A COLLECTION OF SEQUENCE SPACES

BY J. R. CALDER AND J. B. HILL

Abstract. This paper concerns a collection of sequence spaces we shall refer to as d_{α} spaces. Suppose $\alpha = (\alpha_1, \alpha_2, \ldots)$ is a bounded number sequence and $\alpha_i \neq 0$ for some *i*. Suppose $\mathscr P$ is the collection of permutations on the positive integers. Then d_{α} denotes the set to which the number sequence $x = (x_1, x_2, \ldots)$ belongs if and only if there exists a number k > 0 such that

$$h_{\alpha}(x) = \lim_{p \in \mathscr{P}} \sum_{i=1}^{\infty} |x_{p(i)}\alpha_i| < k.$$

 h_{α} is a norm on d_{α} and (d_{α}, h_{α}) is complete.

We classify the d_{α} spaces and compare them with l_1 and m. Some of the d_{α} spaces are shown to have a semishrinking basis that is not shrinking. Further investigation of the bases in these spaces yields theorems concerning the conjugate space properties of d_{α} . We characterize the sequences β such that, given α , $d_{\beta} = d_{\alpha}$. A class of manifolds in the first conjugate space of d_{α} is examined. We establish some properties of the collection of points in the first conjugate space of a normed linear space S that attain their maximum on the unit ball in S. The effect of renorming c_0 and l_1 with l_{α} and related norms is studied in terms of the change induced on this collection of functionals.

Introduction. The d_{α} spaces were studied by W. L. C. Sargent [6] in 1960 and more recently by W. Ruckle [5] and D. J. H. Garling [2]. Some of the results in §§I and III appear in one or more of the above papers, as will be indicated.

Throughout this paper if S is a linear space and g is a norm on S then (S, g) will denote S with the norm g. The symbol $(S, g)^*$ denotes the first conjugate space of (S, g) and g^* denotes the conjugate norm on $(S, g)^*$ induced by g. If H is a subset of S then L(H) denotes the linear span of H. The symbol N(S) denotes the origin in S and U(S, g) denotes the unit ball in (S, g). The term basis will refer to a Schauder basis.

I. d_{α} spaces.

DEFINITION 1.1. Suppose n is a positive integer. Then x_0^n denotes the number sequence $(x_1, x_2, ...)$ such that $x_i = 1$ if $i \le n$ and $x_i = 0$ otherwise.

DEFINITION 1.2. Suppose $\alpha \in m$. Then $B(\alpha)$ denotes the number sequence $(B_1(\alpha), B_2(\alpha), \ldots)$ defined as follows: for each i,

$$B_i(\alpha) = h_{\alpha}(x_0^i)$$
 if $i = 1$,
= $h_{\alpha}(x_0^i) - h_{\alpha}(x_0^{i-1})$ if $i > 1$.

Received by the editors November 28, 1969.

AMS 1969 subject classifications. Primary 4610, 4620.

Key words and phrases. l_p spaces, sequence space, equivalent norms, Schauder basis, shrinking and semishrinking basis, norm attaining functionals.

DEFINITION 1.3. Z denotes the number sequence collection to which the sequence $a = (a_1, a_2, ...)$ belongs if and only if a is nonincreasing, $a_1 > 0$ and for each i, $a_i \ge 0$. $Z_0 = c_0 \cap Z$ and $Z_1 = I_1 \cap Z$.

The following lemma was found to be very useful in the investigation of the d_{α} spaces.

LEMMA 1.1. Suppose $\alpha \in m$. Then $B(\alpha) \in Z$ and $d_{\alpha} = d_{B(\alpha)}$. Moreover if $x \in d_{\alpha}$ then $h_{\alpha}(x) = h_{B(\alpha)}(x)$.

Thus in the investigation of these spaces we need only consider the sequences in Z.

THEOREM 1.1 [2]. $d_{\alpha} = m$ if and only if $\alpha \in l_1$.

THEOREM 1.2 [2]. $d_{\alpha} = l_1$ if and only if $\alpha \in m - c_0$.

Thus the spaces fall naturally into three categories, (1) those that are l_1 , (2) those that are m and (3) those that are "between" l_1 and m.

OBSERVATION. If $d_{\alpha} = m$ then h_{α} is equivalent to the ordinary norm $|\cdot|_{m}$ on m, and if $d_{\alpha} = l_{1}$ then h_{α} is equivalent to the ordinary norm $|\cdot|_{1}$ on l_{1} .

DEFINITION 1.4. $e=e_1, e_2, \ldots$ denotes the point sequence in m such that for each $i, e_i=(e_1^i, e_2^i, \ldots), e_i^i=1$ and $e_j^i=0$ if $i\neq j$. If e is a basis for a normed linear space (S,g) then $b=b_1,b_2,\ldots$ denotes the point sequence in $(S,g)^*$ that is biorthogonal to e. G_e denotes the closure of the linear span of b. If e is a basis for (S,g) and $f\in (S,g)^*$ then the number sequence (f_1,f_2,\ldots) is defined by $f_i=f(e_i)$ for each i.

DEFINITION 1.5. T_1 denotes the linear transformation from $(l_1, |\cdot|_1)^*$ to m defined by $T_1(f) = (f_1, f_2, ...)$ for each $f \in (l_1, |\cdot|_1)^*$.

It is well known that T_1 is a congruence (isometry) from $[(l_1, |\cdot|_1)^*, |\cdot|_1^*]$ to $(m, |\cdot|_m)$. The following theorem shows that this relationship between l_1 and m does not necessarily exist between the d_α spaces that are l_1 and those that are m.

THEOREM 1.3. Suppose $\alpha \in \mathbb{Z}_1$. Then each two of the following statements are equivalent.

- (1) There exists a point $\beta \in Z Z_0$ such that T_1 is a congruence from $[(d_\beta, h)^*, h_\beta^*]$ to (d_α, h_α) .
 - (2) $\alpha_2 = 0$.
 - (3) There exists a number c such that if $x \in d_{\alpha}$ then $h_{\alpha}(x) = c \cdot |x|_{m}$.

Proof. Suppose $\beta \in Z - Z_0$. $d_{\alpha} = m$ and $d_{\beta} = l_1$ and h_{α} is equivalent to $|\cdot|_m$ and h_{β} is equivalent to $|\cdot|_1$. Hence $(d_{\beta}, h_{\beta})^* = (l_1, |\cdot|_1)^*$ and T_1 is a reversible linear transformation from $[(d_{\beta}, h_{\beta})^*, h^*]$ onto (d_{α}, h_{α}) . Now suppose T_1 is a congruence. Suppose further that for each positive integer $n, f^n = T_1^{-1}(\beta_1, \beta_2, \ldots, \beta_n, 0, 0, \ldots)$. Since T_1 is a congruence $h_{\alpha}(T_1(f^n)) = h_{\beta}^*(f^n)$. But $h_{\beta}^*(f^n) = 1$ so $h_{\alpha}(T_1(f^1)) = \beta_1 \alpha_1 = 1$. Thus $\beta_1 = 1/\alpha_1$ and $h_{\alpha}(T_1(f^2)) = \beta_1 \alpha_1 + \beta_2 \alpha_2 = 1$. Since $\beta_2 \neq 0$ then $\alpha_2 = 0$ and (1) implies (2).

Suppose now that $\alpha_2 = 0$ and $f = (f_1, f_2, ...) \in d_{\alpha}$. Then $h_{\alpha}(f) = \alpha_1 \cdot |f|_m$. So (2) implies (3).

Now suppose (3). $e_1 \in d_{\alpha}$ and $h_{\alpha}(e_1) = \alpha_1 = c \cdot |e|_{m} = c$. So $\alpha_1 = c$. Let $\beta = (\beta_1, \beta_2, ...)$ such that for each i, $\beta_i = 1/\alpha_1$. Then $\beta \in Z - Z_0$, $d_{\beta} = l_1$ and if $x \in d_{\beta}$ then $h_{\beta}(x) = (1/\alpha_1)|x|_1$. So T_1 is a congruence.

II. Bases in the d_{α} spaces. The following are some of the properties that a point sequence p_1, p_2, \ldots may have and are listed here for easy reference.

DEFINITION 2.1. Suppose (S, g) is a normed linear space, W is the set of positive integers and Q is the collection of all finite subsets of W. Suppose further that $p = p_1, p_2, \ldots$ is a sequence each term of which is a point of S.

- (i) p is orthogonal means that if each of H and K is in Q, $H \subseteq K$ and a_1, a_2, \ldots is a number sequence, then $g(\sum_{i \in H} a_i p_i) \le g(\sum_{i \in K} a_i p_i)$.
- (ii) p is strictly orthogonal means that p is orthogonal and if each of H and K is in Q, and $H \subseteq K$ and a_1, a_2, \ldots is a number sequence, then the following two statements are equivalent.
 - $(1) g(\sum_{i \in H} a_i p_i) = g(\sum_{i \in K} a_i p_i).$
 - (2) H = K or $H \neq K$ and if $i \in K H$ then $a_i = 0$.
- (iii) p is strictly coorthogonal means that if each of H and K is in Q, and $H \subseteq K$, and a_1, a_2, \ldots is a number sequence then

$$g\left(\sum_{i\in W-K}a_ip_i\right)\leq g\left(\sum_{i\in W-H}a_ip_i\right)$$

and the following two statements are equivalent.

- (1) $g(\sum_{i \in W K} a_i p_i) = g(\sum_{i \in W H} a_i p_i)$.
- (2) H = K, or $H \neq K$ and if $i \in K H$ then $a_i = 0$.
- (iv) If p is a basis, p is unconditional means that if $x \in S$ and $x = \sum_{i=1}^{\infty} x_i p_i$ and if $r \in \mathcal{P}$, then $x = \sum_{i=1}^{\infty} x_{r(i)} p_{r(i)}$.
- (v) If p is a basis, p is semishrinking means that there exists a number c>0 such that
 - (1) $0 < \text{glb}_i(g(p_i)) \le \text{lub}_i(g(p_i)) < c$, and
 - (2) if $f \in (S, g)^*$ then $\lim_{n \to \infty} f(p_n) = 0$.
- (vi) If p is a basis, p is shrinking means that if $q = q_1, q_2, \ldots$ is the point sequence in $(S, g)^*$ that is biorthogonal to p and y_1, y_2, \ldots is a bounded point sequence in S such that for each j, $\lim_{n\to\infty} q_j(y_n) = 0$, then if $f \in (S, g)^*$, $\lim_{n\to\infty} f(y_n) = 0$.

THEOREM 2.1. Suppose $\alpha \in Z - Z_1$. Then the point sequence $e = e_1, e_2, \ldots$ in (d_α, h_α) has the following properties:

- (1) e is orthogonal;
- (2) e is strictly orthogonal;
- (3) e is strictly coorthogonal;
- (4) e is a basis;
- (5) e is unconditional;
- (6) e is boundedly complete.

That e is orthogonal, strictly orthogonal, and strictly coorthogonal is easily verified. Garling [2] has shown that the linear span of e, L(e), is dense in d_{α} and so it follows that since for each i, $e_i \neq N(d_{\alpha})$ and since e is orthogonal, that e is an unconditional basis for d_{α} . That e is boundedly complete is obvious.

It may be noted that the collection of d_{α} spaces can be enlarged as follows: if $\alpha = (\alpha_1, \alpha_2, ...)$ is a bounded number sequence and $\alpha_i \neq 0$ for some i and if $k \geq 1$, then $d_{\alpha,k}$ denotes the set to which the number sequence $x = (x_1, x_2, ...)$ belongs only in the case that there exists a number c such that

$$h_{\alpha,k}(x) = \lim_{p \in \mathscr{P}} \left[\sum_{i=1}^{\infty} |x_{p(i)}\alpha_i|^k \right]^{1/k} < c.$$

In this case, results similar to Lemma 1.1, Theorem 1.1, Theorem 1.2 and Theorem 2.1 may still be obtained. Theorem 1.1 becomes $d_{\alpha,k}=m$ if and only if $\alpha \in l_k$. Theorem 1.2 becomes $d_{\alpha,k}=l_k$ if and only if $\alpha \in m-c_0$. Again, if $d_{\alpha,k}=m$ then $h_{\alpha,k}$ is equivalent to $|\cdot|_m$ and if $d_{\alpha,k}=l_k$ then $h_{\alpha,k}$ is equivalent to the ordinary norm on l_k , $|\cdot|_k$.

Here then, we have spaces some of which are l_k , some m and some "between" l_k and m. The remainder of this paper deals with the d_{α} (i.e. $d_{\alpha,1}$) spaces.

A. Pełczyński and W. Szlenk [3], answering a question of I. Singer, constructed an example of a normed linear space with a basis that was semishrinking but not shrinking. J. R. Retherford [4] has shown that the space (d), which is d_{α} with $\alpha_i = 1/i$, also has a basis that is semishrinking but not shrinking.

THEOREM 2.2. Suppose that $\alpha \in Z_0 - Z_1$. Then the basis e for (d_α, h_α) is semishrinking but not shrinking.

Proof. If $\alpha \in Z_0 - Z_1$ then there exists a point $x = (x_1, x_2, \ldots)$ in d_α such that for each i, $x_i \ge x_{i+1} \ge 0$ and $x \notin l_1$. Suppose $f \in (d_\alpha, h_\alpha)^*$ and that $\lim_{i \to \infty} f_i \ne 0$. Then there exists a number c > 0 and a subsequence f_{n_1}, f_{n_2}, \ldots of f_1, f_2, \ldots such that for each i, $|f_{n_i}| \ge c$. Let $y = (y_1, y_2, \ldots)$ be the point of d_α such that $y_i = 0$ if $i \ne n_j$ for every j and $y_i = x_j \cdot |f_{n_j}|/f_{n_j}$ if $i = n_j$ for some j. So if N is a number there exists an integer s such that

$$N < c \cdot \sum_{i=1}^{s} x_i \le \sum_{i=1}^{s} |f_{n_i}| \cdot x_i = \sum_{i=1}^{n_s} f_i y_i.$$

So $f \notin (d_{\alpha}, h_{\alpha})^*$ and we have a contradiction. Hence $\lim_{i \to \infty} f_i = 0$. For each i, $h_{\alpha}(e_i) = \alpha_1$ so e is semishrinking.

For each positive integer n, let $S_n = \sum_{i=1}^n \alpha_i$ and $y_n = (1/S_n) \cdot \sum_{i=1}^n e_i$. Then $h_\alpha(y_n) = 1$. Let F denote the point of $(d_\alpha, h_\alpha)^*$ defined as follows: if $x \in d_\alpha$ and $x = (x_1, x_2, \ldots)$, then $F(x) = \sum_{i=1}^\infty x_i \alpha_i$. For each n, $F(y_n) = 1$. But if $b = b_1, b_2, \ldots$ is the point sequence in $(d_\alpha, h_\alpha)^*$ biorthogonal to e and if f is a positive integer then $\lim_{n \to \infty} b_i(y_n) = 0$. So e is not shrinking.

COROLLARY 2.1. Suppose $\alpha \in \mathbb{Z}$. Then $[(d_{\alpha}, h_{\alpha})^*, h_{\alpha}^*]$ is not separable.

Proof. It is well known, for instance [1, p. 77], that if $p = p_1, p_2, \ldots$ is an unconditional basis for a normed linear complete space (S, g) then p is shrinking if and only if $[(S, g)^*, g^*]$ is separable. Thus if $\alpha \in Z - Z_1$, since e is an unconditional basis that is not shrinking we have that $[(d_{\alpha}, h_{\alpha})^*, h_{\alpha}^*]$ is not separable. If $\alpha \in Z_1$ then (d_{α}, h_{α}) is isomorphic to $(m, |\cdot|_m)$ and thus $[(d_{\alpha}, h_{\alpha})^*, h_{\alpha}^*]$ is not separable.

DEFINITION 2.2. Suppose (S, g) is a normed linear space and that H is a linear manifold in $(S, g)^*$. J^H denotes the transformation from S into $(H, g^*)^*$ defined as follows: if $x \in S$ and $f \in H$ then $[J^H(x)](f) = f(x)$.

THEOREM 2.3. Suppose $\alpha \in \mathbb{Z} - \mathbb{Z}_1$. Then J^{G_e} is a congruence.

Proof. (d_{α}, h_{α}) is complete and e is an unconditional basis for (d_{α}, h_{α}) that is boundedly complete. Thus it follows from a result of Singer [7] that J^{G_e} is a congruence.

THEOREM 2.4. Suppose $\alpha \in Z - Z_1$ and b is the point sequence in $(d_{\alpha}, h_{\alpha})^*$ biorthogonal to e. Then b is

- (1) orthogonal,
- (2) a basis for (G_e, h_a^*) ,
- (3) unconditional,
- (4) not boundedly complete,
- (5) not strictly orthogonal.

Proof. Since e is orthogonal b must be orthogonal and since b is orthogonal and L(b) is dense in G_e and since $b_i \neq N(d_\alpha, h_\alpha)^*$ for each i, it follows that b is an unconditional basis for G_e . Since $[(d_\alpha, h_\alpha)^*, h_\alpha^*]$ is not separable there exists a point $y \in (d_\alpha, h_\alpha)^* - G_e$. Suppose $h_\alpha^*(y) = c$. Suppose further that n is a positive integer and $y^n = \sum_{i=1}^n y_i b_i$. Then $h_\alpha^*(y^n) \leq c$. But $y \notin G_e$ so b is not boundedly complete. Suppose n is a positive integer and $\alpha^n = \sum_{i=1}^n \alpha_i b_i$. Let $x = (1/\alpha_1)e_1$. Then $x \in U(d_\alpha, h_\alpha)$ and $\alpha^n(x) = 1$. Suppose $y = (y_1, y_2, \ldots)$ is a point of $U(d_\alpha, h_\alpha)$. Then $|\alpha^n(y)| = |\sum_{i=1}^n y_i \alpha_i| \leq h_\alpha(y) = 1$. So $h_\alpha^*(\alpha^n) = 1$. Hence b is not strictly orthogonal.

COROLLARY 2.2. Suppose $\alpha \in Z - Z_1$ and (S, g) is a normed linear complete space. Then (G_e, h_α^*) is not isomorphic to $[(S, g)^*, g^*]$.

Proof. Singer has shown [7] that a normed linear complete space (S, g) with an unconditional basis, p, is isomorphic to the conjugate space of some normed linear space if and only if p is boundedly complete. Thus Corollary 2.2 follows.

COROLLARY 2.3. If $\alpha \in \mathbb{Z}$ then (d_{α}, h_{α}) is not reflexive.

In case $\alpha \in Z_1$ the question whether or not (d_{α}, h_{α}) is congruent to the conjugate space of some normed linear space is answered by the following theorem.

THEOREM 2.5. Suppose $\alpha \in Z_1$ and g_α is the norm on l_1 defined as follows: if $x \in l_1$ and $x = (x_1, x_2, ...)$ then

$$g_{\alpha}(x) = \operatorname{lub} \left\{ \left| \sum_{i=1}^{\infty} y_i x_i \right| \mid y \in U(d_{\alpha}, h_{\alpha}), y = (y_1, y_2, \ldots) \right\}.$$

Then each of the following statements is true.

- (1) $[(C_0, h_\alpha)^*, h_\alpha^*]$ is congruent to (l_1, g_α) ;
- (2) g_{α} is equivalent to $|\cdot|_1$;
- (3) $[(l_1, g_\alpha)^*, g_\alpha^*]$ is congruent to (d_α, h_α) ;
- (4) $[((C_0, h_\alpha)^*, h_\alpha^*)^*, h_\alpha^{**}]$ is congruent to (d_α, h_α) .

III. $d_{\alpha} = d_{\beta}$. W. J. Davis, in a private communication, has characterized the extreme points of $U(d_{\alpha}, h_{\alpha})$ in the case $\alpha \in Z_0 - Z_1$.

THEOREM 3.1 (DAVIS). Suppose $\alpha \in Z_0 - Z_1$, $x \in d_\alpha$, $x = (x_1, x_2, ...)$ and $h_\alpha(x) = 1$. Then (1) implies (2).

- (1) x is an extreme point.
- (2) There exists an integer n such that if i > n then $x_i = 0$ and if $x_j \neq 0$ and $x_k \neq 0$ then $|x_i| = |x_k|$.

This gives us the following result of Garling.

THEOREM 3.2 [2]. Suppose $\alpha \in Z_0 - Z_1$, $f \in (d_\alpha, h_\alpha)^*$ and $r \in \mathscr{P}$. Suppose further that for each i, $|f_{r(i)}| \ge |f_{r(i+1)}|$. Then

$$h_{\alpha}^*(f) = \left| \operatorname{lub}_n \sum_{i=1}^n |f_{r(i)}| / \sum_{i=1}^n \alpha_i.$$

Garling has also characterized G_e .

THEOREM 3.3 [2]. Suppose $\alpha \in Z_0 - Z_1$, $f \in (d_\alpha, h_\alpha)^*$ and $r \in \mathcal{P}$. Suppose further that for each i, $|f_{r(i)}| \ge |f_{r(i+1)}|$. Then $f \in G_e$ if and only if

$$\lim_{n\to\infty}\sum_{i=1}^n|f_{r(i)}|\bigg/\sum_{i=1}^n\alpha_i=0.$$

THEOREM 3.4 [5]. Suppose each of α and β is in Z and for each positive integer $S(\alpha, n) = \sum_{i=1}^{n} \alpha_i$. Then $d_{\alpha} = d_{\beta}$ if and only if there exists a number k_1 and a number k_2 such that if n is a positive integer then $S(\alpha, n) \leq k_1 S(\beta, n)$ and $S(\beta, n) \leq k_2 S(\alpha, n)$.

OBSERVATION. Whenever $d_{\alpha} = d_{\beta}$ then h_{α} is equivalent to h_{β} .

THEOREM 3.5. Suppose $\alpha \in Z - Z_1$ and $f \in (d_\alpha, h_\alpha)^*$. Suppose further that $\beta = (f_1, f_2, \ldots)$. Then each two of the following statements are equivalent.

- (1) $d_{\alpha}=d_{\beta}$;
- (2) $f \in (d_{\alpha}, h_{\alpha})^* G_e$;
- (3) if $F \in (d_{\alpha}, h_{\alpha})^*$ such that for each $i, F_i = \alpha_i$ then $F \in (d_{\beta}, h_{\beta})^*$.

IV. A collection of manifolds in $(d_{\alpha}, h_{\alpha})^*$.

DEFINITION 4.1. Suppose (S, g) is a normed linear space and H is a linear manifold in $(S, g)^*$. The statement that H is absolutely total means that if $x \in S$ then

$$g(x) = \text{lub}\{|f(x)| \mid f \in H \text{ and } g^*(f) = 1\}.$$

DEFINITION 4.2. The statement that a normed linear space (S, g) has property t means that if H is an absolutely total linear manifold in $(S, g)^*$ then H is dense in $[(S, g)^*, g^*]$.

B. E. Wilder has shown [8] that each of $(c_0, |\cdot|_0)$ and $(c, |\cdot|_c)$, where $|\cdot|_0$ and $|\cdot|_c$ are the ordinary norms on c_0 and c respectively, is a nonreflexive space with property t. He has also shown that $(c_{0,1}, |\cdot|_{0,1})$, where $|\cdot|_{0,1}$ is the ordinary max. norm on $c_{0,1}$, does not have property t. It has been conjectured that the only nonreflexive spaces that have property t are isomorphic to $(c_0, |\cdot|_0)$. The following theorem settles this conjecture in the negative.

THEOREM 4.1. Suppose $\alpha \in Z - Z_1$ and there exists a number M such that if i is a positive integer $\alpha_i < (M+1)\alpha_{i+1}$. Then (G_e, h_{α}^*) has property t.

Proof. Suppose for convenience that $\alpha_1=1$. J^{G_e} is a congruence from (d_α,h_α) to $[(G_e,h_\alpha^*)^*,h_\alpha^{**}]$. Let T denote the inverse of J^{G_e} . Suppose that L is an absolutely total linear manifold in $(G_e,h_\alpha^*)^*$, and that n is a positive integer. Then $b_n\in G_e$ and if e>0 there exists a point $f\in L$ such that $h_\alpha^*(f)\le 1$ and $|h_\alpha^*(b_n)-f(b_n)|< \varepsilon/(M+2)$. Suppose $T(f)=(f_1,f_2,\ldots)$. Then since $h_\alpha^*(b_n)=1/\alpha_1=1$ and $f(b_n)=b_n(T(f))=f_n$, we have that $|1-f_n|<\varepsilon/(M+2)$. $h_\alpha^{**}(f)=h_\alpha(\sum_{i=1}^{\infty}f_ib_i)\le 1$, so $|f_n|\le 1$ and $1-|f_n|\le 1-f_n=|1-f_n|<\varepsilon/(M+2)$. Pick $r\in \mathscr{P}$ such that r(1)=n and if $i\ge 2$, $|f_{r(i)}|\ge |f_{r(i+1)}|$. For each i, let $F_i=f_{r(i)}$. Then

$$|F_1| \cdot \alpha_1 + \sum_{i=2}^{\infty} |F_i| \alpha_i = \sum_{i=1}^{\infty} |F_i| \alpha_i \leq h_{\alpha}^{**}(f) \leq 1.$$

So

$$\sum_{i=2}^{\infty} |F_i| \alpha_i \leq 1 - |f_n| < \frac{\varepsilon}{(M+2)}$$

Let x and y be points of d_{α} defined by $x = (1 - f_n) \cdot e_n$ and $y = f_n e_n - \sum_{i=1}^{\infty} f_i e_i$. Suppose $p = p_1, p_2, \ldots$ is the point sequence in $(G_e, h_{\alpha}^*)^*$ that is biorthogonal to b. Then if i is a positive integer, $T(p_i) = e_i$. So

$$h_{\alpha}^{**}(p_n - f) = h_{\alpha}\left(e_n - \sum_{i=1}^{\infty} f_i e_i\right) = h_{\alpha}(x + y) \le h_{\alpha}(x) + h_{\alpha}(y)$$
$$= 1 - f_n + h_{\alpha}(y) < \frac{\varepsilon}{(M+2)} + h_{\alpha}(y).$$

Now

$$h_{\alpha}(y) = \sum_{i=1}^{\infty} |F_{i+1}| \alpha_{i} = \sum_{i=1}^{\infty} |F_{i+1}| \alpha_{i+1} + \sum_{i=1}^{\infty} |F_{i+1}| \cdot [\alpha_{i} - \alpha_{i+1}]$$

$$< \frac{\varepsilon}{(M+2)} + M \sum_{i=1}^{\infty} |F_{i+1}| \cdot \alpha_{i+1} < \frac{\varepsilon}{(M+2)} + \frac{M\varepsilon}{(M+2)} = \frac{\varepsilon(M+1)}{(M+2)}.$$

So

$$h_{\alpha}^{**}(p_n-f)=h_{\alpha}\left(e_n-\sum_{i=1}^{\infty}f_ie_i\right)<\frac{\varepsilon}{(M+2)}+\frac{\varepsilon(M+1)}{(M+2)}=\varepsilon.$$

Hence p_n is a point or a limit point of L.

Suppose s is a positive integer and each of c_1, c_2, \ldots, c_s is a number. Suppose further that $x = c_1 p_1 + \cdots + c_n p_n$ and for each j, $1 \le j \le s$, let y_1^j, y_2^j, \ldots be a point sequence in L converging to p_j . If $\varepsilon > 0$ and if $j \le s$ is a positive integer such that $c_j \ne 0$, then there exists a number n_j such that if $i > n_j$ then $|y_1^j - p_j| < \varepsilon/(|c_j| \cdot s)$. For each positive integer j, $j \le s$, let $y_j = c_1 y_j^1 + \cdots + c_s y_j^s$. Then $y_j \in L$. Let $N = \max\{n_j\}$. Then if i > N,

$$h_{\alpha}^{**}(x-y_{i}) = h_{\alpha}^{**}(c_{1}(p_{1}-y_{i}^{1})+\cdots+c_{s}(p_{s}-y_{i}^{s}))$$

$$\leq |c_{1}| \cdot h_{\alpha}^{**}(p_{1}-y_{i}^{1})+\cdots+|c_{s}| \cdot h_{\alpha}^{**}(p_{s}-y_{i}^{s}) < \varepsilon.$$

So x is a point or a limit point of L. Hence any point in L(p) is a point or limit point of L and thus the closure of L contains L(p). L(e) is dense in (d_{α}, h_{α}) and J^{G_e} maps L(e) onto L(p) so L(p) is dense in $[(G_e, h_{\alpha}^*)^*, h_{\alpha}^{**}]$. Thus L is dense in $[(G_e, h_{\alpha}^*)^*, h_{\alpha}^{**}]$.

Every α in $Z-Z_0$ has the property that there is a number M such that $\alpha_i < (M+1)\alpha_{i+1}$ for each i. Some of the sequences in Z_0-Z_1 have this property, for example $\alpha=(1,1/2,\ldots,1/i,\ldots)$, while some other sequences in Z_0-Z_1 do not. If $\alpha\in Z_0-Z_1$ then (d_α,h_α) is not isomorphic to $(l_1,|\cdot|_1)$ and thus (G_e,h_α^*) is not isomorphic to $(c_0,|\cdot|_0)$. Thus we have the following corollary.

COROLLARY 4.1. There exists a nonreflexive normed linear space (S, g) that has property t but is not isomorphic to $(c_0, |\cdot|_0)$.

Conjecture. If $\alpha \in Z_0 - Z_1$ then (G_e, h_{α}^*) has property t.

V. Regular functionals.

DEFINITION 5.1. Suppose (S, g) is a normed linear space and $f \in (S, g)^*$. The statement that f is regular on (S, g) means that there exists a point $x \in S$ such that g(x) = 1 and $f(x) = g^*(f)$.

R(S, g) denotes the subset of $(S, g)^*$ to which the point f belongs only in the case that f is regular on (S, g).

THEOREM 5.1. Suppose that (S, g) is a normed linear space and that $p = p_1, p_2, ...$ is a monotone basis for (S, g). Suppose further that $q = q_1, q_2, ...$ is the point sequence in $(S, g)^*$ that is biorthogonal to p. If $f \in L(q)$ then $f \in R(S, g)$.

Proof. Suppose $x \in S$ and $x = \sum_{i=1}^{\infty} x_i p_i$. If n is a positive integer let \bar{x}^n be the point of E_n defined by $\bar{x}^n = (x_1, x_2, \dots, x_n)$. Let g_n denote the norm on E_n defined by $g(\bar{x}^n) = g(\sum_{i=1}^n x_i p_i)$. Suppose $y \in L(q)$ and $y = y_1 q_1 + \dots + y_n q_n$. Then if $x \in S$ and $x = \sum_{i=1}^{\infty} x_i p_i$, $y(x) = \sum_{i=1}^{n} y_i x_i$. Let y' be the point of $[(E_n, g_n)^*, g_n^*]$ defined as follows: if $x \in E_n$ and $x = (x_1, x_2, \dots, x_n)$ then $y'(x) = \sum_{i=1}^{n} y_i x_i$. y' is regular so there exists a point $z = (z_1, z_2, \dots, z_n)$ in E_n such that $g_n(z) = 1$ and $y'(z) = g_n^*(y')$. Examine the point x of S defined by $x = \sum_{i=1}^{n} z_i p_i$. $g(x) = g_n(z) = 1$ and $y(x) = \sum_{i=1}^{n} y_i z_i = g_n^*(y')$. Now suppose $r = \sum_{i=1}^{\infty} r_i p_i$ and g(r) = 1. Then $g_n(\bar{r}^n) \le 1$ and

$$|y(r)| = \left|\sum_{i=1}^{n} y_i r_i\right| = |y'(\bar{r}^n)| \leq g_n^*(y').$$

So $g^*(y) = g_n^*(y')$ and $y \in R(S, g)$.

COROLLARY 5.1. Suppose (S, g) is a normed linear complete space, $p = p_1, p_2, ...$ is a basis for (S, g) and $q = q_1, q_2, ...$ is the point sequence in $(S, g)^*$ that is bi-orthogonal to p. Then there exists a norm h on S such that h is equivalent to g and $L(q) \subseteq R(S, h)$.

Proof. It is well known [1, p. 67] that there exists a norm h on S equivalent to g such that p is monotone in (S, h). Hence, by Theorem 5.1, $L(q) \subseteq R(S, h)$.

THEOREM 5.2. Suppose $\alpha \in Z - Z_0$, e is the ordinary basis for (d_α, h_α) and $f \in (G_e, h_\alpha^*)^*$. Suppose further that $p = p_1, p_2, \ldots$ is the point sequence in $(G_e, h_\alpha^*)^*$ that is biorthogonal to the basis b in (G_e, h_α^*) . Then $\mathcal{L}(p) = R(G_e, h_\alpha^*)$.

Proof. Since b is an orthogonal basis for (G_e, h_α^*) then, by Theorem 5.1, $\mathscr{L}(p) \subseteq R(G_e, h_\alpha^*)$. Suppose $f \in (G_e, h_\alpha^*)^* - L(p)$. J^{G_e} is a congruence from (d_α, h_α) to $[(G_e, h_\alpha^*)^*, h_\alpha^{**}]$ and for each i, $J^{G_e}(e_i) = p_i$. Thus if T denotes the inverse of J^{G_e} and $T(f) = (f_1, f_2, \ldots)$, then $T(f) \in d_\alpha - \mathscr{L}(e)$. Pick $r \in \mathscr{P}$ such that for each i, $|f_{r(i)}| \ge |f_{r(i+1)}|$ and let $F_i = |f_{r(i)}|$. Suppose n is a positive integer and $\alpha^n = \sum_{i=1}^n \alpha_i b_i$. Then if $T(F) = (F_1, F_2, \ldots)$,

$$F(\alpha^{n}) = \sum_{i=1}^{n} F_{i}\alpha_{i} < \sum_{i=1}^{n+1} F_{i}\alpha_{i} = F(\alpha^{n+1}).$$

Suppose $y \in U(G_e, h_\alpha^*)$. Then $\lim_{i \to \infty} y_i = 0$. Pick $s \in \mathcal{P}$ such that for each i, $|y_{s(i)}| \ge |y_{s(i+1)}|$ and let $Y_i = |y_{s(i)}|$. Let $Y = \sum_{i=1}^{\infty} Y_i b_i$ and $c_1 = \text{glb } \alpha_i$. Since $\lim_{i \to \infty} y_i = 0$ there exists a number n_1 such that if $i > n_1$ then $Y_i < c_1$. Let $c_2 = \sum_{i=1}^{n_1} F_i(\alpha_i - Y_i)$. Suppose $c_2 < 0$. Then $\sum_{i=1}^{n_1} F_i \alpha_i < \sum_{i=1}^{n_1} F_i Y_i$. There exists a number t > 0 such that the point t > 0 of t > 0 such that the point t > 0 of t > 0 defined by t > 0 such that t > 0 such tha

$$t\sum_{i=1}^{n_1} F_i\alpha_i = 1 < t \cdot \sum_{i=1}^{n_1} F_iY_i = Y(z).$$

So $h_{\alpha}^{*}(Y) > 1$. But $h_{\alpha}^{*}(Y) = h_{\alpha}^{*}(y) = 1$ so $c_{2} \ge 0$, and

$$\sum_{i=1}^{n_1+1} F_i(\alpha_i - Y_i) = c_3 > c_2 \ge 0.$$

Let n_2 be a positive integer such that $\sum_{i=n_2+1}^{\infty} F_i Y_i < c_3/2$. Suppose $N = \max\{n_1+1, n_2\}$. Then if n > N,

$$F(\alpha^n) = F(Y) = \sum_{i=1}^n F_i(\alpha_i - Y_i) - \sum_{i=n+1}^\infty F_i Y_i > c_3 - \frac{c_3}{2} = \frac{c_3}{2} > 0.$$

So $F(\alpha^n) > F(Y)$. $F(Y) \ge F(y)$ and so F is not regular and f is not regular. Hence $R(G_e, h_\alpha^*) = L(e)$ and the theorem is proved.

It may be noted that if we define the norm $h_{\alpha,0}$ on c_0 by $h_{\alpha,0}(x) = h_{\alpha}^*(T_1^{-1}(x))$ for each $x \in c_0$, then T_1 restricted to G_e is a congruence from (G_e, h_{α}^*) to $(c_0, h_{\alpha,0})$ that maps the basis b in (G_e, h_{α}^*) onto the basis e in $(c_0, h_{\alpha,0})$. Thus Theorem 4.2 gives us, in case $\alpha_1 = 1$ and $\alpha_2 = 0$, the usual characterization of $R(c_0, |\cdot|_0)$.

THEOREM 5.3. Suppose that $\alpha \in Z_1$ and e is the ordinary basis for (c_0, h_α) . Then $L(b) = R(c_0, h_\alpha)$ if and only if $\alpha_2 = 0$.

Proof. If $\alpha_2 = 0$ then (c_0, h_α) is congruent to $(c_0, |\cdot|_0)$ and $h_\alpha = \alpha_1 \cdot |\cdot|_0$. So $R(c_0, h_\alpha) = R(c_0, |\cdot|_0)$. But $R(c_0, |\cdot|_0) = L(b)$ so $R(c_0, h_\alpha) = L(b)$. Suppose $\alpha_2 \neq 0$. If $\alpha' = \sum_{i=1}^{\infty} \alpha_i b_i$, then $h_\alpha^*(\alpha') = 1$. Suppose $\alpha' \notin L(b)$ and $y = (y_1, y_2, ...)$ is the point of $U(c_0, h_\alpha)$ defined as follows: $y_1 = 1/\alpha_1$ and $y_i = 0$ if i > 1. Then $\alpha'(y) = 1$ so $\alpha' \in R(c_0, h_\alpha)$ and $L(b) \neq R(c_0, h_\alpha)$. Suppose now that $\alpha' \in L(b)$. Then there exists an integer n such that $\alpha_n \neq 0$ and $\alpha_{n+1} = 0$. Let f be the point of $(c_0, h_\alpha)^*$ defined as follows:

$$f_i = \alpha_i$$
 if $1 \le i \le n-1$ and $f_i = \frac{\alpha_n}{2^{i-n+1}}$ if $i \ge n$.

Then $f \notin L(b)$ and it can be shown that f is regular on (c_0, h_α) . Hence $L(b) \neq R(c_0, h_\alpha)$, and the theorem is proved.

DEFINITION 5.2. Suppose g is a norm on l_1 . The statement that g has property r means that

- (1) g is equivalent to $|\cdot|_1$; and
- (2) if $x = (x_1, x_2, ...)$ is a point in l_1 and $s \in \mathcal{P}$ and if $y = (y_1, y_2, ...)$ is the point in l_1 such that for each i, $y_i = |x_{s(i)}|$, then g(y) = g(x).

THEOREM 5.4. Suppose that g is a norm on l_1 and g has property r. Suppose that $f \in (l_1, g)^*$ and that if j is a positive integer then $|f_f| < \text{lub}_i |f_i|$. Then $f \notin R(l_1, g)$.

This result is well known in case $g = |\cdot|_1$ and a proof may be constructed similar to the proof of that case.

THEOREM 5.5. Suppose that $\alpha \in Z - Z_0$. Then only one of the following statements is true.

- (1) For each positive integer i, $\alpha_i = \alpha_1$.
- (2) $R(d_{\alpha}, h_{\alpha})$ is a proper subset of $R(l_1, |\cdot|_1)$.

Proof. Suppose (1) is true. Then the transformation T from (d_{α}, h_{α}) to $(l_1, |\cdot|_1)$ defined by $T(x) = \alpha_1 x$, for each $x \in d_{\alpha}$, is a congruence and $R(d_{\alpha}, h_{\alpha}) = R(l_1, |\cdot|_1)$. So (2) is not true. It is well known that $f \in (l_1, |\cdot|_1)^*$ then $f \notin R(l_1, |\cdot|_1)$ if and only if for each positive integer j, $|f_j| < \text{lub}_i \{|f_i|\}$. Therefore, since h_{α} has property r, $R(d_{\alpha}, h_{\alpha}) \subseteq R(l_1, |\cdot|_1)$. Suppose (1) is not true. Let n be the least integer such that $\alpha_n > \alpha_{n+1}$. Let f be the point of $(d_{\alpha}, h_{\alpha})^*$ defined as follows:

$$f_i = 1$$
 if $1 \le i \le n$ and $f_i = \frac{i-n}{i-n+1}$ if $i > n$; $f \in R(l_1, |\cdot|_1)$.

However it can be shown that f is not in $R(d_{\alpha}, h_{\alpha})$, so (2) is true.

Thus it is seen that, in case $\alpha \in Z - Z_0$, $R(d_{\alpha}, h_{\alpha})$ is largest when (d_{α}, h_{α}) is congruent to $(l_1, |\cdot|_1)$.

DEFINITION 5.3. Suppose (S, g) is a normed linear space and H is a linear manifold in $(S, g)^*$. The statement that H is maximal regular in $(S, g)^*$ means that

- (1) $H\subseteq R(S,g)$.
- (2) If L is a linear manifold in $(S, g)^*$ and H is a proper subset of L, then there exists a point $f \in L H$ such that f is not in R(S, g).

DEFINITION 5.4. Suppose that (S, g) is a normed linear space. Then Q denotes the transformation from (S, g) to $[((S, g)^*, g^*)^*, g^{**}]$ defined as follows: if $x \in S$. and $f \in (S, g)^*$ then $Q_{(x)}(f) = f(x)$. Q(S) denotes the image of Q.

THEOREM 5.6. Suppose g is a norm on l_1 and g has property r. Suppose further that the ordinary basis e for (l_1, g) is orthogonal. Then G_e is maximal regular.

Proof. By Theorem 5.1, $G_e \subseteq R(l_1, g)$. Suppose L is a linear manifold in $(l_1, g)^*$ and G is a proper subset of L. Suppose further that $f \in L - G_e$ and $T_1(f) = (f_1, f_2, \ldots)$. Consider the following two cases.

- I. Suppose there exists a positive integer n such that $F_n = T_1^{-1}(f_{n+1}, f_{n+2}, \ldots)$ is not regular on (l_1, g) . In this case let y be the point of G_e such that $y_i = -f_i$ if $1 \le i \le n$ and $y_i = 0$ if i > n. Then $y + f \in L$ and y + f is not regular on (l_1, g) .
- II. Suppose that for each positive integer n, $F_n = T_1^{-1}(f_{n+1}, f_{n+2}, \ldots)$ is regular on (l_1, g) . Let n_1 denote the least integer such that $|f_{n_1}| = |T_1(f)|_m$. Let n_2 denote the least integer such that $n_2 > n_1$ and $|f_{n_2}| = |T_1(F_{n_1})|_m$. If j is a positive integer, $j \ge 2$, let n_j denote the least integer such that $n_j > n_{j-1}$ and $|f_{n_j}| = |T_1(F_{n_j-1})|_m$. Then $|f_{n_1}|, |f_{n_2}|, \ldots$ is a nonincreasing subsequence of $|f_1|, |f_2|, \ldots$ converging to a number k > 0. Let f_{s_1}, f_{s_2}, \ldots be the subsequence of f_1, f_2, \ldots to which the number f_j belongs only in the case that $|f_j| \ge k$. For each positive integer i, let $d_i = |f_{s_i}| k + k/2s_i$. Define $y = (y_1, y_2, \ldots)$ as follows:

$$y_i = 0$$
 if $i \neq s_j$ for every j ,
 $= -d_j$ if $i = s_j$ for some j and $f_{s_j} \ge 0$,
 $= d_j$ if $i = s_j$ for some j and $f_{s_i} < 0$.

It can be shown that $Y = T_1^{-1}(y)$ is in G_e so $Y + f \in L$ and f + Y is not regular on (l_1, g) .

COROLLARY 5.2. Suppose $\alpha \in \mathbb{Z}_1$. Then $Q(c_0)$ is maximal regular in

$$[((c_0, h_\alpha)^*, h_\alpha^*), h_\alpha^{**}].$$

COROLLARY 5.3. Suppose $\alpha \in Z - Z_0$ and e is the ordinary basis for (d_{α}, h_{α}) . Then $Q(G_e)$ is maximal regular in $[((G_e, h_{\alpha}^*)^*, h_{\alpha}^{**})^*, h_{\alpha}^{***}]$.

Conjecture. Suppose (S, g) is a normed linear space. Then Q(S) is maximal regular in $[((S, g)^*, g^*)^*, g^{**}]$.

REFERENCES

1. M. M. Day, Normed linear spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, Heft 21, Springer-Verlag, Berlin, 1958. MR 20 #1187.

- 2. D. J. H. Garling, On symmetric sequence spaces, Proc. London Math. Soc. (3) 16 (1966), \$5-106. MR 33 #537.
- 3. A. Pełczyński and W. Z. Szlenk, An example of a non-shrinking basis, Rev. Roumaine Math. Pures Appl. 10 (1965), 961-966. MR 34 #3284.
- 4. J. R. Retherford, A semishrinking basis which is not shrinking, Proc. Amer. Math. Soc. 19 (1968), 766. MR 37 #739.
- 5. W. Ruckle, Symmetric coordinate spaces and symmetric bases, Canad. J. Math. 19 (1967), 828-838. MR 38 #4977.
- 6. W. L. C. Sargent, Some sequence spaces related to the l^p spaces, J. London Math. Soc. 35 (1960), 161-171. MR 22 #7001.
- 7. I. Singer, Sur les espaces de Banach à base absolut, canoniquement équivalents à un dual d'espace de Banach, C.R. Acad. Sci. Paris 251 (1960), 620-621. MR 22 #9841.
- 8. B. E. Wilder, *Manifolds in a conjugate space*, Ph.D. dissertation, Auburn University, Auburn, Alabama, 1966.

AUBURN UNIVERSITY,
AUBURN, ALABAMA 36830
AUBURN UNIVERSITY AT MONTGOMERY,
MONTGOMERY, ALABAMA 36104