COMMUTATORS MODULO THE CENTER IN A PROPERLY INFINITE VON NEUMANN ALGEBRA(1)

BY HERBERT HALPERN

- 1. Introduction. An element C in a von Neumann algebra \mathscr{A} is said to be a commutator in \mathscr{A} if there are elements A and B in \mathscr{A} such that C=AB-BA. For finite homogeneous discrete algebras and for properly infinite factor algebras the set of commutators has been completely described [1]-[5], [10]. In each of these special cases any element C is a commutator modulo a central element depending on C. In this paper we show that given any element C in a properly infinite von Neumann algebra \mathscr{A} there is an element C_0 in the center of \mathscr{A} depending on C such that $C-C_0$ is a commutator in \mathscr{A} . The element C_0 is an arbitrary element in the intersection \mathscr{K}_C of the center with the uniform closure of the convex hull of $\{U^*CU \mid U \text{ unitary in } \mathscr{A}\}$ [6, III, §5]. We then present a few facts about those elements C such that $0 \in \mathscr{K}_C$ or what is the same as far as determining commutators is concerned about those elements C such that $0 \in \mathscr{K}_{S^{-1}CS}$ for some invertible S in \mathscr{A} .
- 2. Commutators. Let \mathscr{A} be a C^* -algebra with identity and let I be a closed two-sided ideal in \mathscr{A} . The image of the element $A \in \mathscr{A}$ in the factor algebra $\mathscr{A}(I) = \mathscr{A}/I$ under the canonical homomorphism of \mathscr{A} onto \mathscr{A}/I will be denoted by A(I). If ζ is a maximal ideal of the center of \mathscr{A} , the smallest closed two-sided ideal in \mathscr{A} containing ζ is denoted by $[\zeta]$. For simplicity we write $A([\zeta])$ as $A(\zeta)$. The set of maximal (respectively, primitive) ideals of \mathscr{A} with the hull-kernel topology is called the strong structure space (respectively, structure space) of \mathscr{A} . If \mathscr{A} is a von Neumann algebra, then the strong structure space $M(\mathscr{A})$ of \mathscr{A} is homeomorphic with the spectrum of the center \mathscr{Z} of \mathscr{A} under the map $M \to M \cap \mathscr{Z}$ [13]. This means $M(\mathscr{A})$ is extremely disconnected.

PROPOSITION 1. Let \mathscr{A} be a properly infinite von Neumann algebra and let A be a fixed element of \mathscr{A} . The function $M \to ||A(M)||$ of the strong structure space $M(\mathscr{A})$ of \mathscr{A} into the real numbers is continuous.

Proof. For every $\alpha \ge 0$ we know that the set $X = \{M \in M(\mathscr{A}) \mid ||A(M)|| \le \alpha\}$ is closed. If $I = \bigcap X$, then $||A(I)|| \le \alpha$ [8, Lemma 1.9] and so $||A(M)|| \le \alpha$ for every $M \in M(\mathscr{A})$ containing I. Thus $X = \{M \in M(\mathscr{A}) \mid I \subseteq M\}$.

Received by the editors September 27, 1968.

⁽¹⁾ The author was supported by the National Science Foundation.

Conversely, let $\alpha > 0$; we show that

$$Y = \{M \in M(\mathscr{A}) \mid ||A(M)|| \ge \alpha\}$$

is closed in $M(\mathscr{A})$. Let J be the strong radical of \mathscr{A} and let \mathscr{P} be the structure space of $\mathscr{A}(J)$. The set

$$Y' = \{K \in \mathscr{P} \mid ||A(J)(K)|| \ge \alpha\}$$

is compact (but not necessarily closed) in \mathscr{P} [16, 4.9.18]. If \mathscr{P}' is the structure space of \mathscr{A} , then $M \to M(J)$ defines a homeomorphism of $\{M \in \mathscr{P}' \mid M \supset J\} = h(J)$ onto \mathscr{P} [16, 2.6.6]. But if $M \in \mathscr{P}'$, then the intersection of M with the center of \mathscr{A} is a maximal ideal. So $M \in h(J)$ implies M is of the form $J + [\zeta]$ for some maximal ideal ζ of the center. It is then clear that h(J) is the set of maximal ideals of \mathscr{A} [10, Proposition 2.3]. Furthermore, the topology of h(J) and $M(\mathscr{A})$ coincide. This proves that Y is compact in $M(\mathscr{A})$ since it is the inverse image of Y' under the homeomorphism $M \to M(J)$ of $M(\mathscr{A})$ onto \mathscr{P} . Because $M(\mathscr{A})$ is homeomorphic to the spectrum of the center which is Hausdorff, every compact set of $M(\mathscr{A})$ is closed. Thus Y is a closed subset of $M(\mathscr{A})$. Q.E.D.

REMARK. If \mathcal{A} is not properly infinite, Proposition 1 is certainly not true.

Let H be a Hilbert space and let A be a bounded linear operator on H. Let F be a projection on H. Define the numerical gauge $\eta_A(F)$ to be

$$\eta_A(F) = \text{lub} \{ ||Ax - (Ax, x)x|| \mid x \text{ is a unit vector in } F(H) \}.$$

Let $\mathcal{W}_{A}(F)$ be the closure of the convex set

$$\{(Ax, x) \mid x \text{ a unit vector in } F(H)\}.$$

For every $\alpha \in \mathscr{W}_A(F)$ we have that

$$||(A-\alpha)F|| \leq 65\eta_A(F).$$

This can be obtained by a simple reworking of Lemma 2.3 [2].

Let $\mathscr A$ be a properly infinite von Neumann algebra with no σ -finite type III direct summands; then for each projection F in $\mathscr A$ and each element A in $\mathscr A$ define $\nu_A(F)$ to be

(2)
$$\nu_A(F) = \text{lub} \{ ||AE - EAE|| E \in (J), E \le F \}$$

where (J) is the set of projections in the strong radical J of \mathscr{A} . For every irreducible representation ϕ of \mathscr{A} on a Hilbert space such that $\phi(J) \neq (0)$ we have that

(3)
$$\eta_{\phi(A)}(\phi(F)) \leq \nu_A(F)$$

[10, Proposition 3.1]. Define $\nu(A)$ to be

$$\nu(A) = \text{glb} \{ \nu_A(F) \mid 1 - F \in (J) \}.$$

Let \mathscr{A} now be the product of σ -finite type III algebras; let

$$\nu(A) = \text{lub} \{ ||AE - EAE|| \mid E \text{ a projection in } \mathscr{A} \}$$

for each $A \in \mathcal{A}$. If A is in the complement in \mathcal{A} of the set of all elements of \mathcal{A} equal to scalar (zero included) multiples of the identity modulo some maximal ideal of \mathcal{A} , then there is a $\nu > 0$ such that $\nu(AP) \ge \nu$ for every nonzero central projection P since there is a projection E in \mathcal{A} with $E \sim 1 - E \sim 1$ such that $EA^*(1-E)AE$ $\ge \alpha E$ for some scalar $\alpha > 0$ [10, Theorem 3.7]. Also it is easy to see from Proposition 3.1 [10] that

$$\eta_{\phi(A)}(1) \leq \nu(A)$$

for every irreducible representation of \mathcal{A} .

LEMMA 2. Let A be a properly infinite von Neumann algebra such that

- (i) either \mathcal{A} has no σ -finite type III direct summands or
- (ii) \mathscr{A} is a product of σ -finite type III algebras.

Let $\{P_n\}$ be a set of mutually orthogonal central projections of $\mathscr A$ of sum P. Then $\nu(AP) = \operatorname{lub}_n \nu(AP_n)$ for every $A \in \mathscr A$.

Proof. Suppose \mathscr{A} satisfies condition (i). Let (J) be the set of projections in the strong radical of \mathscr{A} . Then given $\varepsilon > 0$ there is a projection F with $1 - F \in (J)$ such that

$$\nu(AP) + \varepsilon \ge \text{lub} \{ \| (1-E)APE \| \mid E \le F, E \in (J) \}.$$

But

$$||(1-E)AEP_n|| \le ||(1-E)APE||$$

for every P_n . So $\nu(AP_n) \le \nu(AP) + \varepsilon$ for every n. Since $\varepsilon > 0$ is arbitrary, we have that lub $\nu(AP_n) \le \nu(AP)$. Conversely, given that $\varepsilon > 0$ there is for each P_n a projection F_n with $1 - F_n \in (J)$ such that

lub {
$$\|(1-E)AP_nE\| \mid E \leq F_n, E \in (J)$$
} $\leq \nu(AP_n) + \varepsilon$.

Setting $F = \sum F_n P_n$, we have that $P - F \in (J)$ [10, Corollary, Proposition 2.2] and that

$$\|(1-E)APE\| = \operatorname{lub}_n \|(1-E)AP_nE\| \le \operatorname{lub} \nu(AP_n) + \varepsilon$$

for every E in (J) with $E \le F$. Thus $\nu(AP) \le \text{lub } \nu(AP_n) + \varepsilon$. Since $\varepsilon > 0$ is arbitrary, we have that $\nu(AP) \le \text{lub } \nu(AP_n)$. This completes the proof for case (i).

The proof for case (ii) is similar.

LEMMA 3. Let \mathscr{A} be a properly infinite von Neumann algebra with no σ -finite type III direct summands. Let G be a projection in \mathscr{A} such that the orthogonal complement 1-G of G is in the set of projections (J) of the strong radical of \mathscr{A} . Let (J') be the strong radical of the reduced algebra $G\mathscr{A}G$. For any element A in \mathscr{A} we have that

$$\nu'(GAG) = \text{glb} \{ \text{lub} \{ \| (1-E)GAGE \| \mid E \leq F, E \in (J') \} \mid G - F \in (J') \}$$

is equal to $\nu(A)$.

Proof. First we show that $(J')=\{E\in (J)\mid E\leqq G\}$. Suppose $E\notin (J')$ for some $E\in (J)$ majorized by G. There is a nonzero projection P in the center of $G\mathscr{A}G$ such that $PE\sim P$ [10, §2]. But P=QG for some nonzero Q in the center of \mathscr{A} [6, I, §2, Corollary, Proposition 2]. Then $QE\sim QG\sim Q$ since $G\sim 1$ [cf. 10, §2]. So $E\notin (J)$. This is a contradiction. Hence $\{E\in (J)\mid E\leqq G\}\subset (J')$. Conversely, suppose $E\in (J')$. If Q is a central projection in \mathscr{A} with $EQ\sim Q$, then $EQ\sim Q\sim QG$. This implies Q=0. So $(J')\subset \{E\in (J)\mid E\leqq G\}$.

Now let $\varepsilon > 0$ be given. There is by relation (2) a projection F in $\mathscr A$ with $1 - F \in (J)$ such that $\nu_A(F) \le \nu(A) + \varepsilon$. Let G' be the least upper bound of 1 - G and 1 - F. Then $G' \in (J)$ and $1 - G' \le F$ and $1 - G' \le G$. We see that

$$G-(1-G') = G'-(1-G) \in (J')$$

by the first paragraph. So

$$\nu'(GAG) \le \text{lub} \{ \| (1-E)GAGE \| \mid E \in (J'), E \le 1-G' \}$$

$$= \text{lub} \{ \| G(1-E)AE \| \mid E \in (J), E \le 1-G' \}$$

$$\le \text{lub} \{ \| (1-E)AE \| \mid E \in (J), E \le F \} \le \nu(A) + \varepsilon.$$

Since $\varepsilon > 0$ is arbitrary, we have that $\nu'(GAG) \leq \nu(A)$.

Conversely, let $\varepsilon > 0$ be given; there is a projection $F \in G \mathscr{A} G$ with $G - F \in (J')$ and

lub {
$$\|(G-E)AE\| \mid E \leq F, E \in (J')$$
} $\leq \nu'(GAG) + \varepsilon$.

The domain support G' of (1-G)A is a projection in (J) since G' < 1-G [6, III, §1, Proposition 2]; similarly, the domain support G'' of G'F is a projection in (J) majorized by F. So 1-(F-G'')=(1-G)+(G-F)+G'' is a projection in (J). Then

$$\nu(A) \le \text{lub} \{ \| (1-E)AE \| \mid E \le F - G'', E \in (J) \}.$$

But

$$GAGE = AE - (1 - G)AE = AE - (1 - G)AG'FE = AE - (1 - G)AG'FG''E = AE$$
.

So we see that

$$\nu(A) \leq \text{lub} \{ \| (1-E)GAGE \| \mid E \leq F - G'', E \in (J') \}$$

$$\leq \text{lub} \{ \| (1-E)GAGE \| \mid E \leq F, E \in (J') \} \leq \nu'(GAG) + \varepsilon.$$

Since $\varepsilon > 0$ is arbitrary, we have that $\nu(A) \leq \nu'(GAG)$. Q.E.D.

THEOREM 4. Let C be an element in a properly infinite von Neumann algebra \mathcal{A} and let C_0 be an element in the intersection \mathcal{K}_C of the center of \mathcal{A} with the uniform closure of the convex hull of $\{U^*CU \mid U \text{ unitary in } \mathcal{A}\}$. Then $C-C_0$ is a commutator in \mathcal{A} .

Proof. We first make a preliminary reduction. There is a maximal central projection P in $\mathscr A$ such that $(C-C_0)P$ is in the strong radical J of $\mathscr A$ [10, Corollary,

Proposition 2.2]. However, the structure of the strong radical of \mathscr{A} allows us to conclude that $(C-C_0)P$ is in the strong radical of $\mathscr{A}P$ [10, §2]. Since $(C-C_0)P$ is a commutator in $\mathscr{A}P$, it is necessary to prove that $(C-C_0)(1-P)$ is a commutator in $\mathscr{A}(1-P)$. It is easy to see that the uniform closure of the convex hull of $\{U^*(C-C_0)U \mid U \text{ unitary in } \mathscr{A}(1-P)\}$ contains 0. So without loss of generality we may assume that C is an element in \mathscr{A} such that $0 \in \mathscr{K}_C$ and such that $CP \in J$ for some central projection P in \mathscr{A} implies that P=0.

Now there is a central projection Q in \mathcal{A} such that

- (i) $\mathcal{A}Q$ has no σ -finite type III direct summands and
- (ii) $\mathcal{A}(1-Q)$ is the product of σ -finite type III algebras.

It is clearly necessary to prove only that CQ and C(1-Q) are commutators in $\mathscr{A}Q$ and $\mathscr{A}(1-Q)$ respectively. Here $0 \in \mathscr{K}_{CQ}$ and $0 \in \mathscr{K}_{C(1-Q)}$ is also true when these sets are formed relative to $\mathscr{A}Q$ and $\mathscr{A}(1-Q)$ respectively. In the ensuing paragraphs we shall assume that either \mathscr{A} satisfies condition (i) or condition (ii).

Let $\|C\| = \alpha$. We construct by induction a sequence $\{P_n\}$ of mutually orthogonal central projections of sum 1 such that for each nonzero central projection P majorized by P_n the number $\nu(CP)$ lies in the real interval $[2^{-n}\alpha, 2^{-n+1}\alpha]$. The induction hypothesis may be stated as follows: let $P_0 = 0$; then P_n is the largest central projection majorized by $1 - \sum \{P_k \mid 0 \le k \le n-1\}$ such that $\nu(CP) \in I_n$ for every nonzero central projection P majorized by P_n . Suppose we have constructed P_1, P_2, \ldots, P_n . We find P_{n+1} . We may assume $R = 1 - \sum \{P_k \mid 0 \le k \le n\}$ is nonzero. There is a maximal ideal M in the strong structure space $M(\mathscr{A})$ of \mathscr{A} such that CR(M) is not in the center of $\mathscr{A}(M)$. Indeed, suppose CR(M) is in the center of $\mathscr{A}(M)$ for every $M \in M(\mathscr{A})$. Given $\varepsilon > 0$ there are unitary operators U_1, U_2, \ldots, U_m in \mathscr{A} and positive scalars $\alpha_1, \alpha_2, \ldots, \alpha_m$ of sum 1 such that $\|\sum \alpha_i U_i^* C U_i\| < \varepsilon$ since $0 \in \mathscr{X}_C$. Thus

$$||CR(M)|| = ||(\sum \alpha_i U_i^* C U_i)(M)|| < \varepsilon$$

for every $M \in M(\mathscr{A})$. Because $\varepsilon > 0$ is arbitrary, we have that CR(M) = 0 for every $M \in M(\mathscr{A})$. This means that CR is in the strong radical of \mathscr{A} . This is contrary to the choice of C. Hence, we must conclude that CR(M) is not in the center of $\mathscr{A}(M)$ for at least one M in $M(\mathscr{A})$. Then there is a projection E in \mathscr{A} such that $\|(1-E)CRE(M)\| \neq 0$. By the continuity of $M' \to \|(1-E)CRE(M')\|$ on $M(\mathscr{A})$ (Proposition 1), there is an open and closed neighborhood X of M in $M(\mathscr{A})$ such that for every $M' \in X$ the element CR(M') is not in the center of $\mathscr{A}(M')$. Let Q be the nonzero central projection of \mathscr{A} which determines X by the relation $X = \{M' \in M(\mathscr{A}) \mid Q \notin M'\}$ [13]. Then Q is majorized by R and CQ(M') is not in the center of $\mathscr{A}(M')$ for every M' in the strong structure space $M(\mathscr{A}Q)$ of the algebra $\mathscr{A}Q$. The latter is true because $M' \to M'Q$ defines a homeomorphism of

$$\{M' \in M(\mathscr{A}) \mid Q \notin M'\}$$
 onto $M(\mathscr{A}Q)$ [16, Theorem 2.6.6].

Then by 3.1 and 3.7 [10] there is a $\nu > 0$ such that $\nu(CQ') \ge \nu$ for every nonzero central projection Q' majorized by Q. It is clearly immaterial whether $\nu(CQ')$ is evaluated in $\mathscr{A}Q$ or in \mathscr{A} . Let m be the smallest integer for which there is a nonzero central projection Q majorized by R such that $\nu(CQ') \ge 2^{-m}\alpha$ for every nonzero central projection Q' majorized by Q. We then have that $\nu(CQ') \in I_m$ for every such Q'. In fact by the choice of m the projection Q is easily seen to be the least upper bound of a set $\{Q_i\}$ of nonzero mutually orthogonal central projections which satisfy $2^{-m}\alpha \le \nu(CQ_i) < 2^{-m+1}\alpha$. By Lemma 2 we may conclude that $\nu(CQ) \le 2^{-m+1}\alpha$. So for every nonzero central projection Q' majorized by Q we have that $\nu(CQ') \le \nu(CQ) \le 2^{-m+1}\alpha$. Now if n+1 < m set P_{n+1} equal to zero. If $m \le n+1$, then m=n+1. Indeed suppose that m < n+1; the projection $P_m + Q \ne P_m$, and for any nonzero central projection Q' majorized by $P_m + Q$ we have that

$$\nu(CQ') = \text{lub} \{\nu(CP_mQ'), \nu(CQQ')\} \in I_m.$$

This contradicts the definition of P_m . Therefore m=n+1. Now we argue as follows. Let $\{Q_n\}$ be a maximal set of nonzero mutually orthogonal central projections majorized by R such that $\nu(CQ') \in I_{n+1}$ for every nonzero central projection Q' majorized by some Q_i . Let $P_{n+1} = \sum Q_i$. It is clear that $P_{n+1} \leq R$. Because $\nu(CQ) = \text{lub}_i \ \nu(CQQ_i)$ for any nonzero central projection Q majorized by P_{n+1} (Lemma 2) and since at least one projection QQ_i is nonzero, we have that $\nu(CQ) \geq 2^{-(n+1)}\alpha$. On the other hand $Q \leq R$ and so by the induction hypothesis there is a set $\{R_i\}$ of nonzero mutually orthogonal central projections of sum Q such that $\nu(CR_i) < 2^{-n}\alpha$ for each R_i . Thus $\nu(CQ) \leq 2^{-n}\alpha$ (Lemma 2). This proves that $\nu(CQ) \in I_{n+1}$. It is clear that P_{n+1} is the largest central projection majorized by R such that $\nu(CQ) \in I_{n+1}$ for every nonzero central projection majorized by P_{n+1} .

Suppose that the sequence $\{P_n\}$ with the required properties has been constructed by induction. We show that $\sum P_n = 1$. If $R = 1 - \sum P_n$, then for each $n = 1, 2, \ldots$ we may conclude that $\nu(CR) \le 2^{-n}\alpha$ by performing the construction of the previous paragraph. This means that $\nu(CR) = 0$. The results of the previous paragraph show that R = 0 by our choice of C. Hence $\sum P_n = 1$.

Let Z be the spectrum of the center of $\mathscr A$ and let $X_n = \{\zeta \in Z \mid P_n \notin \zeta\}$ for $n=1,2,\ldots$ Now suppose that $\mathscr A$ has no σ -finite type III direct summands. For each $n=1,2,\ldots$ there is a projection F_n in $\mathscr AP_n$ with $P_n-F_n\in J$ such that $\nu_{CP_n}(F_n)\leq 2\nu(CP_n)$ by definition. For each $\zeta\in Z$ there is an irreducible representation $\psi_\zeta=\psi$ of $\mathscr A$ on a Hilbert space whose kernel is the smallest closed two-sided ideal $[\zeta]$ of $\mathscr A$ which contains ζ [11, Theorem 4.7]. Then ψ does not annihilate J. Indeed J contains a projection E of central support 1, cf. [10, §2]. The two-valued continuous function $\zeta'\to \|E(\zeta')\|$ [9, Lemma 10] on Z assumes the value 0 on an open and closed set given by $\{\zeta'\in Z\mid R\notin \zeta'\}$ where R is a central projection. Then $\|(E(1-R)-E)(\zeta')\|=0$ for every $\zeta'\in Z$. Since $\bigcap\{[\zeta']\mid \zeta'\in Z\}=(0)$ cf. [9, §4, remarks preceding Lemma 9], we have that E(1-R)=E. But this means that R=0 since the central support of E is 1. This proves that $E(\zeta')\neq 0$ for every $\zeta'\in Z$

and in particular $E(\zeta) \neq 0$. So ψ does not annihilate J. Thus relations (1) and (3) imply that

(5)
$$\|(\psi(CP_n) - \beta)\psi(F_n)\| \le 65\eta_{\psi(CP_n)}(\psi(F_n)) \le 65\nu_{CP_n}(F_n) \le 130\nu(CP_n)$$

whenever $\beta \in \mathscr{W}_{\psi(CP_n)}(\psi(F_n)) = \mathscr{W}$ and $\zeta \in X_n$. We show that $0 \in \mathscr{W}$. Indeed, given $\varepsilon > 0$, there is a set U_1, U_2, \ldots, U_m of unitary elements in \mathscr{A} and positive scalars $\alpha_1, \alpha_2, \ldots, \alpha_m$ of sum 1 such that $\|\sum \alpha_i U_i^* C U_i\| < \varepsilon$. If G_i is the range projection of $U_i^*(P_n - F_n)$ for $i = 1, 2, \ldots, m$, then G_i is a projection in J and $G = \text{lub } G_i$ is a projection in J. Thus the projection $P_n - G$ is equivalent to P_n . Let X be a unit vector in the subspace determined by $\psi(P_n - G)$. For each U_i we have that $\psi(U_i)X = y_i$ is in the orthogonal complement of the subspace determined by $\psi(P_n - F_n)$ and thus $\psi(F_n)y_i = y_i$. Therefore

$$\sum \alpha_{i}(\psi(CP_{n})y_{i}, y_{i}) \in \mathscr{W}$$

since W is convex. But we have that

$$\left| \sum (\alpha_i \psi(CP_n) y_i, y_i) \right| \leq \|\psi\| \left\| \sum \alpha_i U_i^* C U_i \right\| \|x\|^2 < \varepsilon.$$

Because \mathcal{W} is closed and because $\varepsilon > 0$ is arbitrary, we see that $0 \in W$. The relation (5) now becomes

$$||CP_nF_n(\zeta)|| = ||CF_n(\zeta)|| = ||\psi_{\zeta}(CP_n)\psi_{\zeta}(F_n)|| \le 130\nu(CP_n),$$

for every $\zeta \in X_n$. The orthogonal complement of the projection $F = \sum F_n$ is in J since $P_n(1-F) \in J$ for every $n=1, 2, \ldots$ [10, Proposition 2.2]. For every nonzero central projection P majorized by P_n we have that

$$||CFP|| = \operatorname{lub} \{||(CF(\zeta)|| \mid P \notin \zeta, \zeta \in Z\} \le 130\nu(CP_n) \le 260\nu(CP).$$

So for any central projection P we have that

(6)
$$||CFP|| = \text{lub} \{||CFPP_n|| \mid n = 1, 2, ...\}$$

$$\leq \text{lub} \{260\nu(CPP_n) \mid n = 1, 2, ...\}$$

$$\leq 260\nu(CP)$$

by Lemma 2.

Now for an algebra which is the product of σ -finite type III algebras, we may show that $||CP|| \le 260\nu(CP)$ for any central projection P. The proof is entirely similar to that just given except that relation (4) replaces relations (1) and (3).

Now let us suppose that \mathscr{A} has no σ -finite type III direct summands. Let D = FCF and let \mathscr{B} be the von Neumann algebra $F\mathscr{A}F$. By setting $Q_n = P_nF$ we obtain a sequence $\{Q_n\}$ of mutually orthogonal central projections in \mathscr{B} of sum F such that $\nu(DQ) \in I_n$ for any nonzero central projection Q in \mathscr{B} majorized by Q_n . Here $\nu(DQ)$ is evaluated in \mathscr{B} and Lemma 3 is employed. By relation (6) we see that

 $\{\|2^nDQ_n\|\}$ is a bounded sequence and hence $B = \sum 2^nDQ_n$ defines an element of \mathscr{B} such that $\nu(BQ) \ge \alpha$ for every nonzero central projection Q in \mathscr{B} . Indeed,

$$\nu(BQ) = \text{lub} \{ \nu(BQQ_n) \mid n = 1, 2, ... \}$$

$$= \text{lub} \{ 2^n \nu(DQQ_n) \mid n = 1, 2, ... \} \ge \alpha$$

since at least one projection QQ_n is nonzero. There is an invertible element S in \mathcal{B} and a projection G in \mathcal{B} with $F \sim G \sim F - G$ such that $U^*S^{-1}BSU = 0$ and $V^*S^{-1}BSV$ is a commutator in \mathcal{B} . Here U and V are partial isometries in B such that $U^*U = V^*V = F$, $UU^* = G$ and $VV^* = F - G$ [10, Theorem 3.6]. By multiplying both $U^*S^{-1}BSU$ and $V^*S^{-1}BSV$ by the central element $\sum 2^{-n}Q_n$ we see that $U^*S^{-1}DSU = 0$ and $V^*S^{-1}DSV$ is a commutator in \mathcal{B} . Now let T = S + (1 - F) in \mathcal{A} ; the element T is invertible with inverse $T^{-1} = S^{-1} + (1 - F)$ where S^{-1} still denotes the inverse of S in \mathcal{B} . Let W be a partial isometry in \mathcal{A} with domain support 1 and range support F. Then $V_1 = VW$ is a partial isometric operator of domain support 1 and range support F - G. Then it is easy to see that $V_1^*T^{-1}CTV_1 = W^*V^*S^{-1}DSVW$ is a commutator in \mathcal{A} . We have that $1 \sim F \sim G \ll G + (1 - F)$. Thus there is a partial isometry U_1 in \mathcal{A} with domain support 1 and range support G + (1 - F). Then

$$U_1^*T^{-1}CTU_1 = U_1^*T^{-1}CT(1-F)U_1 + U_1^*(1-F)T^{-1}CTGU_1$$

is an element of the strong radical of $\mathscr A$ and therefore, is a commutator in $\mathscr A$ [10, Theorem 2.5]. We have proved that there is an isomorphism of $\mathscr A$ onto the algebra $\mathscr A_2$ of 2×2 matrices over $\mathscr A$ which carries $T^{-1}CT$ into the matrix (B_{ij}) where B_{11} and B_{22} are commutators in $\mathscr A$. But this matrix is a commutator in the algebra $\mathscr A_2$. Indeed, let $B_{11}=S_{11}T_{11}-T_{11}S_{11}$ and $B_{22}=S_{22}T_{22}-T_{22}S_{22}$ for S_{11} , S_{22} , T_{11} , T_{22} in $\mathscr A$. We may assume that S_{11} and S_{22} have disjoint spectra since $B_{11}=(S_{11}+\beta)T_{11}-T_{11}(S_{11}+\beta)$ for a scalar β . There is an operator T_{12} and an operator T_{21} in $\mathscr A$ such that $S_{11}T_{12}-T_{12}S_{22}=B_{12}$ and $S_{22}T_{21}-T_{21}S_{11}=B_{21}$ [12]. Setting $S_{21}=S_{12}=0$, we find by direct calculation that $(S_{ij})(T_{ij})-(T_{ij})(S_{ij})=(B_{ij})$ in $\mathscr A_2$. This proves (B_{ij}) is a commutator in $\mathscr A_2$ and $T^{-1}CT$ is a commutator in $\mathscr A$.

Now if \mathscr{A} is the product of σ -finite type III agebras, the preceding paragraph allows us to conclude that there is an invertible S in \mathscr{A} such that $S^{-1}CS$ may be identified with the 2×2 matrix (B_{ij}) over \mathscr{A} with $B_{11} = 0$ and B_{22} a commutator in \mathscr{A} . So (B_{ij}) is a commutator in the 2×2 matrices over \mathscr{A} and $S^{-1}CS$ is a commutator in \mathscr{A} . Q.E.D.

3. Elements C with $0 \in \mathcal{K}_C$. The construction of Theorem 4 actually depended upon choosing a central element C_0 corresponding to a given element C in a properly infinite von Neumann algebra \mathcal{A} such that $ES^{-1}(C-C_0)SE=0$ for some invertible S in \mathcal{A} and some projection E in \mathcal{A} equivalent to 1. The next proposition clarifies this choice.

PROPOSITION 5. If C is an element in a properly infinite von Neumann algebra \mathcal{A} such that ECE=0 for some projection E in \mathcal{A} equivalent to 1, then 0 is an element of the intersection \mathcal{K}_{c} of the center of \mathcal{A} with the uniform closure of the convex hull of the set $\{U^*CU \mid U \text{ unitary in } \mathcal{A}\}$.

Proof. There are projections E' and E'' such that $E' \sim E'' \sim E$ and E' + E'' = E [6, III, §8, Theorem 1, Corollary 2]. Then $1 \sim E' \leq E' + (1 - E) \leq 1$ implies that $E' + (1 - E) \sim 1$. So there is no loss of generality in supposing that $E \sim 1 - E \sim 1$. The operator U = E - (1 - E) is unitary in $\mathscr A$ and

$$2^{-1}(C+U^*CU) = (1-E)C(1-E).$$

Now let E_1, E_2, \ldots, E_n be orthogonal projections of sum E such that $E_1 \sim \cdots \sim E_n \sim E$. There are unitary operators U_1, U_2, \ldots, U_n in $\mathscr A$ such that $(1-E)U_j$ has domain support E_j for $j=1, 2, \ldots, n$ since $E_j \sim 1-E$ and $1-E_j \sim E$ for $j=1, 2, \ldots, n$. So we have that

$$\left\| \sum \left\{ n^{-1} U_j^* (1 - E) C (1 - E) U_j x \mid j = 1, 2, \dots, n \right\} \right\|^2$$

$$\leq n^{-2} \|C\|^2 \sum \|E_j x\|^2 \leq n^{-2} \|C\|^2 \|x\|^2$$

for every x in the Hilbert space. Thus

$$\left\| \sum n^{-1} U_j^* (1-E) C (1-E) U_j \right\| \le n^{-1} \|C\|.$$

This means that 0 is an element of the uniform closure of the convex hull of $\{V^*CV \mid V \text{ unitary in } \mathscr{A}\}$ because n is arbitrary. Hence $0 \in \mathscr{K}_C$. Q.E.D.

Let \mathscr{A} be a properly infinite von Neumann algebra. If we could prove that $0 \in \bigcup \{\mathscr{K}_{S^{-1}CS} \mid S \text{ invertible in } \mathscr{A}\}$ for every commutator C in \mathscr{A} , then we would have a complete characterization of the set commutators. This characterization is certainly valid for factor algebras. Indeed C is a commutator in the properly infinite factor algebra \mathscr{A} if and only if \mathscr{A} is not a nonzero scalar multiple of the identity modulo the unique maximal ideal M of \mathscr{A} . If $C \in M$, then $0 \in \mathscr{K}_C$ [10, Proposition 2.4]. If C is not a scalar multiple of the identity modulo M, then the canonical form of Brown and Pearcy [2] in conjunction with the preceding proposition shows $0 \in \mathscr{K}_{S^{-1}CS}$ for some invertible S in \mathscr{A} . The characterization though is at odds with a conjecture that the set of commutators in \mathscr{A} is the complement (F') in \mathscr{A} of the set of all elements equal to a nonzero scalar multiple of the identity modulo some maximal ideal of \mathscr{A} [4]. In fact let $\{P_n\}$ be a sequence of nonzero mutually orthogonal central projections of sum 1. (This presupposes that \mathscr{A} has a sufficiently large center.) Then let E_n be a projection in $\mathscr{A}P_n$ such that $E_n \sim P_n - E_n$ $(n=1, 2, \ldots)$. Let $C = \sum (n^{-1}P_n + n^{-2}E_n)$. We have that

$$\bigcup_{n} \{ M \in M(\mathscr{A}) \mid P_n \notin M \}$$

is dense in the strong structure space $M(\mathscr{A})$ of \mathscr{A} by the remarks at the beginning of §2. Then $C(M) = n^{-1} \cdot 1(M) + n^{-2}E_n(M)$ for every M with $P_n \notin M$ and clearly

C(M) is not a scalar (zero included) multiple of the identity. But $S^{-1}CS(M)$ is not a scalar multiple of the identity for every M with $P_n \notin M$. If for example $0 \in \mathcal{K}_{S^{-1}CS}$, then by the proof of Theorem 4 we would be able to find an invertible T and a projection E equivalent to 1 with $ET^{-1}CTE = 0$. Thus

$$||n^{-1}EP_n|| = n^{-2}||ET^{-1}E_nTE|| \le n^{-2}||T^{-1}|| ||T||$$

for each $n=1, 2, \ldots$ This is obviously impossible.

It might be well to remark that there is no canonical matrix form with 0 on the diagonal in the sense of Brown and Pearcy [2] for operators of class (F').

LEMMA 6. Let C be an element in a von Neumann algebra \mathscr{A} . Let D_1 and D_2 be elements in \mathscr{K}_C and let A be a central element of \mathscr{A} with $0 \le A \le 1$. Then $AD_1 + (1-A)D_2 \in \mathscr{K}_C$.

Proof. First let A be a projection in the center of \mathscr{A} . There are unitary operators U_1, U_2, \ldots, U_n (respectively V_1, V_2, \ldots, V_m) and positive scalars $\alpha_1, \alpha_2, \ldots, \alpha_n$ (respectively $\beta_1, \beta_2, \ldots, \beta_m$) of sum 1 such that

$$\left\|\sum \alpha_i U_i^* C U_i - D_1\right\| < \varepsilon \quad \text{(respectively, } \left\|\sum \beta_i V_i^* C V_i - D_2\right\| < \varepsilon \text{)}.$$

Here $\varepsilon > 0$ is a preassigned constant. Then $U_i' = U_i A + (1 - A)$ $(1 \le i \le n)$ and $V_i' = V_i (1 - A) + A$ $(1 \le i \le m)$ are unitary in $\mathscr A$ with the property

$$\left\|\sum \alpha_i \beta_j V_j'^* U_i'^* C U_i' V_j' - (D_1 A + D_2 (1 - A))\right\| < \varepsilon.$$

Since \mathscr{K}_C is closed, we have that $AD_1 + (1-A)D_2 \in \mathscr{K}_C$.

Suppose that the restriction that A is a projection is removed. Let Z be the spectrum of the center of $\mathscr A$ and let $D^{\wedge}(\zeta)$ denote the Gelfand transform of the central element D evaluated at $\zeta \in Z$. Since $\mathscr K_C$ is convex, the set

$$\mathscr{K}_{\ell} = \{ D^{\hat{}}(\zeta) \mid D \in \mathscr{K}_{C} \}$$

is convex and so

$$A^{\wedge}(\zeta)D_1^{\wedge}(\zeta) + (1-A)^{\wedge}(\zeta)D_2(\zeta) \in \mathcal{K}_r$$

for every $\zeta \in \mathbb{Z}$. Thus there is for each $\varepsilon > 0$ a finite set P_1, P_2, \ldots, P_n of orthogonal central projections of sum 1 and corresponding elements B_1, B_2, \ldots, B_n in \mathscr{K}_C such that

$$||(AD_1+(1-A)D_2-B_i)P_i|| < \varepsilon$$

for j=1, 2, ..., n. Since $\sum B_j P_j \in \mathscr{K}_C$ by the first paragraph and since $\varepsilon > 0$ is arbitrary, we see that $AD_1 + (1-A)D_2$ is in the closed set \mathscr{K}_C . Q.E.D.

The next proposition corresponds to a result of C. R. Putnam [14]. We use many of his calculations cf. [15, 1.5.1].

PROPOSITION 7. Let A, B, C be elements in a properly infinite von Neumann algebra \mathcal{A} . If A is seminormal (i.e. if either $\pm (AA^* - A^*A)$ is positive) and if C = AB - BA, then $0 \in \mathcal{K}_{S^{-1}CS}$ for some invertible S in \mathcal{A} .

Proof. There is a projection P in the center of \mathscr{A} such that CP is in the strong radical of $\mathscr{A}P$ and

$$\{M \in M(\mathscr{A}) \mid C(1-P)(M) \neq 0\}$$

is dense in the subset $\{M \in M(\mathscr{A}) \mid 1-P \notin M\}$ of the strong structure space $M(\mathscr{A})$ of \mathscr{A} . Since $\mathscr{K}_C = \mathscr{K}_{CP} + \mathscr{K}_{C(1-P)} = \mathscr{K}_{C(1-P)}$ due to the fact that $\mathscr{K}_{CP} = \{0\}$ [10, Proposition 2.4] and since $\{M \in M(\mathscr{A}) \mid 1-P \notin M\}$ is identified with the strong structure space of $\mathscr{A}(1-P)$, we may assume that $\{M \in M(\mathscr{A}) \mid C(M) \neq 0\}$ is dense in $M(\mathscr{A})$.

As we have previously argued we may assume that either $\mathscr A$ has no σ -finite type III direct summands or that $\mathscr A$ is the product of σ -finite type III algebras.

Now for each nonzero real scalar α and each unitary element U in the center $\mathscr Z$ of $\mathscr A$ let

$$F(\alpha, U) = |\alpha|^{1/2} U A + |\alpha|^{-1/2} B^*.$$

Then

$$\operatorname{sgn}(\alpha)(FF^* - F^*F) = D(\alpha) + \operatorname{sgn}(\alpha)S(U)$$

where

$$D(\alpha) = \alpha (AA^* - A^*A) - \alpha^{-1}(BB^* - P^*B)$$

and $S(U)=UC+U^*C^*$. The set $\{|D|=(D^*D)^{1/2}\mid D\in\mathscr{K}_C\}$ is monotonely decreasing in Z. Indeed, let D_1 and D_2 be elements of \mathscr{K}_C ; there is a central projection P such that $|D_1|P\leq |D_2|P$ and $|D_2|(1-P)\leq |D_1|(1-P)$. But $D_1P+D_2(1-P)\in\mathscr{K}_C$ and $|D_1P+D_2(1-P)|=|D_1|P+|D_2|(1-P)$ is majorized by both $|D_1|$ and $|D_2|$. This proves that $\{|D|\mid D\in\mathscr{K}_C\}$ is monotonely decreasing. Let D_0 be the greatest lower bound of this set [6, Appendix II]. Suppose D_1 is a positive central element which majorizes $D(\alpha)$ for some α . We show that $D_0\leq D_1$. If not, there is an $\varepsilon>0$ and a nonzero central projection P such that $D_0P\geq (D_1+\varepsilon)P$. By reducing to $\mathscr{A}P$ we may assume that P=1. Let U_1,U_2,\ldots,U_n be unitary elements in $\mathscr X$ and let $\alpha_1,\alpha_2,\ldots,\alpha_n$ be positive scalars of sum 1; then for any central element R in the sphere of radius $2^{-1}\varepsilon$ about 0 we have that

$$\left|\left(\sum \alpha_{i}U_{i}\right)D_{1}+R\right|^{2} \leq \left(\sum \alpha_{i}D_{1}+|R|\right)^{2}=(D_{1}+|R|)^{2} \leq (D_{1}+2^{-1}\varepsilon)^{2}.$$

Hence $(D^*Dx, x) \le ((D_1 + 2^{-1}\varepsilon)^2 x, x)$ for any D in the strong closure \mathscr{K}'' of the convex hull of the set

$$\{UD_1+R\mid U, R \text{ in } \mathcal{Z}, U \text{ unitary, } ||R|| \leq 2^{-1}\varepsilon\}$$

and for any x in the Hilbert space H of \mathscr{A} . On the other hand we see that $(D^*Dx, x) \ge ((D_1 + \varepsilon)^2 x, x)$ for any D in the strong closure \mathscr{K}' of \mathscr{K}_C and any x in H because $R^*R \ge (D_1 + \varepsilon)^2$ for every R in \mathscr{K}_C . By the standard separation theorem there is a nonzero strongly continuous functional f on \mathscr{Z} such that

(7)
$$lub \{ Re f(R) \mid R \in \mathcal{K}' \} \leq glb \{ Re f(R) \mid R \in \mathcal{K}'' \}.$$

Here Re β denotes the real part of the complex number β . Indeed the element 0 is not in the strong closure of $\mathscr{K}' - \mathscr{K}''$. Since f is also weakly continuous on \mathscr{Z} [6, I, §3, Theorem 1 (i)], there is a unitary U in \mathscr{Z} and a nonzero vector x in H such that f(R) = (RUx, x) for every $R \in \mathscr{Z}$ [17] and [6, III, §1, Corollary, Theorem 4]. Now let $F = F(\alpha, \operatorname{sgn}(\alpha)U)$. We have that

(8)
$$\operatorname{sgn}(\alpha)(FF^* - F^*F) = D(\alpha) + S(U) \leq D_1 + S(U).$$

Let D be an arbitrary element in $\mathscr{K}_{\operatorname{sgn}(\alpha)(FF^{\bullet}-F^{\bullet}F)}=\mathscr{K}$. There is an element S in $\mathscr{K}_{S(U)}$ such that $D \leq D_1 + S$ [6, III, §5, Problem 2a]. We may find a T in $\mathscr{K}_{UC-U^{\bullet}C^{\bullet}}$ such that

$$2^{-1}(S+T) \in \mathcal{K}_{UC}$$
 and $2^{-1}(S-T) \in \mathcal{K}_{U^*C^*}$

[6, III, §5, Problem 2a]. We then have that $2^{-1}U^*(S+T)$ and $2^{-1}U^*(S-T)^*$ are elements of \mathcal{K}_C . The latter is true because $\mathcal{K}_{C^*} = \{R^* \mid R \in \mathcal{K}_C\}$. From relation (7) we obtain that both Re $(2^{-1}(S+T)x, x)$ and Re $(2^{-1}(S-T)x, x)$ are majorized by glb $\{\text{Re } f(R) \mid R \in \mathcal{K}''\}$. Thus

$$(Sx, x) = \text{Re}(Sx, x) \leq 2 \text{ glb} \{\text{Re} f(R) \mid R \in \mathcal{K}''\}$$

since S is clearly selfadjoint. But $-U^*D_1-2^{-1}\varepsilon U^*$ is an element of \mathcal{K}'' . So

(9)
$$2^{-1}(Sx, x) \le \text{Re}\left(U(-U^*D_1 - 2^{-1}\varepsilon U^*)x, x\right) = -((D_1 + 2^{-1}\varepsilon)x, x).$$

Therefore,

$$(Dx, x) \leq (D_1x, x) - \varepsilon(x, x) - 2(D_1x, x) \leq -\varepsilon(x, x)$$

by relation (8). Using reasoning similar to that which we used to prove that $\{|R| \mid R \in \mathcal{X}_C\}$ is monotonely decreasing, we may prove that \mathcal{X} is monotonely increasing. Setting $R_0 = \text{lub } \mathcal{X}$, we see that $(R_0x, x) \leq -\varepsilon(x, x)$. We show that this is impossible by showing $(R_0x, x) \geq 0$. Indeed, in proving this then we may certainly assume that F is invertible and that $\alpha > 0$. Because F is invertible, there is a unitary operator V in \mathcal{A} obtained from the polar decomposition of F [6, Appendix III] such that $V^*FF^*V = F^*F$. If $R \in \mathcal{X}_{F^*F}$, then there are unitary operators U_1, U_2, \ldots, U_n in \mathcal{A} and positive scalars $\alpha_1, \alpha_2, \ldots, \alpha_n$ of sum 1 such that

$$\left\|\sum \alpha_{i} U_{i}^{*} F^{*} F U_{i} - R\right\| < \varepsilon'$$

for any preassigned constant $\varepsilon' > 0$. But this means that

$$\left\|\sum \alpha_{i}(VU_{i})*FF*(VU_{i})-R\right\|<\varepsilon'.$$

Because $\varepsilon' > 0$ is arbitrary we have that $R \in \mathscr{X}_{FF^*}$. By symmetry it is then clear that $\mathscr{X}_{FF^*} = \mathscr{X}_{F^*F}$. Now for any $\varepsilon' > 0$ there is an element R_1 in \mathscr{X}_{FF^*} such that

$$(R_1x, x) \ge (R_2x, x) - \varepsilon'(x, x)$$

where R_2 is the least upper bound of the monotonely increasing set \mathcal{K}_{FF} . But

there is an element $R \in \mathcal{K}_{F^*F}$ such that $R_1 - R \in \mathcal{K}$ [6, III, §5, Problem 2a]. However we have that

$$(R_0x, x) \ge ((R_1-R)x, x) \ge (R_2x, x) - (Rx, x) - \varepsilon'(x, x) \ge -\varepsilon'(x, x)$$

since $R_2 \ge R$. Because $\varepsilon' > 0$ is arbitrary, we see that $(R_0 x, x) \ge 0$. This is a contradiction. We must conclude that $D_0 \le D_1$.

We now show that $D_0 = 0$. We may assume that $AA^* - A^*A \le 0$. Then for $\alpha > 0$ we have that

$$D(\alpha) \leq -\alpha^{-1}(BB^* - B^*B) \leq 2\alpha^{-1}||B||^2.$$

Thus we see that $D_0 \le 2\alpha^{-1} \|B\|^2$ for every $\alpha > 0$. Therefore $D_0 = 0$. If Q is a nonzero central projection in $\mathscr A$ and if $\varepsilon > 0$ there is a net $\{Q_n\}$ of mutually orthogonal central projections of sum Q such that each set $\mathscr K_{CQ_n}$ contains an element D_n of norm not exceeding ε . Indeed, if $\{Q_n\}$ is a maximal set of mutually orthogonal nonzero central projections majorized by Q with this property, then the assumption that $Q' = Q - \sum Q_n \neq 0$ gives a contradiction. Since glb $\{|D| \mid D \in \mathscr K_{CQ'}\} = 0$, there is a $D \in \mathscr K_{CQ'}$ such that $|D| \ge 2^{-1} \varepsilon Q'$ is not true. This means that there is a nonzero central projection Q'' majorized by Q' such that $|D| Q'' \le \varepsilon Q''$. This contradicts the maximality of $\{Q_n\}$. Hence we have that $\sum Q_n = Q$.

Now suppose \mathscr{A} has no σ -finite type III direct summands. In Theorem 4 we constructed a sequence $\{P_n\}$ of mutually orthogonal central projections of sum 1 and a projection F whose orthogonal complement 1-F was in the strong radical such that $\|(C-R)FP\| \leq 260\nu(CP)$ whenever P is a central projection majorized by P_n and whenever $R \in \mathscr{K}_{CP}$. Also either $P_n = 0$ or $\nu(CP) \in [2^{-n} || C ||, 2^{-n+1} || C ||]$ for every nonzero central projection P majorized by P_n . By the preceding paragraph there is a set $\{P_{nj}\}$ of mutually orthogonal central projections of sum P_n such that each set \mathscr{K}_{CP_nj} contains an element D_{nj} of norm not exceeding $\nu(CP_n)$. Then for each nonzero central projection P majorized by P_n we have that

$$||CFP|| = |\text{lub}_j||CFPP_{nj}|| \le |\text{lub}||(C - D_{nj})PP_{nj}|| + |\text{lub}||D_{nj}PP_{nj}||$$

 $\le 260\nu(CP) + \nu(CP_n) \le 262\nu(CP)$

by relation (6). By the same reasoning as found in Theorem 4, we may find an invertible W in $\mathscr A$ such that $EW^{-1}CWE=0$ for some projection E in $\mathscr A$ which is equivalent to 1. However, this means that $0 \in \mathscr K_{W^{-1}CW}$ by Proposition 5.

If A is the product of σ -finite type III algebras a similar proof holds. Q.E.D.

COROLLARY. If F is an element in a properly infinite von Neumann algebra \mathscr{A} , then there is an invertible S in \mathscr{A} such that $\mathscr{K}_{S^{-1}(F^*F-FF^*)S}$ contains 0.

Proof. If $A = 2^{-1}i(F - F^*)$ and $B = 2^{-1}(F + F^*)$, then $2^{-1}i(FF^* - FF^*) = AB - BA$. Now Proposition 7 applies.

Added in proof (April 25, 1970). I have improved Proposition 7 by showing that $0 \in \mathcal{X}_C$.

BIBLIOGRAPHY

- 1. A. Brown, P. Halmos and C. Pearcy, Commutators of operators on Hilbert space, Canad. J. Math. 17 (1965), 695-708. MR 34 #3311.
- 2. A. Brown and C. Pearcy, Structure of commutators of operators, Ann. of Math. (2) 82 (1965), 112-127. MR 31 #2612.
- 3. ——, Commutators in factors of type III, Canad. J. Math. 18 (1966), 1152-1160. MR 34 #1864.
- 4. A. Brown, C. Pearcy and D. Topping, Commutators and the strong radical, Duke Math. J. 35 (1968), 853-859. MR 38 #1534.
- 5. D. Deckard and C. Pearcy, On continuous matrix-valued functions on a Stonian space, Pacific J. Math. 14 (1964), 857-869. MR 30 #2356.
- 6. J. Dixmier, Les algèbres d'opérateurs dans l'espace hilbertien, Cahiers Scientifiques, fasc. 25, Gauthier-Villars, Paris, 1957. MR 20 #1234.
- 7. ——, Les C*-algèbres et leurs représentations, Cahiers Scientifiques, fasc. 29, Gauthier-Villars, Paris, 1964. MR 30 #1404.
- 8. J. M. G. Fell, The structure of algebras of operator fields, Acta Math. 106 (1961), 233-280. MR 29 #1547.
- 9. J. Glimm, A Stone-Weierstrass theorem for C*-algebras, Ann. of Math. (2) 72 (1960), 216-244. MR 22 #7005.
- 10. H. Halpern, Commutators in properly infinite von Neumann algebras, Trans. Amer. Math. Soc. 139 (1969), 55-73.
- 11. ——, Irreducible homomorphisms of a von Neumann algebra into its center, Trans. Amer. Math. Soc. 140 (1969), 195-221. MR 39 #3322.
- 12. G. Lumer and M. Rosenblum, *Linear operator equations*, Proc. Amer. Math. Soc. 10 (1959), 32-41. MR 21 #2927.
- 13. Y. Misonou, *On a weakly central operator algebra*, Tôhoku Math. J. (2) **4** (1952), 194–202. MR **14**, 566.
- 14. C. R. Putnam, On commutators of bounded matrices, Amer. J. Math. 73 (1951), 127-131. MR 12, 836.
- 15. ——, Commutation properties of Hilbert space operators and related topics, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 36, Springer-Verlag, New York, 1967. MR 36 #707.
- 16. C. Rickart, General theory of Banach algebras, The University Series in Higher Math., Van Nostrand, Princeton, N. J., 1960. MR 22 #5903.
- 17. S. Sakai, On linear functionals of W*-algebras, Proc. Japan Acad. 34 (1958), 571-574. MR 21 #5915.

Illinois Institute of Technology, Chicago, Illinois 60616