}$. By the first part of this proof we may find an A in L(H) with $\Phi \cdot G(\phi) = \phi(A)$ for every ϕ in $L(H)_{\sim}$. If A is not in \mathscr{A} , there is a unitary operator U in the commutator of \mathscr{A} such that $U*AU \neq A$. Then there is an x in H with $w_x(A) - w_{Ux}(A) \neq 0$. But $\phi = w_x - w_{Ux}$ vanishes on \mathscr{A} and so $\phi(A) = \Phi(G(\phi)) = 0$. This is a contradiction. Thus A is in \mathscr{A} . Since every ϕ in \mathscr{A}_{\sim} has an extension to a function in $L(H)_{\sim}$, we conclude that $\Phi(\phi) = \phi(A)$ for every ϕ in \mathscr{A}_{\sim} . Thus we may apply the arguments of the preceding paragraph in order to show that $A \to F_A$ is an isometric isomorphism of \mathscr{A} onto $(\mathscr{A}_{\sim})^{\sim}$. Q.E.D.

REMARK. The algebra $\mathscr A$ in the preceding theorem is expressed as the dual of a module whose ring of multipliers is a subalgebra of the center of $\mathscr A$. This pathological feature can be removed by the following additional argument. Let $\mathscr X_0$ be the center of $\mathscr A$. The commutator $\mathscr X_0'$ of $\mathscr X_0$ on H is a type I algebra by a proof that is entirely similar to the corresponding proof for von Neumann algebras (cf. [1, I, §2, Proposition 1 and §6, Problem 5]). The center of $\mathscr X_0'$ is $\mathscr X_0'' = \mathscr X_0$. Since $\mathscr X_0'$ is the algebra of all bounded linear operators on an AW^* -module over $\mathscr X_0$ [10, Theorem 8] and since $\mathscr A$ is its own double commutator in $\mathscr X_0'$, we may conclude that $\mathscr A$ is the dual of $\mathscr X_0$ -module by Theorem 2.

3. The dual of a \mathscr{Z} -module. Let \mathscr{A} be a C^* -algebra whose center \mathscr{Z} is an AW^* -algebra. Then \mathscr{A} with its norm is a normed \mathscr{Z} -module. In this section whenever we talk about the module \mathscr{A} , we shall have this particular module structure in mind. If $\phi \in \mathscr{A}^{\sim}$ and $A \in \mathscr{A}$, the functional $(A \cdot \phi)(B) = \phi(AB)$ is in \mathscr{A}^{\sim} . This defines a right multiplication of elements of \mathscr{A}^{\sim} by \mathscr{A} . Similarly, a left multiplication is defined by $(\phi \cdot A)(B) = \phi(BA)$. A functional ϕ in \mathscr{A}^{\sim} is said to be positive if $\phi(A^*A) \ge 0$ for every A in \mathscr{A} . Then ϕ is positive if $\phi(1) \ge 0$ and $\|\phi(1)P\| = \|P \cdot \phi\|$ for every projection P in \mathscr{Z} . Indeed, if $\|\phi(1)P\| = \|P \cdot \phi\|$ for every projection P in \mathscr{Z} , then for every ζ in the spectrum of \mathscr{Z} the relation $|\phi_{\zeta}(1)| = \|\phi_{\zeta}\|$ is seen to be true. Here $\phi_{\zeta}(A) = \phi(A)^{\wedge}(\zeta)$ where B^{\wedge} denotes the Gelfand transform of $B \in \mathscr{Z}$. This means that $\phi_{\zeta}(A^*A) \ge 0$ for every ζ [2, 2.1.9]. Therefore the functional ϕ is positive.

Suppose now that the module \mathscr{A} is the dual of a normed \mathscr{Z} -module M. Since $||A(\phi)|| \le ||A|| ||\phi||$ for every $\phi \in M$ and $A \in \mathscr{A}$ and since $(C_1A_1 + C_2A_2)(\phi) = C_1A_1(\phi) + C_2A_2(\phi)$ for every C_1 , C_2 in \mathscr{Z} and A_1 , A_2 in \mathscr{A} , the function $\phi \to \phi'$

of M into \mathscr{A}^{\sim} , where ϕ' is defined by $\phi'(A) = A(\phi)$, is a norm-decreasing \mathscr{Z} -module homomorphism of M into a submodule N of \mathscr{A}^{\sim} . We have that

$$||A|| = \text{lub} \{ ||A(\phi)|| \mid \phi \in M, ||\phi|| \le 1 \}$$

$$\le \text{lub} \{ ||\phi(A)|| \mid \phi \in N, ||\phi|| \le 1 \} \le ||A||$$

and so we have that $||A|| = \text{lub} \{ ||\phi(A)|| \mid \phi \in N, ||\phi|| \le 1 \}$. Actually, the module \mathscr{A} is identified with the dual of N. Indeed, if $\Phi \in N^{\sim}$, then $\phi \to \Phi(\phi')$ defines an element of M^{\sim} . There is a unique element $A_{\Phi} = A$ in \mathscr{A} such that $\Phi(\phi') = A(\phi) = \phi'(A)$ for every $\phi \in M$. The function $\Phi \to A_{\Phi}$ of N^{\sim} into \mathscr{A} is easily seen to be an isometric isomorphism of the \mathscr{Z} -module N^{\sim} onto the module \mathscr{A} . Since we are interested in the topology on \mathscr{A} induced by pointwise convergence on M, we may assume that M is embedded in \mathscr{A}^{\sim} . We call this topology of pointwise convergence on M the $\sigma(\mathscr{A}, M)$ -topology of \mathscr{A} .

Let M be a submodule of \mathscr{A}^{\sim} . For each bounded subset $\{\phi_i\}$ of M and each set $\{P_i\}$ of mutually orthogonal projections in \mathscr{Z} of sum 1, there is a unique $\phi = \sum P_i \phi_i$ in \mathscr{A}^{\sim} satisfying the relation $P_i \phi = P_i \phi_i$ for each P_i . Let N be the smallest algebraic submodule of \mathscr{A}^{\sim} which contains M and is closed under the formation of such sums. Then every element $\phi \in N$ is of the form $\phi = \sum P_i \phi_i$ where $\{\phi_i\}$ is a bounded subset of M and $\{P_i\}$ is a set of mutually orthogonal projections in \mathscr{Z} of sum 1. The \mathscr{Z} -module N will be called the module generated by M in \mathscr{A}^{\sim} .

PROPOSITION 3. Let \mathscr{A} be a C^* -algebra whose center \mathscr{Z} is an AW^* -algebra. Let M be a normed \mathscr{Z} -module whose dual is the module \mathscr{A} ; let N be the module generated by M in \mathscr{A}^{\sim} . Then the dual of the module N is also equal to \mathscr{A} .

Proof. Let Φ be a functional in N^{\sim} . Then the restriction Ψ of Φ to M is a bounded functional of the module M. There is an $A = A_{\Phi}$ in $\mathscr A$ such that $\Psi(\phi) = \phi(A)$ for every $\phi \in M$. Let $\phi \in N$; there is a bounded subset $\{\phi_i\}$ of M and a set $\{P_i\}$ of mutually orthogonal projections in $\mathscr L$ of sum 1 such that $P_i\phi = P_i\phi_i$ for each P_i . Then

$$P_i\Phi(\phi) = \Phi(P_i\phi_i) = \Psi(P_i\phi_i) = P_i\phi_i(A) = P_i\phi(A)$$

for each P_i . This means that $\Phi(\phi) = \phi(A)$. Suppose there is a second element A' in $\mathscr A$ such that $\Phi(\phi) = \phi(A')$ for every $\phi \in N$. Then every element of M vanishes on A' - A. Because $\mathscr A$ is the dual of M, we have that A' = A. This means that $\Phi \to A_{\Phi}$ is a module isomorphism of N^{\sim} onto $\mathscr A$. We have that

$$\|\Phi\| = \text{lub} \{ \|\Phi(\phi)\| \mid \phi \in N, \|\phi\| \le 1 \}$$

$$\le \|A_{\phi}\| = \text{lub} \{ \|\phi(A_{\phi})\| \mid \phi \in M, \|\phi\| \le 1 \} \le \|\Phi\|$$

for every $\Phi \in N^{\sim}$. Therefore, the map $\Phi \to A_{\Phi}$ is an isometric isomorphism of the module N^{\sim} onto the module \mathscr{A} . Q.E.D.

We need the following lemma which is known for σ -weakly continuous functionals on a von Neumann algebra (cf. [2, 12.2.3]).

LEMMA 4. Let \mathscr{A} be a C^* -algebra, E a projection in \mathscr{A} and f a bounded linear functional on \mathscr{A} . If the norm of the function g(A) = f(EA) on \mathscr{A} is equal to that of f, then g = f.

Proof. Let \mathscr{B} be the enveloping von Neumann algebra of \mathscr{A} . We may consider \mathscr{A} as a weakly dense subset of \mathscr{B} . The functionals f and g on \mathscr{A} have unique extensions to weakly continuous functionals f' and g' respectively on \mathscr{B} . By the uniqueness of the extension we have that g'(A) = f'(EA) for every A in \mathscr{B} . Since the unit sphere of \mathscr{A} is weakly dense in that of \mathscr{B} [7], we have that ||f'|| = ||f|| = ||g|| = ||g'||. Therefore, f' = g' and so f = g. Q.E.D.

We now prove the existence of a polar decomposition.

PROPOSITION 5. Let \mathscr{A} be a C^* -algebra whose center \mathscr{L} is an AW^* -algebra. Suppose that \mathscr{A} is the dual of a normed \mathscr{L} -module M. Then given ϕ in M, there is a partial isometric operator U in \mathscr{A} such that $\theta = U \cdot \phi$ is a positive functional of the module \mathscr{A} and such that the functional $U^* \cdot \theta$ is equal to ϕ .

Proof. Let \mathscr{A}_1 be the unit sphere of \mathscr{A} . For each ϕ in M let

$$S(\phi) = \{ |\phi(A)| \mid A \in \mathscr{A}_1 \}.$$

If $|\phi(A_1)|$ and $|\phi(A_2)|$ are in $S(\phi)$, there are partial isometric operators V_1 and V_2 in $\mathscr Z$ such that $V_1\phi(A_i)=|\phi(A_i)|$ (i=1,2). There is a projection P in $\mathscr Z$ such that

lub {
$$|\phi(A_1)|, |\phi(A_2)|$$
} = $P|\phi(A_1)| + (1-P)|\phi(A_2)|$
= $\phi(PV_1A_1 + (1-P)V_2A_2) = |\phi(PV_1A_1 + (1-P)V_2A_2)|$.

This proves that $S(\phi)$ is monotonely increasing in \mathscr{Z} . Since \mathscr{Z} is an AW^* -algebra and since $S(\phi)$ is bounded above by $\|\phi\|$, the set $S(\phi)$ has a least upper bound $|\phi|$ such that $\||\phi|| \| \le \|\phi\|$. Actually, we have that $\|\phi\| = \||\phi||$ for given $\varepsilon > 0$, there is an A in \mathscr{A}_1 such that

$$\|\phi\|-\varepsilon \leq \|\phi(A)\| \leq \||\phi(A)|\| \leq \||\phi(A)|\|$$

Since $\varepsilon > 0$ is arbitrary we have that $\|\phi\| = \||\phi|\|$. Now it is clear from the definition of $|\phi|$ that $|\phi|$ is a \mathscr{Z} -valued seminorm on M, i.e. $|\phi|$ is a map of M into \mathscr{Z}^+ such that

$$|\phi + \psi| \le |\phi| + |\psi|$$
 and $|C\phi| = |C| |\phi|$

for every ϕ , ψ in M and C in \mathscr{Z} .

Let ϕ be a given element in M. By considering M as a module over the hermitian elements $H(\mathcal{Z})$ of \mathcal{Z} , we can construct, by using the generalized Hahn-Banach Theorem [17], an $H(\mathcal{Z})$ -module homomorphism F of M into $H(\mathcal{Z})$ such that

- (1) $F(\phi) = |\phi|$,
- (2) $F(\psi) \le |\psi|$ for every ψ in M, and such that
- (3) $\alpha F_1 + (1 \alpha)F_2 = F$ implies $F_1 = F_2 = F$

whenever F_1 and F_2 are $H(\mathcal{Z})$ -module homomorphisms satisfying (1) and (2) and α is a real number between 0 and 1. Setting $G(\psi) = F(\psi) - iF(i\psi)$ for every ψ

in M, we obtain a \mathscr{Z} -module homomorphism of M into \mathscr{Z} . For every ψ in M there is a partial isometric operator V in \mathscr{Z} such that $VG(\psi) = |G(\psi)|$. Thus we have that $|G(\psi)| = G(V\psi) = F(V\psi) \le |V\psi| \le |\psi|$. Since $||\psi|| = ||\psi||$ for every ψ in M, the functional G is an element of M^{\sim} ; and consequently there is an element U in \mathscr{A} such that $G(\psi) = \psi(U)$ for every ψ in M. In particular we have that $\psi(U) = |\psi|$. Since $||G|| \le 1$, we have that $||U|| \le 1$. Let θ be the functional in \mathscr{A}^{\sim} defined by $\psi(A) = \psi(UA)$ for every $\psi(A) = \psi(UA)$ for eve

$$||P\theta|| \le ||P\phi|| = |||P\phi||| = ||P\phi(U)|| = ||P\theta(1)|| \le ||P\theta||$$

for every projection P in \mathscr{Z} . We show that U is an extreme point of \mathscr{A}_1 . Indeed, if there are A_1 and A_2 in \mathscr{A}_1 and $0 < \alpha < 1$ that satisfy $\alpha A_1 + (1 - \alpha)A_2 = U$, then

$$\alpha\psi(A_1) + (1-\alpha)\psi(A_2) = \psi(U)$$

for every ψ in M. Setting $F_j(\psi) = (\psi(A_j) + \psi(A_j)^*)/2$ (j = 1, 2), we obtain an $H(\mathcal{Z})$ -module homomorphism of M into $H(\mathcal{Z})$. We have that $F_j(\psi) \leq |\psi(A_j)| \leq |\psi|$ for each ψ in M. Also

$$\alpha F_1(\phi) + (1-\alpha)F_2(\phi) = F(\phi) = |\phi|.$$

So $F_1(\phi) = F_2(\phi) = |\phi|$. Since F is an extreme point (relation (3)), we have that $F_1 = F_2 = F$. Then

$$(\psi(A_i) + \psi(A_i)^*)/2 = F(\psi)$$

and

$$(i\psi(A_i)+(i\psi(A_i))^*)/2=F(i\psi)$$

for every ψ implies $\psi(A_j) = F(\psi) - iF(i\psi) = \psi(U)$ for every ψ in M. This means that $A_1 = A_2 = U$. Hence U is an extreme point of \mathscr{A}_1 . Therefore, U is a partial isometric operator in \mathscr{A} [6].

We complete the proof by showing that $\theta(U^*A) = \phi(A)$ for every A in \mathscr{A} . For ζ in the spectrum of \mathscr{Z} and ψ in \mathscr{A}^{\sim} let ψ_{ζ} be the bounded linear functional on \mathscr{A} defined by $\psi_{\zeta}(A) = \psi(A)^{\wedge}(\zeta)$; for B in \mathscr{A} let $B \cdot \psi_{\zeta}$ be defined by $B \cdot \psi_{\zeta}(A) = \psi_{\zeta}(BA)$. Notice that $\|B \cdot \psi_{\zeta}\| \le \|B\| \|\psi_{\zeta}\|$. We have that $\|\phi_{\zeta}\| \le \|B\| \|P\phi\| \|P$ a projection in \mathscr{Z} with $P^{\wedge}(\zeta) = 1\} = \|B\| \|P\phi(U)\| \|P$ a projection in \mathscr{Z} with $P^{\wedge}(\zeta) = 1\} \le |\phi(U)^{\wedge}(\zeta)| = \|\theta_{\zeta}\| \le \|\phi_{\zeta}\|$. Indeed, given $\varepsilon > 0$ there is a projection P in \mathscr{Z} with $P^{\wedge}(\zeta) = 1$ and $\|P\phi(U)\| \le |\phi(U)^{\wedge}(\zeta)| + \varepsilon$. Thus $\|\theta_{\zeta}\| = \|\phi_{\zeta}\|$. However, we also have that

$$\|\theta_{\zeta}\| = \|(UU^*U)\cdot\phi_{\zeta}\| \le \|(UU^*)\cdot\phi_{\zeta}\| \le \|\phi_{\zeta}\| = \|\theta_{\zeta}\|.$$

By Lemma 4 we conclude that $(UU^*)\cdot\phi_{\zeta}=\phi_{\zeta}$. Since ζ is arbitrary we have that $\phi(A)=\theta(U^*A)$ for all A in \mathscr{A} . Q.E.D.

Let \mathscr{A} be a C^* -algebra whose center \mathscr{Z} is an AW^* -algebra. Let ϕ be a positive functional in \mathscr{A}^{\sim} . There is a set $\{C_i\}$ of positive elements in \mathscr{Z} and a set $\{P_i\}$ of mutually orthogonal projections in \mathscr{Z} of sum P such that

$$P_i C_i \phi(1) = P_i$$
 and $(1-P)\phi(1) = 0$.

Then setting $\psi(A) = \sum C_i P_i \phi(A)$ for A in \mathscr{A} , we obtain a positive functional ψ of the module \mathscr{A} such that $\phi(1)\psi = \phi$. Due to the general Hahn-Banach theorem there is a positive functional ϕ_0 of the module \mathscr{A} such that $\phi_0(1) = 1$. So every positive functional in \mathscr{A}^{\sim} can be decomposed into the product of a state of the module \mathscr{A} (i.e. a positive functional taking 1 into 1) and an element in \mathscr{L}^+ [11], [15].

Let ϕ be a positive functional in \mathscr{A}^{\sim} such that $\phi(1)$ is a projection. Let L_{ϕ} be the left ideal defined by $L_{\phi} = \{A \in \mathcal{A} \mid \phi(A^*A) = 0\}$ and let $\mathcal{A} - L_{\phi}$ be the \mathcal{A} -module \mathscr{A} reduced modulo L_{ϕ} . Setting $(A - L_{\phi}, B - L_{\phi}) = \phi(B^*A)$ for A and B in \mathscr{A} , we introduce a \mathscr{Z} -valued hermitian form on $\mathscr{A}-L_{\phi}$ and then using this form and the norm of \mathscr{Z} , we introduce a norm on $\mathscr{A}-L_{\phi}$. Let H'_{ϕ} be the set of all pairs $(\{x_i\}, \{P_i\}) = x$ where $\{x_i\}$ is a bounded subset of $\mathcal{A} - L_{\phi}$ and $\{P_i\}$ is a set of mutually orthogonal projections in \mathscr{Z} of sum 1. If $y = (\{y_i\}, \{Q_i\})$ is in H'_{φ} , then set y = x if and only if $y_i Q_j P_i = x_i Q_j P_i$ for all i and j. The hermitian form on $\mathscr{A} - L_{\phi}$ has a unique extension to H'_{ϕ} . The completion H_{ϕ} of H'_{ϕ} in the norm introduced by the hermitian form is an AW^* -module over \mathscr{Z} with inner product induced by the hermitian form on H'_{ϕ} . Actually, the module H_{ϕ} is not faithful over \mathscr{Z} but it is faithful over $\mathscr{Z}\phi(1)$. The representation of \mathscr{A} on $\mathscr{A}-L_{\phi}$ by left multiplication has a unique extension to a representation π_{ϕ} of $\mathscr A$ as bounded linear operators on H_{ϕ} . The map π_{ϕ} is seen to be a module homomorphism as well as a *-algebra homomorphism. This map is called the canonical representation induced by ϕ of \mathscr{A} on H_{ϕ} [18, §§2–3].

Now let \mathscr{A} be an AW^* -algebra with center \mathscr{Z} . Suppose \mathscr{A} is a subalgebra of the algebra L(H) of all bounded linear operators on an AW^* -module H over \mathscr{Z} . Let $\{A_i\}$ be a bounded subset of \mathscr{A} and let $\{P_i\}$ be a set of orthogonal projections in \mathscr{Z} of least upper bound 1. It is immaterial whether \mathscr{Z} is considered as a subalgebra of \mathscr{A} or of L(H) in order to evaluate this least upper bound. Then there is a unique A in \mathscr{A} (respectively B in L(H)) such that $P_iA = A_iP_i$ (respectively, $P_iB = A_iP_i$) for each P_i . This means that A = B. This remark plus I. Kaplansky's matrix method for passing from the hermitian to the nonhermitian case ([7]; also cf. [1, I, §3, Theorem 3]) gives the following version of H. Widom's lemma [18, Lemma 4.2].

LEMMA. Let H be an AW^* -module over the commutative AW^* -algebra \mathscr{Z} . Let \mathscr{A} be an AW^* -algebra with center \mathscr{Z} and let \mathscr{A} be a subalgebra of L(H). Given any B in the double commutator of \mathscr{A} on H, any x_1, x_2, \ldots, x_n in H, and any $\varepsilon > 0$, then there is an A in \mathscr{A} whose norm is majorized by that of B such that $\|(A-B)x_i\| < \varepsilon$ for every $i=1,2,\ldots,n$.

PROPOSITION 6. Let $\mathscr A$ be a C^* -algebra whose center $\mathscr X$ is an AW^* -algebra. Suppose $\mathscr A$ is the dual of a normed $\mathscr X$ -module M. Then $\mathscr A$ is an AW^* -algebra. Furthermore, let N be the smallest $\mathscr X$ -module in $\mathscr A$ which contains M and is closed under

left and right multiplication by elements of \mathscr{A} . Then the module \mathscr{A} is the dual of the module N.

Proof. Let S be the set of all states in \mathscr{A}^{\sim} . For each $\phi \in S$, let π_{ϕ} be the canonical representation of \mathscr{A} on the AW^* -module H_{ϕ} over \mathscr{Z} which is induced by ϕ . Let $H = \sum \bigoplus H_{\phi}$ and let $\pi = \sum \bigoplus \pi_{\phi}$ [10, §5]. Then π is a \mathscr{Z} -linear, norm-decreasing, *-homomorphism of the algebra \mathscr{A} into L(H). Now, we have that

$$||A|| = \text{lub} \{ ||\phi(A)|| \mid \phi \in M, ||\phi|| \le 1 \}.$$

Let $\varepsilon > 0$ be given; there is a ϕ in the unit sphere of M such that $\|\phi(A)\| \ge \|A\| - \varepsilon$. There is a partial isometry V in $\mathscr A$ such that $V \cdot \phi$ is a positive functional on the module $\mathscr A$ and $(VV^*) \cdot \phi = \phi$ (Proposition 5). Then we have that $\|V \cdot \phi\| = \|\phi\|$. There is a C in $\mathscr Z^+$ and a state ψ on the module $\mathscr A$ such that $C\psi = V \cdot \phi$. Then $\|C\| = \|\phi(V)\| = \|\phi\| \le 1$. We have that $V - L_{\psi}$ has norm not exceeding one in H_{ψ} . Thus

$$\|(\pi_{\psi}(A)(1-L_{\psi}), V-L_{\psi})\| = \|\psi(V^*A)\| \ge \|\phi(A)\| \ge \|A\| - \varepsilon.$$

Since $\varepsilon > 0$ is arbitrary we have that $\|\pi(A)\| = \|A\|$. So π is an isometric isomorphism of $\mathscr A$ into a *-subalgebra of L(H).

We show that the double commutator \mathscr{B} of $\pi(\mathscr{A})$ on H is isometric isomorphic to the second dual \mathscr{A}^{\sim} of the module \mathscr{A} . Let $\phi \in \mathscr{A}^{\sim}$; then ϕ may be written as a linear combination of four positive functionals ϕ_i $(1 \le i \le 4)$ of the module \mathscr{A} [11], [15]. There are positive elements C_i $(1 \le i \le 4)$ in \mathscr{Z} and states ψ_i $(1 \le i \le 4)$ of the module \mathscr{A} such that $C_i\psi_i = \phi_i$ $(1 \le i \le 4)$. There are x_i $(1 \le i \le 4)$ in H such that

$$\psi_i(A) = (\pi(A)x_i, x_i) \qquad (1 \le i \le 4)$$

for every A in \mathscr{A} . Thus there is an element ϕ' in \mathscr{B}_{\sim} such that $\phi'(\pi(A)) = \phi(A)$ for every A in \mathscr{A} . Because $\pi(\mathscr{A})$ is weakly dense in \mathscr{B} (H. Widom's lemma), there is only one functional ϕ' in \mathscr{B}_{\sim} such that $\phi'(\pi(A)) = \phi(A)$ for every A in \mathscr{A} . This proves that the relation $\phi \to \phi'$ is a function of \mathscr{A}^{\sim} into \mathscr{B}_{\sim} . It is easily seen to be \mathscr{Z} -linear. For each ψ in \mathscr{B}_{\sim} the relation $\phi(A) = \psi(\pi(A))$ defines a bounded functional ϕ of the module \mathscr{A} such that $\phi' = \psi$. So the map $\phi \to \phi'$ is onto \mathscr{B}_{\sim} . Furthermore, for each ϕ in \mathscr{A}^{\sim} we have that

$$\|\phi\| = \text{lub}\{\|\phi(A)\| \mid \|A\| \le 1\} = \text{lub}\{\|\phi'(A)\| \mid A \in \pi(\mathscr{A}), \|A\| \le 1\} = \|\phi'\|$$

since the unit sphere of $\pi(\mathcal{A})$ is weakly dense in the unit spheres of \mathcal{B} (H. Widom's lemma). This proves that \mathcal{A}^{\sim} is isometrically isomorphic with \mathcal{B}_{\sim} and thus that \mathcal{A}^{\sim} is isometrically isomorphic with \mathcal{B} (Remark, Theorem 2).

Let ρ be the transpose of the identity map of M into \mathscr{A}^{\sim} , i.e. let ρ be the map of \mathscr{B} into \mathscr{A} given by $\phi(\rho(A)) = \phi'(A)$ for every A in \mathscr{B} and ϕ in M. Then we have that

$$\phi(A) = \phi'(\pi(A)) = \phi(\rho(\pi(A)))$$

for every ϕ in M and A in \mathscr{A} . This means that $\rho(\pi(A)) = A$ and that $\pi \cdot \rho(\pi(A))$

 $=\pi(A)$ for every A in \mathscr{A} . Therefore the map $\eta = \pi \cdot \rho$ is a projection of \mathscr{B} onto $\pi(\mathscr{A})$. We have that

$$\|\eta(A)\| = \|\rho(A)\| = \text{lub} \{ \|\phi(\rho(A))\| \mid \phi \in M, \|\phi\| \le 1 \}$$

$$\le \text{lub} \{ \|\phi'(A)\| \mid \phi \in \mathscr{A}^-, \|\phi'\| \le 1 \} \le \|A\|$$

for every A in \mathcal{B} . Thus the function η is a projection of norm 1. This proves that \mathcal{A} is an AW^* -algebra due to a result of Tomiyama [16, Theorem 5]. Also following Tomiyama, we can show that the kernel K of η is an ideal in \mathcal{B} . Indeed, if A and C are in $\pi(\mathcal{A})$ and if $\eta(B)=0$, then $\eta(ABC)=A\eta(B)C=0$. Now if A is in \mathcal{B} , then A is the weak limit of a net $\{A_n\}$ in $\pi(\mathcal{A})$. This means that

$$\phi(\rho(AB)) = \phi'(AB) = \lim \phi'(A_nB) = \lim \phi'(\eta(A_nB)) = \lim \phi'(A_n\eta(B)) = 0$$

for every $\phi \in M$. This proves that $\rho(AB) = 0$ and that $\eta(AB) = 0$, and therefore that K is a left ideal. Similarly, we obtain that K is a right ideal and therefore that K is a two-sided ideal. By the same reasoning we see that K is weakly closed. Let $\{E_n \mid n \in D\}$ be a maximal set of mutually orthogonal nonzero projections in K. Let F be the family of finite subsets of D. For each S in F let $E_S = \sum \{E_n \mid n \in S\}$. Let E be the least upper bound of $\{E_S\}$ in \mathcal{B} . Now given an element S in S nonzero projection S in S and an S in S and a nonzero projection S in S in S in S and a nonzero projection S in S in

$$\phi'(E_s) = \sum \{\phi'(\eta(E_n)) \mid n \in s\} = 0,$$

we have that $\|\phi'(E)Q\| \le \varepsilon$. Let $\{Q_n\}$ be a maximal set of mutually orthogonal nonzero projections in $\mathscr Z$ such that $\|\phi'(E)Q_n\| \le \varepsilon$ for every Q_n . It is evident that $\sum Q_n = 1$ and hence that $\|\phi'(E)\| \le \varepsilon$. Since $\varepsilon > 0$ is arbitrary we see that $\phi(\rho(E)) = \phi'(E) = 0$. Since ϕ is arbitrary, we have that $\rho(E) = 0$; and therefore, we have that $E \in K$. Because K is generated in the uniform topology by its projections, we have that AE = EA = A for every A in K. This means that E is a projection in the center of $\mathscr B$ and that $\mathscr BE = K$. This proves that η is an isomorphism of the algebra $\mathscr B(1 - E)$ onto the algebra $\pi(\mathscr A)$. The map η is also a module isomorphism.

Let N be the smallest \mathscr{Z} -module in \mathscr{A}^{\sim} which contains M and is closed under right and left multiplication by elements of \mathscr{A} . We show that N^{\sim} is isometric isomorphic to \mathscr{A} . Let Φ be a bounded functional of the module N. There is a functional Ψ of the module \mathscr{A}^{\sim} such that $\Psi(\phi) = \Phi(\phi)$ for all ϕ in N and such that $\|\Psi\| = \|\Phi\|$ [11], [15]. There is an element B in \mathscr{B} such that $\Psi(\phi) = \phi'(B)$ for all $\phi \in \mathscr{A}^{\sim}$. If $\phi \in M$ and if $A \in \mathscr{A}$, we have that

$$(A \cdot \phi)'(\pi(C)) = A \cdot \phi(C) = \phi(AC) = \phi'(\pi(AC)) = \pi(A) \cdot \phi'(\pi(C))$$

for every C in \mathscr{A} . Since $(A \cdot \phi)'$ and $\pi(A) \cdot \phi'$ are weakly continuous on \mathscr{B} and since $\pi(\mathscr{A})$ is weakly dense in \mathscr{B} , we have that $(A \cdot \phi)' = \pi(A) \cdot \phi'$. Therefore, we have that

$$\Phi(A \cdot \phi) = \phi'(\pi(A)B) = \phi'(\pi(A)\eta(B)) = \phi'(\pi(A\rho(B))) = \phi(A\rho(B)) = (A \cdot \phi)(\rho(B)).$$

Similarly, we have that $\Phi(\phi \cdot A) = (\phi \cdot A)(\rho(B))$. So there is a B_{Φ} in $\mathscr A$ such that $\Phi(\phi) = \phi(B_{\Phi})$ for every ϕ in N. If $B'_{\Phi} \in \mathscr A$ and if $\phi(B_{\Phi}) = \phi(B'_{\Phi})$ for every ϕ in N, then B_{Φ} is equal to B'_{Φ} . Hence, there is a unique B_{Φ} in $\mathscr A$ such that $\Phi(\phi) = \phi(B_{\Phi})$ for every $\phi \in N$. The function $\Phi \to B_{\Phi}$ is obviously a module isomorphism of the module N^{\sim} onto the module $\mathscr A$. Finally we have that

$$||B_{\Phi}|| = \text{lub} \{ ||\phi(B_{\Phi})|| \mid \phi \in M, \quad ||\phi|| \le 1 \}$$

$$\le \text{lub} \{ ||\phi(B_{\Phi})|| \mid \phi \in N, \quad ||\phi|| \le 1 \} = ||\Phi|| \le ||B_{\Phi}||.$$

So $\Phi \to B_{\Phi}$ is an isometric isomorphism of N^{\sim} onto \mathscr{A} . Q.E.D.

THEOREM 7. Let \mathcal{A} be a C^* -algebra whose center is an AW^* -algebra \mathcal{Z} . Suppose \mathcal{A} is the dual of a \mathcal{Z} -module M. Let N' be the smallest \mathcal{Z} -module in the dual of the module \mathcal{A} which contains M and is closed under left and right multiplication by elements of \mathcal{A} , and let N be the module generated by N' in \mathcal{A}^{\sim} . Then \mathcal{A} may be embedded as a double commutator in the algebra of all bounded linear operators on an AW^* -module over \mathcal{Z} so that the weak topology and the $\sigma(\mathcal{A}, N)$ -topology coincide on the unit sphere of \mathcal{A} .

Proof. Let S be the set of all positive functionals ϕ in N such that $\phi(1)$ is a projection in \mathscr{Z} . For each ϕ in S let π_{ϕ} be the canonical representation of \mathscr{A} on the AW^* -module H_{ϕ} over $\mathscr{Z}\phi(1)$ which is induced by ϕ . Then H_{ϕ} may be considered as an AW^* -module over \mathscr{Z} . Let $H = \sum \bigoplus \{H_{\phi} \mid \phi \in S\}$ and let $\pi = \sum \bigoplus \{\pi_{\phi} \mid \phi \in S\}$. The AW^* -module H is a faithful AW^* -module over \mathscr{Z} . Indeed, if P is a nonzero projection in \mathscr{Z} , then

lub
$$\{\|\phi(P)\| \mid \phi \in M, \|\phi\| \le 1\} = 1.$$

So $\|\phi(P)\| \neq 0$ for some ϕ in the unit sphere of M. Let V be a partial isometry in $\mathscr A$ such that $V \cdot \phi$ is a positive functional and such that $VV^* \cdot \phi = \phi$ (Proposition 5). Then $(V \cdot \phi)(P) \neq 0$ because $|\phi(P)|^2 = |\phi(VV^*P)|^2 \leq \phi(V)\phi(VP)$. There is a C in $\mathscr Z^+$ such that $\phi(CV)$ is a nonzero projection in $\mathscr Z$ majorized by P. Setting $\psi = CV \cdot \phi$, we obtain an element ψ in S such that $P(1-L_{\psi}) \neq 0$. Hence H is a faithful AW^* -module over $\mathscr Z$.

We show that the map π is an isometry. Let A be a nonzero positive element in \mathscr{A} . It is enough to show that $\|\pi(A)\| = \|A\|$. Let $\varepsilon > 0$ be an arbitrary number less than $\|A\|$. There is a ϕ in the unit sphere of N such that $\|\phi(A)\| > \|A\| - \varepsilon$ and thus there is a nonzero projection P in \mathscr{Z} such that

$$|P\phi(A)| \geq (||A|| - \varepsilon)P.$$

There is a partial isometry V in $\mathscr A$ such that $V \cdot \phi$ is a positive functional and such that $VV^* \cdot \phi = \phi$ (Proposition 5). Then we have that

$$(||A||-\varepsilon)^2P \leq |\phi(A)|^2 \leq \phi(V)\phi(VA^2).$$

So there is a positive element C in \mathscr{Z} such that $CV \cdot \phi = \psi$ is in S and such that

 $\psi(1) \ge P$. Since $PV \cdot \phi(1) \le P$, we see that $CP \ge P$. Hence, we have that

$$(\|A\| - \varepsilon)^2 P \le P\phi(V)\phi(VA^2) \le \|A\|P\phi(V)\phi(VA)$$

$$\le \|A\|P\psi(1)\psi(A) \le \|A\|\psi(A).$$

This proves that lub $\{\|\psi(A)\| \mid \psi \in S\} = \|A\|$ and that $\|\pi(A)\| = \|A\|$.

We show that $\pi(\mathscr{A})$ is equal to its double commutator \mathscr{B} on H. Let B be an element in \mathscr{B} . There is a net $\{A_n\}$ in the sphere of \mathscr{A} about the origin of radius $\|B\|$ such that $\lim \pi(A_n) = B$ weakly in L(H) because $\pi(\mathscr{A})$ is an AW^* -algebra with center \mathscr{L} (Proposition 6) and thus Widom's lemma may be employed. Let $\phi \in N$ and let $V \cdot \phi$ be the polar decomposition of ϕ . There is a sequence $\{P_m\}$ of orthogonal projections in \mathscr{L} of sum P such that $P_m\phi(V)$ has inverse C_m in $\mathscr{L}P_m$ and such that $(1-P)\phi(V)=0$. By the hypothesis on N, we see that $\psi = \sum P_m(C_mV \cdot \phi)$ is in N and therefore in S and that $\phi(V)\psi = V \cdot \phi$. Setting $x = 1 - L_{\psi}$, we have that

$$\lim (\pi(A_n)x, \pi(V)x) = (Bx, \pi(V)x)$$

uniformly in \mathscr{Z} . This means that $\{\phi(A_n)\}$ is a Cauchy net in the uniform topology of \mathscr{Z} and therefore $\{\phi(A_n)\}$ converges uniformly to an element $\Phi(\phi)$ in the sphere of radius $\|\phi\|\|B\|$ about the origin. Hence, we see that $\phi \to \Phi(\phi)$ defines an element Φ in N^- and therefore we have an element A_0 in $\mathscr A$ such that $\Phi(\phi) = \phi(A_0)$ for every ϕ in N. Now for arbitrary ψ in S we have that $A \cdot \psi \cdot C$ is in N and therefore that

$$(\pi(A_0)\pi(C)x, \pi(A)^*x) = \lim_{n \to \infty} (A \cdot \psi \cdot C)(A_n)$$

= $\lim_{n \to \infty} (\pi(A_n)\pi(C)x, \pi(A)^*x) = (B\pi(C)x, \pi(A)^*x)$

where $x=1-L_{\psi}$. Therefore, we have proved that $((\pi(A_0)-B)y, z)=0$ for all y, z in $K=\{\pi(A)x\mid A\in\mathscr{A}\}$. Now given A in \mathscr{A} , there is a net $\{C_n\}$ in \mathscr{A} such that $\{\pi(C_n)\}$ converges weakly to $(\pi(A_0)-B)\pi(A)$ since $(\pi(A_0)-B)\pi(A)$ is in \mathscr{B} . Therefore,

$$\|(\pi(A_0) - B)\pi(A)x\|^2 = \lim ((\pi(A_0) - B)\pi(A)x, \pi(C_n)x) = 0.$$

This means that $\pi(A_0) - B$ vanishes on K and therefore on H_{ψ} . Since ψ is arbitrary, we conclude that $\pi(A_0) = B$ and therefore that $\pi(\mathscr{A}) = \mathscr{B}$.

We now identify $\mathscr A$ with $\mathscr B$ and we show that the $\sigma(\mathscr A,N)$ -topology and the $\sigma(\mathscr A,\mathscr A_\sim)$ -topology coincide on the unit sphere of $\mathscr A$. For each $\psi\in S$ let E_ψ be the projection of H on H_ψ [10, §6]. By the definition of H we have that the least upper bound of the family $\{E_\psi\mid\psi\in S\}$ is 1. Let x be in H and let ε be a strictly positive number. There is a set $\{P_i\}$ of mutually orthogonal projections in $\mathscr L$ of sum 1 such that for each i there is a finite subset n(i) of S with

$$P_i(|x|^2 - \sum \{|E_{\psi}x|^2 \mid \psi \in n(i)\}) < \varepsilon^2 P_i$$

since

$$\sum \{ |E_{\psi}x|^2 \mid \psi \in S \} = |x|^2$$

[3, Lemma 4.2]. Let i be fixed and let $n(i) = {\psi_1, \ldots, \psi_n}$. Let $E_{\psi_k} = E_k$ and let

 $x_k = 1 - L_{\psi_k}$. There is a set $\{Q_j\}$, not depending on k, of mutually orthogonal projections in $\mathscr Z$ of sum P_i such that for each k = 1, 2, ..., n there is a set $\{A_{kj}\}_j$ in $\mathscr A$ with $\{\psi_k(A_{kj}^*A_{kj})\}_j$ bounded and

$$\left\| \sum_{j} Q_{j} A_{kj} x_{k} - E_{k} x \right\| < \varepsilon n^{-1}.$$

Let $y_i = \sum_k Q_i A_{ki} x_k$. Then we have that

$$|Q_{j}(y_{j}-x)| \leq |Q_{j}(y_{j}-\sum E_{k}x)|+|Q_{j}(1-\sum E_{k})x|$$

$$\leq \sum_{k}|Q_{j}(A_{kj}x_{k}-E_{k}x)|+|Q_{j}(1-\sum E_{k})x|\leq 2\varepsilon,$$

and

$$|y_{j}| \leq |Q_{j}(y_{j} - \sum E_{k}x)| + |Q_{j} \sum E_{k}x|$$

$$\leq (\varepsilon + (|\sum E_{k}x|^{2})^{1/2})Q_{j} \leq (\varepsilon + ||x||)Q_{j}.$$

Then setting

$$\phi_j(A) = (Ay_j, y_j) = Q_j \sum_k \psi_k(A_{kj}^*AA_{kj}),$$

we obtain a positive functional in N of norm not exceeding $(\varepsilon + ||x||)^2$. There is a unique y_i (respectively θ_i) in H (respectively in N) such that $Q_j y_i = y_j$ (respectively $Q_j \theta_i = \phi_j$) for each Q_j and $(1 - P_i)y_i = 0$ (respectively, $(1 - P_i)\theta_i = 0$). We have that $\theta_i(A) = (Ay_i, y_i)$ for each A in $\mathscr A$ and that $\|\theta_i\| \le (\varepsilon + \|x\|)^2$. Then we have that

$$|P_{i}|(Ax, x)| \leq ||A|| |P_{i}(x - y_{i})| |P_{i}x| + ||A|| |P_{i}(x - y_{i})| |P_{i}y_{i}| + |\theta_{i}(A)| \leq 2\varepsilon ||A||(\varepsilon + 2||x||)P_{i} + |\theta_{i}(A)|.$$

Since $\theta_i(1) \le (\varepsilon + ||x||)^2 P_i$, there is a unique θ in N such that $P_i \theta = \theta_i$ for each P_i . This means that

$$|(Ax, x)| \le 2\varepsilon ||A|| (\varepsilon + 2||x||) + |\theta(A)|$$

for every A in \mathscr{A} . Now it becomes obvious that the $\sigma(\mathscr{A}, N)$ -topology is finer than the weak topology on the unit sphere of \mathscr{A} .

Conversely, let ϕ be a functional in N and let U be a partial isometry of $\mathscr A$ such that $U \cdot \phi$ is positive and $UU^* \cdot \phi = \phi$. There is a sequence $\{P_n\}$ of mutually orthogonal projections in $\mathscr X$ such that $P_n\phi(U) = C_n$ is invertible with inverse D_n in $\mathscr XP_n$ and such that $(1-\sum P_n)\phi(U)=0$. Then $\sum D_nU\cdot\phi=\psi$ is in N. Since $\psi(1)=\sum P_n$, the functional ψ is in S. We then have that $\phi(A)=(Ax,y)$ where $x=\sum C_n(1-L_\psi)$ and $y=U(1-L_\psi)$. Thus a net $\{A_n\}$ in the unit sphere of $\mathscr A$ converges to A in the $\sigma(\mathscr A,\mathscr A_n)$ -topology whenever $\{A_n\}$ converges to A in the $\sigma(\mathscr A,\mathscr A_n)$ -topology. Q.E.D.

REMARK. In the notation of Theorem 7 we have that the closure of N in the uniform topology of \mathcal{A}^{\sim} is equal to the closure of \mathcal{A}_{\sim} in \mathcal{A}^{\sim} and that \mathcal{A} is the dual of the closure of the module N.

BIBLIOGRAPHY

- 1. J. Dixmier, Les algèbres d'opérateurs dans l'espace hilbertien, Gauthier-Villars, Paris, 1957. MR 20 #1234.
- 2. ——, Les C*-algèbres et leurs représentations, Gauthier-Villars, Paris, 1964. MR 30 #1404.
- 3. M. Goldman, Structure of AW*-algebras. I, Duke Math. J. 23 (1956), 23-34. MR 17, 512; MR 17, 1437.
- 4. H. Halpern, A spectral decomposition for self-adjoint elements in the maximum GCR ideal of a von Neumann algebra with applications to noncommutative integration theory, Trans. Amer. Math. Soc. 133 (1968), 281-306. MR 37 #5704.
- 5. —, Module homomorphisms of a von Neumann algebra into its center (Trans. Amer. Math. Soc. 140 (1969), 183-193.
- 6. R. Kadison, *Isometries of operator algebras*, Ann. of Math. (2) 54 (1951), 325-338. MR 13, 256.
- 7. I. Kaplansky, A theorem of rings of operators, Pacific J. Math. 1 (1951), 227-232. MR 14, 291.
- 8. ——, Projections in Banach algebras, Ann. of Math. (2) 53 (1951), 235-249. MR 13, 48.
 - 9. ----, Algebras of type I, Ann. of Math. (2) 56 (1952), 460-472. MR 14, 291.
- 10. ——, Modules over operator algebras, Amer. J. Math. 75 (1953), 839-858. MR 15, 327.
- 11. M. Nakai, Some expectations in AW*-algebras, Proc. Japan Acad. 34 (1958), 411-416. MR 20 #1924.
- 12. S. Sakai, A characterization of W*-algebras, Pacific J. Math. 6 (1956), 763-773. MR 18, 811.
- 13. ——, On linear functionals of W*-algebras, Proc. Japan Acad. 34 (1958), 571-574. MR 21 #5915.
- 14. M. Takesaki, On the conjugate space of operator algebra, Tôhoku Math. J. (2) 10 (1958), 194-203. MR 20 #7227.
- 15. ——, On the Hahn-Banach type theorem and the Jordan decomposition of module linear mapping over some operator algebras, Kōdai Math. Sem. Rep. 12 (1960), 1-10. MR 22 # 5914.
- 16. J. Tomiyama, On the projection of norm one in W*-algebras, Proc. Japan Acad. 33 (1957), 608-612. MR 20 #2635.
- 17. G. Vincent-Smith, The Hahn-Banach theorem for modules, Proc. London Math. Soc. (3) 17 (1967), 72-90. MR 35 #766.
- 18. H. Widom, *Embedding in algebras of type I*, Duke Math. J. 23 (1956), 309-324. MR 17, 1228.
 - 19. T. Yen, Trace on finite AW*-algebras, Duke Math. J. 22 (1955), 207-222. MR 16, 1033.

Illinois Institute of Technology, Chicago, Illinois