ON HIGHER-DIMENSIONAL FIBERED KNOTS

BY J. J. ANDREWS AND D. W. SUMNERS(1)

Abstract. The geometrical properties of a fibration of a knot complement over S^1 are used to develop presentations for the homotopy groups as modules over the fundamental group. Some homotopy groups of spun and twist-spun knots are calculated.

I. Introduction. Let K^n be a smooth submanifold of S^{n+2} which is homeomorphic to S^n . The pair (S^{n+2}, K) is a knot, with complement $S = S^{n+2} - K$. A tubular neighborhood of K in S^{n+2} provides us with a map $p: S \to S^1$, which in some cases is a fiber map [7]. When the complement fibers, the homotopy exact sequence of the fibration $F^{n+1} \to S \xrightarrow{p} S^1$ tells us that $\Pi_i(F) \cong \Pi_i(S)$, $i \ge 2$, $\Pi_1(F) \cong [\Pi_1(S), \Pi_1(S)]$ the commutator subgroup of $\Pi_1(S)$, and $\Pi_1(S) \cong \Pi_1(F) \times Z$ the semidirect product of $\Pi_1(F)$ and the integers.

If $\Pi_1(S) = \mathbb{Z}$, and $n \ge 4$, a necessary and sufficient condition that a fibration exists is that the groups $\Pi_i(S)$ are finitely generated as abelian groups for all i [3]. In this case the fiber is simply connected. If $\Pi_1(S) \ne \mathbb{Z}$, there are certain obstructions which determine whether or not S fibers over the circle [5].

There are many interesting cases where S fibers when $\Pi_1(S) \neq Z$, and the fact that $\Pi_1(F) \neq 1$ can be used to obtain information about the groups $\Pi_1(S)$ and about the homotopy type of \widetilde{S} , the universal cover of S. §II of this paper studies the general situation of a fiber bundle $F^{n+1} \to S \to S^1$ where $\Pi_1(F) \neq 1$ and $F \simeq \overline{F}$, a smooth compact bounded manifold with $\partial \overline{F}$ homeomorphic to S^n .

In §III we study the particular case of fibered k-spun knots. If a knot fibers, then the k-spin of the knot fibers by k-spinning the fibration. For a knot of S^1 in S^3 , the k-spun knot fibers if and only if the knot of S^1 in S^3 fibers. In this case, no matter which two (nontrivial) Neuwirth knots one k-spins, the universal covers of the resulting knot complements are found to be homotopy equivalent.

In §IV we develop an algebraic result about extending module presentations. If

$$1 \longrightarrow H \xrightarrow{\alpha} G \xrightarrow{\beta} T \longrightarrow 1$$

Received by the editors September 15, 1969.

AMS 1970 subject classifications. Primary 57C45, 55A25.

Key words and phrases. Fibered knots, twist-spun knots, module structure of homotopy groups.

⁽¹⁾ This work was partially supported by NSF grant GP-8417.

is an exact sequence of groups such that β_{γ} =identity on T (G is then the semidirect product of H and T), and A is a finitely presented ZH-module (ZH=integral group ring of H) such that T acts on A, then the given presentation for A as a ZH-module can be extended to a presentation of A as a ZG-module. This theorem is then used to determine the structure of the groups $\{\Pi_i(S)\}$ as $Z\Pi_1(S)$ modules and the groups $\{H_i(S^*; Z)\}$ as Λ -modules, where S^* =infinite cyclic cover of S and Λ =integral group ring of J(t), the infinite cyclic group of covering transformations of S^* generated by t.

In §V we apply the results of §IV to calculate the homotopy structure of simple fibered knots. A fibered knot (S^{n+2}, K^n) is said to be simple if $\Pi_i(S) = 0$, $2 \le i \le n-1$. Any fibered (S^4, K^2) knot is said to be simple. For example, any k-spun Neuwirth knot is simple by a theorem of Epstein [4]. For simple knots, complete results are obtained for $\Pi_n(S)$ as a $Z\Pi_1(S)$ -module when the commutator subgroup $[\Pi_1(S), \Pi_1(S)]$ is a finite group.

In $\S VI$ we calculate as examples the homotopy structure of the 5-twist-spun trefoil and the k-spun trefoil.

We should like to thank the referee for helpful comments, in particular for suggestions simplifying the proofs of Theorems 1 and 9.

II. General theorems on fibered knots. Consider the bundle $F^{n+1} \to S \to S^1$ where $S = S^{n+2} - K^n$ a knot complement, $n \ge 2$. Let \approx denote diffeomorphism, \approx denote homotopy equivalence, and \bigvee denote wedge product of spaces. Let \widetilde{S} , \widetilde{F} denote the universal covers of S and F. Clearly $\widetilde{S} \approx \widetilde{F} \times R^1 \simeq \widetilde{F}$. Let $G = \Pi_1(F)$. and Π_G denote the identity of G. Let $V^+ = \bigvee_{g \in G} K_g^n$ be the wedge product of copies of K indexed by $G \in G$ with the identification topology.

Now the fiber F deformation retracts to \overline{F} , a compact bounded (n+1)-manifold with $\partial \overline{F} \approx K$. The universal cover \widetilde{F} induces \overline{F}^{\sim} over \overline{F} , and \widetilde{F} deformation retracts to \overline{F}^{\sim} . We have $\partial \overline{F}^{\sim} = \bigcup_{g \in G} K_g^n$ the disjoint union of copies of K indexed by K, the group of covering translations of K.

THEOREM 1. If $G = \Pi_1(F)$ is not a finite group, then

- (i) $\Pi_i(F) \cong \Pi_i(\overline{F}^{\sim}) \cong \Pi_i(\partial \overline{F}^{\sim}) \oplus \Pi_i(\overline{F}^{\sim}, \partial \overline{F}^{\sim})$ as ZG-modules, $i \geq 2$,
- (ii) $\Pi_i(V^+)$ is a direct summand of $\Pi_i(S)$ as an abelian group for all i.

Proof. There is a retraction $r: \overline{F}^{\sim} \to \partial \overline{F}^{\sim}$ because the obstructions lie in $H^{i+1}(\overline{F}^{\sim}, \partial \overline{F}^{\sim}; \Pi_i(\partial \overline{F}^{\sim}))$ which vanish for i < n because $\Pi_i(\partial \overline{F}^{\sim}) = 0$ in this range, and for i = n because \overline{F}^{\sim} is not compact if G is not finite. The retraction commutes with covering translations in \overline{F}^{\sim} , so (i) is proved.

Choosing a base point $* \in K_{1g}$, let $*_g \in K_g$ represent points in the same fiber as *, and choose arcs $a_g \subseteq \overline{F}^{\sim}$ from * to $*_g$, such that $a_{g_1} \cap a_{g_2} = *$ if $g_1 \neq g_2$, and such that the projection of a_g in F is in the homotopy class of $g \in G$. Let $\widetilde{V}^+ = \partial \overline{F}^{\sim} \cup (\bigcup_{g \in G} a_g)$. Then $\widetilde{V}^+ \simeq V^+$ by shrinking the arcs.

There is a retraction from \overline{F}^{\sim} to \widetilde{V}^{+} for the same reasons as before, only this time the splitting works at the abelian group level.

Now, let $V = \bigvee_{g \in (G-1_G)} K_g^n$ be the wedge product of copies of K indexed by elements in the set $\{G-1_G\}$. $(V^+ \simeq V \text{ iff } G \text{ is infinite.})$

THEOREM 2. If G is a finite group then $\widetilde{S} \simeq Q \vee V$ where Q is a simply-connected finite similarial complex of dimension less than or equal to n.

Proof. \overline{F}^{\sim} is compact since G is finite, and $\overline{F}^{\sim} = \bigcup_{i=1}^{|G|} K_i$ the finite union of copies of K, where |G| = order of G and $K_1 = K_{1_G}$. Choose arcs a_i from $* \in K_1$ to $*_i \in K_i$ as in the proof of Theorem 1. We will deformation retract away from K_1 and isolate K_2 in a wedge product decomposition for \overline{F}^{\sim} . That is, we will obtain a homotopy equivalence $\overline{F}^{\sim} \simeq K_2 \vee Q_2$ where Q_2 is a bounded (n+1)-manifold with $\partial Q_2 \approx K_1 \# K_2$ (connected sum).

Collapse away along a small tubular neighborhood of a_2 until the boundary of a small collar neighborhood of K_2 is reached [Figure 1].

 K_2 is a homotopy sphere, so the collar now deformation retracts from an *n*-disc D_2^n on its boundary component to $K_2 \cup \text{arc} \cup L_2$ where $L_2 \approx K_2 - \text{Int } D_2^n$, and the

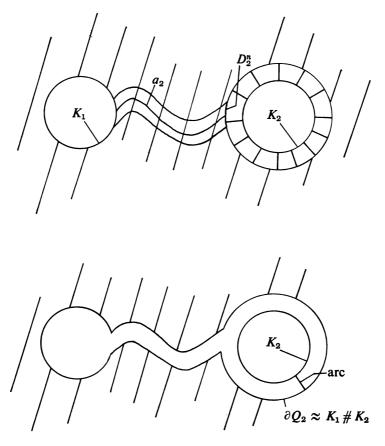


FIGURE 1

arc is "straight" in the product structure of the collar. Continuing this process, we obtain $K \simeq Q' \lor \bigvee_{i=2}^{|G|} K_i = Q' \lor V$ where Q' is a bounded (n+1)-manifold with $\partial Q' \approx \#_{i=1}^{|G|} K_i$. Clearly then $K \simeq Q \lor V$, Q a connected simply-connected n-complex obtained from Q' by collapsing out all the top-dimensional cells.

COROLLARY 3. G a finite group and S a simple fibered knot then $\tilde{S} \simeq V$.

Proof. From the proof of Theorem 2 we have $\overline{F}^{\sim} \cong Q' \vee V$. Q' is contractible since S is a simple knot.

We would also note that if G is a finite group, then from Serre's theorem [6, p. 509] we have that $\Pi_i(\overline{F}^*) \cong \Pi_i(S)$ is a finitely generated abelian group for all $i \geq 2$, since \overline{F}^* compact.

III. Fibered spun knots. Let $f: B^n \to B^{n+2}$ be a smooth proper embedding $(n \ge 1)$ of balls. We obtain the knot (S^{n+2+k}, K^{n+k}) by k-spinning $(B^{n+2}, f(B^n))$ in the following manner [4]:

$$S^{n+2+k} = (S^k \times B^{n+2}) \bigcup_{S^k \times f(S^{n-1})} (B^{k+1} \times S^{n+1}),$$

$$S^{n+k} \approx K^{n+k} = (S^k \times f(B^n)) \bigcup_{S^k \times f(S^{n-1})} (B^{k+1} \times f(S^{n-1})).$$

Note. We allow the boundary sphere pair of the ball pair to be knotted.

LEMMA 4. (S^{k+3}, K^{k+1}) a k-spun $(B^3, f(B^1))$ fibers iff $[\Pi_1(B), \Pi_1(B)]$ is finitely generated, where $B = B^3 - f(B^1)$.

Proof. In this case $\Pi_1(S) = \Pi_1(B)$ where $S = S^{k+3} - K^{k+1}$. If S fibers over S^1 , then clearly $[\Pi_1(B), \Pi_1(B)]$ is finitely generated. Now $(B^3, f(B^1))$ determines a unique sphere pair $(S^3, f'(S^1))$, and by the Neuwirth-Stallings Theorem [7, p. 475], $S^3 - f'(S^1)$ fibers if $[\Pi_1(S), \Pi_1(S)] \cong [\Pi_1(B), \Pi_1(B)]$ is finitely generated. One obtains the fibration for S by k-spinning the fibration of the ball pair. Twist spinning a fibered knot to obtain a fibration is described in detail by Zeeman [7]. In order to obtain a fibration by spinning only, one neglects to twist as the spinning goes on.

This process is considered in greater detail in the proof of Theorem 6. Lemma 4 says that if (S^{k+3}, K^{k+1}) is a k-spun fibered knot, then in fact it is a k-spun Neuwirth knot. As before, let $V^+ = \bigvee_{g \in G} S^{k+1}$.

THEOREM 5. Let (S^{k+3}, K^{k+1}) be a k-spun Neuwirth knot of genus $g \ge 1$. Then $\tilde{S} \simeq V^+ \vee V^+ \vee \cdots \vee V^+$ (2g-fold wedge products).

Proof. We will study carefully the geometry of the spun fibration. Figure 2 describes the fibration of $B^3 - f(B^1)$ by M_g^2 the "partially-bounded" punctured torus of genus g [Figure 2].

 $M_{g,\phi}^2$ is the fiber at time $\phi \in S^1$. $\partial M_{g,\phi}^2$ is an open arc lying on ∂B^3 , and is the fiber of the bundle induced on $S^2 - f(S^0)$.

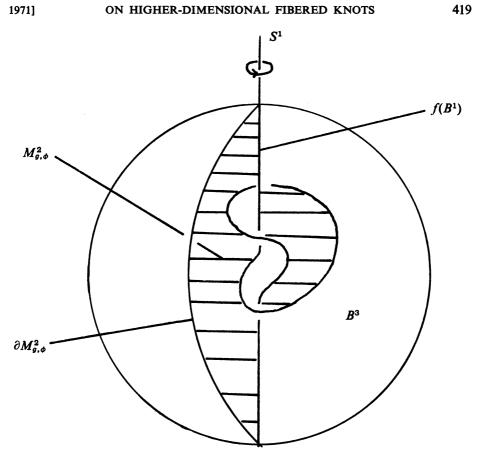


FIGURE 2. g=1.

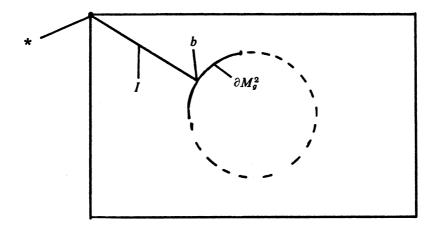


FIGURE 3. g=1.

The spun fiber $F_{g,\phi}$ of $S^{k+3} - K^{k+1}$ at time ϕ is the following:

$$F_{g,\phi} = (S^k \times M_{g,\phi}^2) \bigcup_{S^k \times \partial M_{g,\phi}^2} (B^{k+1} \times \partial M_{g,\phi}^2).$$

Let $L_{2g}^p = S^p \vee \cdots \vee S^p$ the 2g-fold wedge product of S^p with itself. Now M_g^2 deformation retracts to $\partial M_g^2 \cup I \cup L_{2g}^1$ where I (Figure 2) is an arc in M_g^2 running from a point $b \in \partial M_g^2$ to * the wedge point of L_{2g}^1 [Figure 3].

 ∂M_g^2 deformation retracts to b. These deformations produce a deformation retraction from F_g to $F_g' = (S^k \times L_{2g}^1) \cup_{S^k \times \bullet} (B^{k+1} \times *)$ [Figure 4].

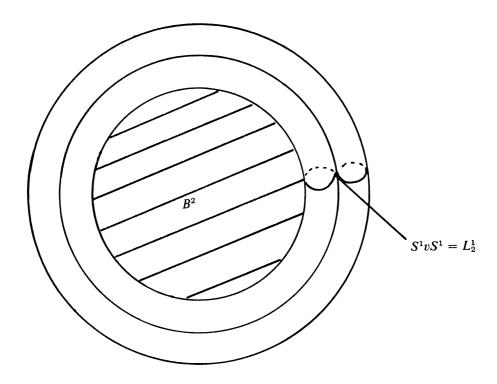


FIGURE 4. k=1, g=1.

Consider now $P = (S^k \times S^1) \cup_{S^k \times \bullet} (B^{k+1} \times *)$. Thinking of S^1 as the union of two arcs I_1 and I_2 , we have by shrinking I_1 to a point that $P \simeq P'$, where $P' = (S^k \times S^1) \cup_{S^k \times I_1} (B^{k+1} \times I_1)$ [Figure 5].

Now $P' \simeq S^1 \vee S^{k+1}$ by collapsing $B^{k+1} \times I_1$ to I_1 , and then shrinking I_2 to a point. Hence $F'_g \simeq L^1_{2g} \vee L^{k+1}_{2g}$. Since a homotopy equivalence of CW complexes induces a homotopy equivalence of their universal covers, we have that $\widetilde{F}_g \simeq (L^1_{2g} \vee L^{k+1}_{2g})^{\sim}$, the latter obtained (up to homotopy type) by taking the universal cover of L^1_{2g} (a snowflake with four g arcs emanating from each vertex) and attaching a copy of L^{k+1}_{2g} to each vertex. Now $[\Pi_1(S), \Pi_1(S)] \cong \Pi_1(M^2_g) \cong \Pi_1(L^1_{2g})$

= free group on 2g generators. By squeezing the 1-skeleton to a point, we have $\tilde{S} \simeq V^+ \vee \cdots \vee V^+$ the 2g-fold wedge product of V^+ with itself. This completes the proof of Theorem 6.

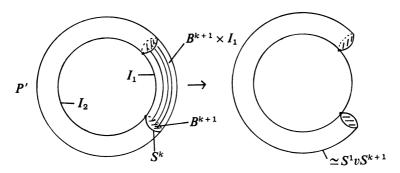


FIGURE 5

In [1], Andrews and Curtis ask the following question: If (S^4, K^2) is the 1-spun trefoil, and $S=S^4-K^2$, is $\Pi_3(S)=0$? Theorem 5 answers this question in the negative.

COROLLARY 6. Let (S^{k+3}, K^{k+1}) be a k-spun Neuwirth knot of genus $g \ge 1$. Then $\tilde{S} \simeq \bigvee_{i=1}^{\infty} S_i^{k+1}$ the infinite wedge of k+1-spheres.

Proof.
$$V^+ \vee \cdots \vee V^+$$
 (2g times) = $\bigvee_{i=1}^{\infty} S_i^{k+1}$ for all $g \ge 1$.

This means that if we k-spin any two nontrivial Neuwirth knots, the universal covers of the resulting knot complements are homotopy equivalent. In fact, this also is true for iterated k-spinning (k allowed to vary) of Neuwirth knots, and will be dealt with in a future paper.

COROLLARY. Let (S^{k+3}, K^{k+1}) be a k-spun Neuwirth knot of genus g. Then $\Pi_{k+1}(S)$ is a free ZG-module on 2g generators.

Proof. Select a lift of L_{2g}^{k+1} to \tilde{F}_g . Each of the spheres in the lift is a free generator of

$$H_{k+1}(\widetilde{F}_g) \cong_{\mathbb{Z}_G} \Pi_{k+1}(F_g) \cong \Pi_{k+1}(S).$$

The above shows that if (S^{k+3}, K^{k+1}) is a k-spun Neuwirth knot of genus g, then $\Pi_{k+1}(S)$ is the free abelian group on 2g copies of the symbols in $\{[\Pi_1(S), \Pi_1(S)]\}$. Compare the result of Epstein [4], which says that in this case $\Pi_{k+1}(S)$ is the free abelian group on the symbols $\{[\Pi_1(S), \Pi_1(S)] - \mathrm{id}\}$. (There is in this case a 1-1 correspondence between $\{[\Pi_1(S), \Pi_1(S)] - \mathrm{id}\}$ and 2g copies of $[\Pi_1(S), \Pi_1(S)]$.)

IV. Change of rings. Let

$$1 \longrightarrow H \xrightarrow{\alpha} G \xrightarrow{\beta} T \longrightarrow 1$$

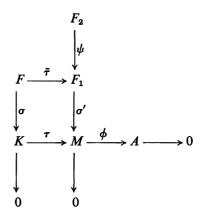
be an exact sequence of groups such that $\beta\gamma = 1_T$. Then G is the semidirect product of H and T so that each element of G can be written uniquely as ht where $h \in \alpha(H) = H$ and $t \in \gamma(T) = T$. Now given a ZH-module A the group $ZG \otimes_{ZH} A$ can be considered as a ZG-module under the action $g \cdot (g' \otimes a) = gg' \otimes a$ where $g, g' \in ZG$ and $a \in A$. Also if we assume T acts on A as a group of automorphisms then A can also be considered as a ZG-module under the action ga = (ht)a = h(ta) where $t \in T$, $h \in H$, $a \in A$ and $g = ht \in G$. If T is finitely generated by, say, t_1, \ldots, t_k and A is finitely generated as a ZH-module by $\overline{X}_1, \overline{X}_2, \ldots, \overline{X}_n$ then the action of T on A may be given by a matrix τ coming from $t_p(\overline{X}_i) = \sum \lambda_i^p \overline{X}_j$. Let τ be the (nk+n) matrix

$$\begin{aligned} t_1 I - [\lambda_{if}^1] \\ \vdots \\ t_k I - [\lambda_{if}^k] \end{aligned}$$

where I is the $(n \times n)$ identity matrix, and $[\lambda_{ij}^p]$ is the $(n \times n)$ matrix of the coefficients. We shall in this section use the same symbols for a map and the associated matrix given by some selection of generators. Content will make the meaning clear.

LEMMA 8. Suppose $K \xrightarrow{\tau} M \xrightarrow{\phi} A \rightarrow 0$ is an exact sequence of R-modules with M finitely presented and K finitely generated. Let ψ be a presentation matrix for M. Then a presentation matrix for A is $\binom{\psi}{\tau}$.

Proof. Let $F_2 \stackrel{\psi}{\longrightarrow} F_1 \stackrel{\sigma'}{\longrightarrow} A \longrightarrow 0$ be a presentation of M by free finitely generated R-modules F_1 , F_2 and let $F \stackrel{\sigma}{\longrightarrow} K \longrightarrow 0$ be a map of a free finitely generated R-module F onto K. We have the following diagram



Since F is projective there is a map $\tilde{\tau} \colon F \to F_1$ such that $\sigma' \tilde{\tau} = \tau \sigma$. It follows that Ker $\phi \sigma' = \text{Im } \tilde{\tau} + \text{Im } \psi$ so that matrix associated with this presentation of A is $\binom{\tau}{\tau}$. But the matrix $\tilde{\tau} = \tau$.

THEOREM 9. Given

$$0 \longrightarrow H \xrightarrow{\alpha} G \xrightarrow{\beta} T \longrightarrow 0$$

an exact sequence of groups with T finitely generated and $\beta \gamma = 1_T$. Let ψ be a presentation matrix for a finitely presented ZH-module A on which T acts as a group of automorphism. Then A is a ZG-module with presentation matrix $(^{\psi}_{\tau})$ where τ is as in (1).

Proof. Let

$$F_2 \xrightarrow{\psi} F_1 \xrightarrow{\phi} A \longrightarrow 0$$

be an appropriate presentation of A. We have the exact sequence of ZG-modules

$$ZG \otimes_{Z_H} F_2 \xrightarrow{1 \otimes \psi} ZG \otimes_{Z_H} F_1 \xrightarrow{1 \otimes \phi} ZG \otimes_{Z_H} A \longrightarrow 0.$$

Let A' be the set A with the ZG-structure obtained from the action of ZH and T on A. Then there is a natural map $\alpha \colon ZG \otimes_{ZH} A \to A'$ given by $\alpha(\lambda \otimes X) = \lambda X$. Clearly the kernel K of α is generated by all elements of the form $\{\lambda \otimes X - 1 \otimes (\lambda X)\}$ where (λX) is the element of A corresponding to λX in A'. (A' = A, setwise.) Now K is generated by $\{t_p \otimes \phi(X_i) - 1 \otimes \sum_j \phi_{ij}^p X_j\}$ for all p, i. That is, K is generated by the images of $\{t_p \otimes X_i - 1 \otimes \sum_j \lambda_{ij} X_j\}$ under $1 \otimes \phi$. The desired presentation now follows from Lemma 8.

V. Applications. Let Q^{n+2} be an (n+2)-manifold which fibers over S^1 with fiber an (n+1)-manifold F^{n+1} . Let $p\colon Q\to S^1$ be the fiber map. We think of Q as the product $F\times I$ with $F\times 0$ and $F\times 1$ identified by a homeomorphism $\hbar\colon F\times 1\to F\times 0$ given by $\hbar(X,1)=(h(X),0)$. We can without loss of generality assume h(q)=q for some $q\in F$. Let $t'\colon I\to q\times I\subset F\times I$ be the product path from $q\times 1$ to $q\times 0$ in $F\times I$. Then (under h) t' corresponds to an element $t\in \Pi_1(Q,q\times 1)$ which maps onto a generator of $\Pi_1(S^1)$ under the fiber map p_* . From the homotopy exact sequence of the fibration, this gives us a semidirect splitting $\Pi_1(S)\cong \Pi_1(F)\times Z$. If i denotes the inclusion $i\colon F\to Q$ by i(x)=(x,1) and $\beta\in \Pi_k(F,q)$ we then have $t\cdot i_*(\beta)=i_*(h_*\beta)$.

We have the following corollary to Theorem 9:

COROLLARY 10. Suppose $\Pi_k(F)$ is finitely presented as a $Z\Pi_1(F)$ -module by a matrix M. Then $\Pi_k(Q) \cong \Pi_k(F) k \geq 2$ is presented as a $Z\Pi_1(Q)$ -module by $\binom{M}{t-h_*}$, where $t-h_*$ denotes the appropriate matrix.

Consider the infinite cyclic cover Q^* of Q. We think of Q^* in two different ways. First as the product $Q^* \approx F \times R$, and second as the union of $X_i = (F \times I)_i$ ($i \in \mathbb{Z}$) with $(F \times 1)_i$ identified with $(F \times 0)_{i+1}$ by the homeomorphism h. Now t acts on $H_k(Q^*) \cong H_k(F)$ by $t(u) = h_*(u)$ where $u \in H_k(F)$ and $h_*: H_k(F) \to H_k(F)$ is the automorphism induced by h. Let $\Lambda =$ the group ring of the infinite cyclic group generated by t.

COROLLARY 11. Suppose $H_k(F)$ is finitely presented as an abelian group by a matrix M. Then $H_k(Q^*) \cong H_k(F)$ is presented as a Λ -module by $\binom{M}{t-h_*}$.

Now assume S and F are as in §I. That is, S is the complement of K^n in S^{n+2} which fibers over S^1 with fiber F^{n+1} .

THEOREM 12. Suppose that $G = \Pi_1(F)$ is finite, and that S is a simple fibered knot. Then $\Pi_n(F)$ is presented as a **Z**G-module by the (1×1) matrix $(\sum_{g \in G} g)$.

Proof. Take F to be compact and bounded with $\partial F \approx K$. Then the universal cover \tilde{F} is a compact contractible manifold with $\partial \tilde{F} = \bigcup_{g \in G} K_g$, as in the proof of Corollary 3. By Lefschetz Duality, $H_n(\tilde{F}, \partial \tilde{F}) \cong H^1(\tilde{F}) = 0$, and the homology exact sequence of the pair $(\tilde{F}, \partial \tilde{F})$ yields

$$H_{n+1}(\widetilde{F}, \partial \widetilde{F}) \xrightarrow{\partial} H_n(\partial \widetilde{F}) \longrightarrow H_n(\widetilde{F}) \longrightarrow 0.$$

 $H_{n+1}(\tilde{F}, \partial \tilde{F})$ is free abelian on 1 generator ξ , and $H_n(\partial \tilde{F})$ is free **Z**G-module on 1 generator α , and $\partial \xi = \sum_{g \in G} g\alpha$. By Lemma 8, the result follows.

THEOREM 13. Suppose (S^{n+2}, K^n) is a simple fibered knot, and that $G = \Pi_1(F) = [\Pi_1(S), \Pi_1(S)]$ is finite, then $\Pi_n(S)$ is presented as a $\mathbb{Z} \Pi_1(S)$ -module by the (2×1) -matrix

$$\left(\sum_{g\in G}g\atop t-1\right).$$

Proof. We can without loss of generality replace the complement $S^{n+2} - K$ by the closed complement S, a manifold-with-boundary in which the entire manifold S fibers over S^1 with fiber F, and the fibration induced on ∂S has fiber $\partial F \approx K$. Moreover, up to homotopy, the fibering on the boundary is the product bundle, because any orientation preserving homeomorphism $h: K \to K$ is homotopic to the identity. We can take the homotopy class of the embedded sphere K as the generator for $\Pi_n(F)$ as a $\mathbb{Z}G$ -module. Clearly then h_* is the identity automorphism on $\Pi_n(F)$.

We are left with the case of simple fibered knots whose commutator subgroups are not finite. The general case, unfortunately, seems not so clear as the special case of k-spun Neuwirth knots treated earlier in §III. We do, however, have the following corollary to Theorem 1:

COROLLARY 14. (S^{n+2}, K^n) a simple fibered knot, and $G = \Pi_1(S)$ is infinite. Then $\Pi_n(S)$ is free abelian, and $\Pi_n(S) \cong \mathbb{Z}G \oplus H_n(\tilde{F}, \partial \tilde{F})$.

Proof. We have

$$\Pi_n(\widetilde{S}) \cong \Pi_n(F) \cong_{\mathbb{Z}G} H_n(\widetilde{F}) \cong_{\mathbb{Z}G} H_n(\partial \widetilde{F}) \oplus H_n(\widetilde{F}, \partial \widetilde{F}) \cong_{\mathbb{Z}G} \mathbb{Z}G \oplus H_n(\widetilde{F}, \partial \widetilde{F}).$$

 $H_n(\widetilde{F})$ is free abelian, because F^{n+1} is a manifold-with-boundary, hence $F \cong X$ an n-dimensional finite simplicial complex. Now $H_n(\widetilde{X}) \cong \mathbb{Z}_n(\widetilde{X}) \subset C_n(\widetilde{X})$, so $H_n(\widetilde{X})$ is free abelian. Note that $H_n(\widetilde{F}, \partial \widetilde{F}) \cong H_n(F, \partial F; \{\mathbb{Z}G\}) \cong H^1(F; \{\mathbb{Z}G\}) \cong H^1(G; \mathbb{Z}G)$ where $\{\mathbb{Z}G\}$ denotes local coefficients and the last isomorphism is due to the fact that \widetilde{F} is simply connected.

VI. Examples. Many examples of simple knots may be generated by Zeeman's twist-spinning methods [7]. For example, one can obtain fibered knots of S^2 in S^4 by twist-spinning the bridge knots. The fiber obtained is the punctured lens space L(p, g) (p odd) [7, Corollary 5].

Example 1. 5-twist-spun trefoil.

By 5-twist-spinning the trefoil, we obtain the knot (S^4, K^2) and the fibration $F^3 \to S = S^4 - K^2 \to S^1$, $F^3 =$ punctured dodecahedral space. From Zeeman [7], we have that

$$\Pi_1(S) = (x, y, t \mid x^5 = (xy)^3 = (xyx)^2, t^{-1}xt = y, t^{-1}yt = yx^{-1}),$$

$$G = \Pi_1(F) = (x, y \mid x^5 = (xy)^3 = (xyx)^2).$$

In the presentation for $\Pi_1(S)$, the generator t corresponds to the generator of $\Pi_1(S^1)$. Now G is the binary dodecahedral group of order 120. By Corollary 4, the universal cover \tilde{F} is homotopy equivalent to the wedge product of 119 2-spheres. (\tilde{F} is a 3-sphere punctured 120 times.) By Theorem 14, $\Pi_2(S)$ is presented as a $Z\Pi_1(S)$ -module by the (2×1) -matrix

$$\left(\sum_{g\in G}g\atop t-1\right).$$

Since F is a homology 3-ball, all the Alexander invariants of the infinite cyclic cover S^* are trivial by Corollary 11.

Example 2. 2-twist-spun trefoil.

This knot fibers with fiber punctured L(3, 1). In this case $\Pi_1(S) = (a, b \mid aba = bab \ b = a^2ba^{-2}) \cong (u, t \mid u^3 = 1 \ tut^{-1} = u^2)$. $G = \Pi_1(F) = (u \mid u^3 = 1)$. The isomorphism can be realized by setting $ab^{-1} = u$, a = t. In the second presentation for $\Pi_1(S)$, t represents the generator of $\Pi_1(S^1)$. Exactly as before, $\Pi_2(S)$ is presented as a $Z\Pi_1(S)$ -module by the (2×1) -matrix $\binom{1+u+u^2}{t-1}$. The universal cover F is homotopy equivalent to $S^2 \vee S^2$. $H_1(S^*)$ is presented as a Λ -module by the (2×1) -matrix $\binom{t^3}{t^2}$.

Example 3. k-spun trefoil.

See [2], [4]. The fundamental group of the trefoil is $(t, u, v: tut^{-1} = vu, tvt^{-1} = vu^{-1}v^{-1})$ where t goes onto the homology generator, and u, v generate the homology of the Seifert surface.

Now if Z is the Seifert surface and p the base point we choose \tilde{p} in the universal cover \tilde{Z} of Z so that \tilde{p} projects onto p. Any other point over p say \tilde{p}_g is a translation of \tilde{p} by an element $g \in \pi_1(Z)$. If $u, v \in \pi_1(Z)$ are represented by maps $u, v : (I, \dot{I}) \to (Z, p)$ we obtain paths $\tilde{u}, \tilde{v} : I \to \tilde{Z}$ covering u, v and such that $\tilde{u}(0) = \tilde{v}(0) = \tilde{p}$. Under the action of $\pi_1(Z)$ we obtain paths \tilde{u}_g, \tilde{v}_g for each $g \in \pi_1(Z)$. When Z is k-spun in order to obtain F we may also spin \tilde{Z} and obtain \tilde{F} . Now \tilde{u}_g and \tilde{v}_g give rise to k+1-spheres \tilde{U}_g^* and \tilde{V}_g^* which map to gU^* and gV^* in $\pi_k(F)$.

In order to discover the action of t on these (k+1)-spheres we need only note that t gives rise to a homeomorphism $h: Z \to Z$ which induces $\tilde{h}: \tilde{Z} \to \tilde{Z}$ so that $\tilde{u} \to \tilde{u}\tilde{v}_u$ and $\tilde{v} \to \tilde{v}\tilde{u}_u^{-1}\tilde{v}_u^{-1}v^{-1}$. These spin and project to $U^* + uV^*$ and $(1 - u^{-1}v)V^* - u^{-1}U^*$ in $\pi_{k+1}(F)$. So that $t(U^*) = U^* + uV^*$ and $t(V^*) = (1 - u^{-1}v)V^* - u^{-1}U^*$. Hence we have a presentation matrix

$$\left(\begin{array}{cc} t-1 & -u \\ u^{-1} & t+vuv^{-1}-1 \end{array}\right)$$

for $\pi_{k+1}(S)$. This is the same as that obtained by Andrews-Lomonaco [2].

REFERENCES

- 1. J. J. Andrews and M. L. Curtis, *Knotted 2-spheres in the 4-sphere*, Ann. of Math. (2) 70 (1959), 565-571. MR 21 #5964.
- 2. J. J. Andrews and S. J. Lomonaco, The second homotopy group of spun 2-spheres in 4-space, Bull. Amer. Math. Soc. 75 (1969), 169-171. MR 38 #3863.
- 3. W. Browder and J. Levine, Fibering manifolds over a circle, Comment. Math. Helv. 40 (1966), 153-160. MR 33 #3309.
- 4. D. B. A. Epstein, *Linking spheres*, Proc. Cambridge Philos. Soc. 56 (1960), 215-219. MR 22 #8514.
- 5. F. T. Farrell, *The obstruction to fibering a manifold over a circle*, Ph.D. Thesis, Yale University, New Haven, Conn., 1968.
 - 6. E. Spanier, Algebraic topology, McGraw-Hill, New York, 1966. MR 35 #1007.
- 7. E. C. Zeeman, Twisting spun knots, Trans. Amer. Math. Soc. 115 (1965), 471-495. MR 33 #3290.

FLORIDA STATE UNIVERSITY,
TALLAHASSEE, FLORIDA 32306