ON SOME STARLIKE AND CONVEX FUNCTIONS

BY G. M. SHAH

Abstract. In this paper we study functions of the form $\int_0^z (g(t))/\prod_{k=1}^n (1-tz_k)^{\alpha_k}) dt$ for |z| < 1 and show under what conditions such a function is convex, convex in one direction and hence univalent in |z| < 1. We also study the functions g(z) where g(0) = 1, $g(z) \neq 0$ and Re $[zg'(z)/g(z)] \ge -\alpha$, $0 \le \alpha < 1$, for |z| < 1.

1. Let S denote the set of all functions of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

that are holomorphic, univalent and starlike in the disk $D=\{z: |z|<1\}$ in the complex z-plane. It is well known [3, p. 13] that a function f given by equation (1) is in S if and only if Re [zf'(z)/f(z)]>0 for |z|<1, or equivalently, by Herglotz's representation [8, p. 570],

(2)
$$\frac{zf'(z)}{f(z)} = \int_0^{2\pi} \frac{e^{i\theta} + z}{e^{i\theta} - z} d\alpha(\theta),$$

where $\alpha(\theta)$ is a nondecreasing function of θ in $[0, 2\pi]$ and $\alpha(2\pi) - \alpha(0) = 1$. Equation (2) after simplification may be put in the form

(3)
$$f(z) = z \exp \left[-2 \int_0^{2\pi} \log (1 - e^{-i\theta} z) d\alpha(\theta) \right]$$

for |z| < 1. We choose here that branch of the logarithm which has the value zero at z = 0.

In particular if we take $\alpha(\theta)$ to be a step function with jumps of $\alpha_k > 0$ at $\theta_k \in [0, 2\pi)$ (k = 1, 2, ..., n) such that $\sum_{k=1}^{n} \alpha_k = 1$ (to meet the requirement that $\alpha(2\pi) - \alpha(0) = 1$), in equation (3), it follows that the function

(4)
$$w = f(z) = z / \prod_{j=1}^{n} (1 - \exp[-i\theta_j]z)^{2\alpha_j}$$

is in S. In fact f(z) maps the disk D onto the w-plane with n radial slits [2, pp. 36-37]. A function h holomorphic in D is said to be convex and univalent in D if and only if there exists a function f in the class S such that f(z) = zh'(z) for $z \in D$. We

Received by the editors April 9, 1970.

AMS 1969 subject classifications. Primary 3042, 3043; Secondary 3065.

Key words and phrases. Univalent, starlike, convex, Schwarz-Christoffel transformation, Herglotz's representation, extremal functions, contour.

shall denote the class of such functions h by C. It follows from equation (3) now that $h \in C$ if and only if

(5)
$$h'(z) = \exp \left[-2 \int_0^{2\pi} \log \left(1 - e^{-i\theta} z \right) d\alpha(\theta) \right]$$

for |z| < 1. Once again that branch of the logarithm is taken in (5) which is zero at z = 0.

We also have from equation (4) that functions h such that

(6)
$$h(z) = \int_0^z \left(1 / \prod_{i=1}^n (1 - \exp\left[i\theta_i\right] t)^{2\alpha_i}\right) dt,$$

with $\sum_{j=1}^{n} \alpha_j = 1$, $\alpha_j > 0$, $\theta_j \in [0, 2\pi)$ (j=1, 2, ..., n) and |z| < 1, are members of C. In fact it follows by the Schwarz-Christoffel transformation [4, pp. 192–193] that h maps the disk $D = \{z : |z| < 1\}$ onto the interior of an n-sided convex polygon.

We remark here that functions f given by equation (4) are extremal in some sense in S and the functions h given by equation (6) are extremal in the class C [5].

In §2 we intend to study functions which reduce to functions of the type given by equations (4) and (6) as a special case. In §3 we study another class of functions g(z) which are used in §2.

2. It is known that a function $h(z) = z + \sum_{n=2}^{\infty} a_n z^n$ holomorphic in D is in C if and only if Re [1 + zh''(z)/h'(z)] > 0 for all z in D [3, p. 14]. A function f(z) holomorphic in D is said to be convex in one direction in D if it maps |z| = r for every r near 1 into a contour which is cut by every straight line parallel to this direction in not more than two points. If $h \in C$ then h is convex in every direction in D. We now prove the following result.

THEOREM 1. Let g(z) be holomorphic in D with g(0) = 1, $g(z) \neq 0$ and $\text{Re } [zg'(z)/g(z)] \geq -\alpha$ for |z| < 1, where $0 \leq \alpha < 1$. Suppose also that

(7)
$$h(z) = \int_0^z \left(g(t) / \prod_{k=1}^n (1 - z_k t)^{\alpha_k} \right) dt = z + \sum_{n=2}^\infty a_n z^n,$$

where $\alpha_k > 0$, $|z_k| \leq 1$ $(1 \leq k \leq n)$. Then,

- (a) h(z) is convex in one direction and hence univalent in D if $\sum_{k=1}^{n} \alpha_k \leq 3 2\alpha$, and $|a_n| \leq n$ for all n.
 - (b) h(z) is in C if $\sum_{k=1}^{n} \alpha_k \leq 2 2\alpha$ and $|a_n| \leq 1$ for all n.

Proof. We have $h'(z) = g(z) / \prod_{k=1}^{n} (1 - zz_k)^{\alpha_k}$ for |z| < 1, and hence

$$\frac{h''(z)}{h'(z)} = \frac{g'(z)}{g(z)} + \sum_{k=1}^{n} \frac{\alpha_k z_k}{1 - z z_k}$$

Or.

$$\begin{split} \frac{zh''(z)}{h'(z)} &= \frac{zg'(z)}{g(z)} - \frac{1}{2} \sum_{k=1}^{n} \alpha_k \frac{(1 - zz_k) - (1 + zz_k)}{1 - zz_k} \\ &= \frac{zg'(z)}{g(z)} - \frac{1}{2} \sum_{k=1}^{n} \alpha_k + \frac{1}{2} \sum_{k=1}^{n} \frac{\alpha_k (1 + zz_k)}{1 - zz_k} \\ &= \frac{zg'(z)}{g(z)} - \frac{1}{2} \sum_{k=1}^{n} \alpha_k + \frac{1}{2} \sum_{k=1}^{n} \alpha_k \frac{(1 - |z|^2 |z_k|^2) + 2i \operatorname{Im}(zz_k)}{|1 - zz_k|^2}. \end{split}$$

Therefore,

(8)
$$\operatorname{Re}\left[1+z\frac{h''(z)}{h'(z)}\right] \ge 1-\alpha - \frac{1}{2} \sum_{k=1}^{n} \alpha_{k} + \frac{1}{2} \sum_{k=1}^{n} \alpha_{k} \frac{(1-|z|^{2}|z_{k}|^{2})}{|1-zz_{k}|^{2}} > 1-\alpha - \frac{1}{2} \sum_{k=1}^{n} \alpha_{k} \quad \text{for } |z| < 1.$$

It follows now by a result of Umezawa [10] that h(z) is convex in one direction in D if $(1-\alpha-\frac{1}{2}\sum_{k=1}^{n}\alpha_k) \ge -\frac{1}{2}$ or if $\sum_{k=1}^{n}\alpha_k \le 3-2\alpha$. That h(z) is univalent in D and $|a_n| \le n$ for all n follows from a result of Robertson [6].

Again from inequality (8) we have that h(z) is convex in D if $1-\alpha-\frac{1}{2}\sum_{k=1}^{n}\alpha_k \ge 0$ or if $\sum_{k=1}^{n}\alpha_k \le 2-2\alpha$. Thus $h(z) \in C$ and that $|a_n| \le 1$ for all n is well known for functions in C [2, p. 12]. This completes the proof.

A function f(z) holomorphic for |z| < 1 is said to be starlike in one direction if f maps |z| = r for every r near 1 onto a contour C which is cut by a straight line passing through the origin in two, and not more than two points. From this definition, Theorem 1 and the relation between the members of S and C we have the following corollary.

COROLLARY 2. If g(z) and z_k $(1 \le k \le n)$ are subject to the same conditions as in Theorem 1, $\alpha_k > 0$ $(1 \le k \le n)$ and

$$f(z) = zg(z) / \prod_{k=1}^{n} (1 - zz_k)^{\alpha_k} = z + \sum_{n=2}^{\infty} b_n z^n,$$

then,

- (a) f(z) is starlike in one direction if $\sum_{k=1}^{n} \alpha_k \le 3 2\alpha$ and $|b_n| \le n^2$ for all n;
- (b) $f(z) \in S$ if $\sum_{k=1}^{n} \alpha_k \leq 2 2\alpha$ and $|b_n| \leq n$ for all n.

Proof. We have f(z) = zh'(z), where h is given by equation (7). That f(z) is starlike in one direction if $\sum_{k=1}^{n} \alpha_k \le 3 - 2\alpha$ follows from part (a) of Theorem 1 and a result of Robertson [6]. Again from equation (7) we have $b_n = na_n$ for all n. Hence from (a) of Theorem 1 we have $|b_n| \le n^2$ for all n. (b) follows from (b) of Theorem 1.

If we take, in particular, g(z)=1 for |z|<1, $\alpha_k=m$ $(1 \le k \le n)$ in Corollary 2 we have the following result of Rubinstein [7].

COROLLARY 3. The function $f(z) = z/\prod_{k=1}^{n} (1 - zz_k)^m$ is univalent (and starlike) in D if $m \le 2/n$ and $|z_k| \le 1$ $(1 \le k \le n)$.

In the following result no restriction is put on the α_k except that these are positive. This in turn, however, shrinks the domain on which f(z) is starlike or convex.

THEOREM 4. Let g(z) be holomorphic in D with g(0) = 1 and $g(z) \neq 0$ and

Re
$$[zg'(z)/g(z)] \ge -\alpha$$
, $0 \le \alpha < 1$.

Suppose that

(9)
$$h(z) = \int_0^z \left(g(t) / \prod_{k=1}^n (1 - tz_k)^{\alpha_k} \right) dt,$$

with $\alpha_k > 0$, $|z_k| \le 1$ $(1 \le k \le n)$, and $R = \max_{1 \le k \le n} |z_k|$. Then

(a) h(z) is convex in one direction and hence univalent for

$$|z| \leq (3-2\alpha)/R\left(2\sum_{k=1}^{n}\alpha_k+2\alpha-3\right);$$

(b) h(z) is convex (and univalent) for

$$|z| \leq (1-\alpha)/R\left(\sum_{k=1}^{n} \alpha_k + \alpha - 1\right)$$

Proof. As in the proof of Theorem 1, we have

(10)
$$\operatorname{Re}\left[1 + \frac{zh''(z)}{h'(z)}\right] \ge 1 - \alpha - \frac{1}{2} \sum_{k=1}^{n} \alpha_k + \frac{1}{2} \sum_{k=1}^{n} \alpha_k \frac{1 - |z|^2 |z_k|^2}{|1 - zz_k|^2}.$$

It is clear from the proof of Theorem 1 that f(z) is convex in one direction and univalent for $|z| \le R_{1/2}$ if the right side of the inequality (10) is $\ge -\frac{1}{2}$ for $|z| \le R_{1/2}$ and that f(z) is convex for $|z| < R_0$ if the right side of the inequality (10) ≥ 0 for $|z| < R_0$.

We intend to find R_{β} such that

(11)
$$1-\alpha-\frac{1}{2}\sum_{k=1}^{n}\alpha_{k}+\frac{1}{2}\sum_{k=1}^{n}\alpha_{k}\frac{1-|z|^{2}|z_{k}|^{2}}{|1-zz_{k}|^{2}}\geq -\beta \quad \text{for } |z|\leq R_{\beta},$$

where $\beta = \frac{1}{2}$ or 0. Let $z = re^{i\theta}$, $z_k = r_k \exp[i\theta_k]$, $1 \le k \le n$. The inequality (11) is true if

$$1 - \alpha - \frac{1}{2} \sum_{k=1}^{n} \alpha_k + \frac{1}{2} \sum_{k=1}^{n} \alpha_k \frac{1 - r^2 r_k^2}{1 - 2r r_k \cos(\theta + \theta_k) + r^2 r_k^2} \ge -\beta$$

for $0 \le r \le R_{\theta}$, $0 \le \theta \le 2\pi$. The last inequality holds if

$$1 - \alpha - \frac{1}{2} \sum_{k=1}^{n} \alpha_k + \frac{1}{2} \sum_{k=1}^{n} \frac{\alpha_k (1 - r^2 r_k^2)}{1 + r^2 r_k^2 + 2r r_k} \ge -\beta \quad \text{for } 0 \le r \le R_{\beta},$$

or, if

$$1 - \alpha - \frac{1}{2} \sum_{k=1}^{n} \alpha_k + \frac{1}{2} \sum_{k=1}^{n} \frac{\alpha_k (1 - rr_k)}{1 + rr_k} \ge -\beta \quad \text{for } 0 \le r \le R_{\beta}.$$

If we let $F_k(r) = (1 - rr_k)/(1 + rr_k)$ $(1 \le k \le n)$ then the last inequality becomes

(12)
$$2(1-\alpha+\beta) - \sum_{k=1}^{n} \alpha_k + \sum_{k=1}^{n} \alpha_k F_k(r) \ge 0 \text{ for } 0 \le r \le R_{\beta}.$$

For a fixed r_k , $0 \le r_k \le R$, $F_k(0) = 1$ and $F_k(r)$ is a decreasing function of r, and hence $\min_{0 \le r \le R_{\beta}} F_k(r) = (1 - R_{\beta}r_k)/(1 + R_{\beta}r_k) = F_k(R_{\beta})$. Again $F_k(R_{\beta})$, when treated as a function of r_k , is a decreasing function of r_k and hence

$$\min_{0 \le r_k \le R} F_k(R_{\beta}) = (1 - R_{\beta}R)/(1 + R_{\beta}R).$$

Thus the inequality (12) holds if

$$2(1-\alpha+\beta)-\sum_{k=1}^{n}\alpha_{k}+\left(\frac{1-R_{\beta}R}{1+R_{\beta}R}\right)\left(\sum_{k=1}^{n}\alpha_{k}\right)\geq0,$$

or, if

$$2(1+RR_{\beta})(1-\alpha+\beta)-2\sum_{k=1}^{n}\alpha_{k}(RR_{\beta})\geq 0,$$

or if

$$R_{\beta} \leq (1-\alpha+\beta)/R\left(\sum_{k=1}^{n} \alpha_{k}-1+\alpha-\beta\right)$$

Hence by taking $\beta = \frac{1}{2}$ and 0 we have that h(z) is convex in one direction and univalent for

$$|z| \leq (3-2\alpha)/R\left(2\sum_{k=1}^{n}\alpha_k+2\alpha-3\right)$$

and h(z) is convex for

$$|z| \leq (1-\alpha)/R\left(\sum_{k=1}^{n} \alpha_k + \alpha - 1\right)$$

We deduce immediately from Theorem 4 the following.

COROLLARY 5. If g(z) and z_k $(1 \le k \le n)$ and R are the same as in Theorem 4 and $f(z) = zg(z)/\prod_{k=1}^{n} (1-zz_k)^{\alpha_k}$ with $\alpha_k > 0$ $(1 \le k \le n)$. Then

(a) f(z) is starlike in one direction for

$$|z| \leq (3-2\alpha)/R\left(2\sum_{k=1}^{n}\alpha_k+2\alpha-3\right),$$

(b) f(z) is starlike (and univalent) for

$$|z| \leq (1-\alpha)/R\left(\sum_{k=1}^{n} \alpha_k + \alpha - 1\right)$$

By taking g(z)=1 for |z|<1, $\alpha_k=1$ $(1 \le k \le n)$ in Corollary 5 we obtain the following result of Rubinstein [7].

COROLLARY 6. The function $z/\prod_{k=1}^{n} (1-zz_k)$ is univalent (and starlike) for |z| < 1/R(n-1) where $R = \max_{1 \le k \le n} |z_k| \le 1$.

We use Theorem 1 to prove the next result.

THEOREM 7. If g(z) is holomorphic in D, g(0) = 1 and $g(z) \neq 0$, Re $[zg'(z)/g(z)] \geq -\alpha$ where $0 \leq \alpha \leq 1$, for |z| < 1, then the function

$$F(z) = zg(z) / \left(\prod_{k=1}^{n} (1-zz_k)^{\alpha} \int_0^z \left(g(t) / \prod_{k=1}^{n} (1-z_k t)^{\alpha_k} \right) dt \right),$$

where $\alpha_k > 0$, $|z_k| \le 1$, $1 \le k \le n$, and $\sum_{k=1}^n \alpha_k \le 2 - 2\alpha$, is holomorphic in |z| < 1 and if $F(z) = 1 + \sum_{n=1}^{\infty} b_n z^n$ then $|b_n| \le 1$ for all n.

Proof. By Theorem 1, $h(z) = \int_0^z (g(t)/\prod_{k=1}^n (1-z_k t)^{\alpha_k}) dt$ is holomorphic, univalent and convex for |z| < 1. It follows by a result of Strohäcker [9] that

Re
$$[zh'(z)/h(z)] \ge \frac{1}{2}$$
,

or equivalently, Re $F(z) \ge \frac{1}{2}$ for |z| < 1. Since h(0) = 0, h(z) is univalent for |z| < 1, it follows that $h(z) \ne 0$ for 0 < |z| < 1 and hence F(z) is holomorphic for |z| < 1. Let G(z) = F(z) - 1. Then G(0) = 0, $G(z) = \sum_{n=1}^{\infty} b_n z^n$ and Re $G(z) \ge -\frac{1}{2}$ for |z| < 1. The function $w = z/(1-z) = \sum_{n=1}^{\infty} z^n$ is holomorphic, univalent and convex for |z| < 1 and maps |z| < 1 onto the half-plane Re $G(z) \ge -\frac{1}{2}$. It follows now by a known result $G(z) \ge -\frac{1}{2}$. It follows now by a known result $G(z) \ge -\frac{1}{2}$.

3. In this section we study the functions g(z) which we have used in the last section.

THEOREM 8. If g(z) is holomorphic in D, g(0)=1, and $g(z)\neq 0$, Re $[zg'(z)/g(z)] \geq -\alpha$, with $0 \leq \alpha < 1$, for |z| < 1, then

$$g(z) = \exp \left[2(\alpha + \rho) \int_0^{2\pi} \log \left(\frac{e^{i\theta}}{e^{i\theta} - z} \right) d\beta(\theta) \right],$$

for some $\rho > 0$, where $\beta(\theta)$ is a nondecreasing function of θ in $[0, 2\pi]$ with $\beta(2\pi) - \beta(0) = 1$. (Here that branch of the logarithm is chosen which vanishes at z = 0.) Also

$$\frac{1}{(1+r)^{2\alpha}} \leq |g(re^{i\theta})| \leq \frac{1}{(1-r)^{2\alpha}} \quad \text{for } 0 \leq r < 1, \, 0 \leq \theta \leq 2\pi.$$

Proof. For $0 \le \alpha < 1$, we have that Re $[zg'(z)/g(z)] \ge -\alpha > -(\alpha + \rho)$ for any $\rho > 0$ and hence Re $[zg'(z)/(\alpha + \rho)g(z) + 1] > 0$. Let

(13)
$$\frac{zg'(z)}{(\alpha + \rho)g(z)} + 1 = F(z) = \sum_{n=0}^{\infty} b_n z^n \text{ for } |z| < 1.$$

It is easy to see that F(0)=1 and by Herglotz's representation [8, p. 570] for such functions F we have

$$\frac{zg'(z)}{(\alpha+\rho)g(z)}+1=\int_0^{2\pi}\frac{e^{i\theta}+z}{e^{i\theta}-z}\,d\beta(\theta)\quad\text{for }|z|<1,$$

where $\beta(\theta)$ is nondecreasing in $[0, 2\pi]$ and $\beta(2\pi) - \beta(0) = 1$. Thus

$$\frac{zg'(z)}{g(z)} = (\alpha + \rho) \int_0^{2\pi} \left(\frac{e^{i\theta} + z}{e^{i\theta} - z} - 1 \right) d\beta(\theta)$$

or,

$$\frac{g'(z)}{g(z)} = 2(\alpha + \rho) \int_0^{2\pi} \frac{1}{e^{i\theta} - z} d\beta(\theta).$$

Integrating the last equation from 0 to z, |z| < 1, with respect to z, we obtain

$$\log g(z) - \log g(0) = 2(\alpha + \rho) \int_0^z \int_0^{2\pi} \frac{1}{e^{i\theta} - z} d\beta(\theta) dz$$
$$= 2(\alpha + \rho) \int_0^{2\pi} \int_0^z \frac{1}{e^{i\theta} - z} dz d\beta(\theta)$$
$$= 2(\alpha + \rho) \int_0^{2\pi} \log \left(\frac{e^{i\theta}}{e^{i\theta} - z}\right) d\beta(\theta).$$

Hence,

(14)
$$g(z) = \exp \left[2(\alpha + \rho) \int_0^{2\pi} \log \left(\frac{e^{i\theta}}{e^{i\theta} - z} \right) d\beta(\theta) \right],$$

for |z| < 1. In equation (14) we take that branch of the logarithm in the integral which vanishes at z=0.

To prove the other assertion we have from equation (13) that $F(z) = 1 + \sum_{n=1}^{\infty} b_n z^n$ and Re (F(z)) > 0 for |z| < 1 and hence by a known result [1, p. 44]

$$\frac{1-r}{1+r} \le \operatorname{Re}\left(F(re^{i\theta})\right) \le \frac{1+r}{1-r} \quad \text{for } 0 \le r < 1, \ 0 \le \theta \le 2\pi.$$

In terms of g these inequalities become

$$\frac{-2(\alpha+\rho)r}{1+r} \leq \operatorname{Re}\left(\frac{re^{i\theta}g'(re^{i\theta})}{g(re^{i\theta})}\right) \leq \frac{2(\alpha+\rho)r}{1-r}, \quad 0 \leq r < 1, \, 0 \leq \theta \leq 2\pi.$$

Since

$$\operatorname{Re}\left(\frac{re^{i\theta}g'(re^{i\theta})}{g(re^{i\theta})}\right) = r\frac{\partial}{\partial r}\operatorname{Re}\left(\log g(re^{i\theta})\right),$$

we have

$$\frac{-2(\alpha+\rho)}{1+r} \leq \frac{\partial}{\partial r} \log |g(re^{i\theta})| \leq \frac{2(\alpha+\rho)}{1-r}, \qquad 0 < r < 1, 0 \leq \theta \leq 2\pi.$$

Integrating with respect to r from 0 to r, we get

$$-2(\alpha+\rho)\log(1+r) \le \log|g(re^{i\theta})| \le -2(\alpha+\rho)\log(1-r), 0 < r < 1, 0 \le \theta \le 2\pi.$$

Or,

$$(15) \quad \frac{1}{(1+r)^{2(\alpha+\rho)}} \le |g(re^{i\theta})| \le \frac{1}{(1-r)^{2(\alpha+\rho)}}, \qquad 0 \le r < 1, \, 0 < \theta < 2\pi,$$

since the relations hold trivially for r=0. Since inequalities (15) hold for any $\rho > 0$, we let $\rho \to 0$ and we finally get

$$\frac{1}{(1+r)^{2\alpha}} \leq |g(re^{i\theta})| \leq \frac{1}{(1-r)^{2\alpha}}, \qquad 0 \leq r < 1, 0 \leq \theta \leq 2\pi.$$

THEOREM 9. If g(z) is subject to the same conditions as in Theorem 8 and $g(z) = 1 + \sum_{n=1}^{\infty} a_n z^n$, then $|a_n| \le n+1$ for all positive integral values of n.

Proof. Choose a positive number ρ such that $\alpha + \rho \le 1$, and let

(16)
$$\frac{zg'(z)}{(\alpha + \rho)g(z)} + 1 = F(z) = \sum_{n=0}^{\infty} b_n z^n.$$

As in the proof of Theorem 8, we have Re(F(z)) > 0 for |z| < 1, $F(0) = b_0 = 1$ and hence by a known result of Carathéodory $|b_n| \le 2$ for $n = 1, 2, 3, \ldots$ Substituting in equation (16) the power series expansion for g(z) we obtain

$$\sum_{n=1}^{\infty} n a_n z^n = (\alpha + \rho) \sum_{n=1}^{\infty} \left(\sum_{k=1}^{n} b_k a_{n-k} \right) z^n \quad \text{with } a_0 = 1.$$

Equating the coefficients of z^n we have

(17)
$$na_n = (\alpha + \rho) \sum_{k=1}^n b_k a_{n-k} \qquad (n = 1, 2, 3, \ldots).$$

For n=1, equation (17) gives, $|a_1| = |\alpha + \rho| |b_1 a_0| \le |b_1 a_0| \le 2$. For n=2, we have $2|a_2| = |\alpha + \rho| |b_1 a_1 + b_2 a_0| \le 2|a_1| + 2|a_0| \le 4 + 2 = 6$ and hence $|a_2| \le 3$.

Suppose now that $|a_n| \le n+1$ for $1 \le n \le j$, then again from equation (17) we have

$$(j+1)|a_{j+1}| \leq |\alpha+\rho| \sum_{k=1}^{j+1} |b_k| |a_{j+1-k}|$$

$$\leq 2 \sum_{k=1}^{j+1} |a_{j+1-k}| \leq 2 \sum_{k=1}^{j+1} (j+2-k)$$

$$= 2[(j+1)+j+\cdots+1] = (j+1)(j+2).$$

Thus $|a_{j+1}| \le j+2$ and the result follows by induction.

BIBLIOGRAPHY

- 1. C. Carathéodory, Conformal representation, 2nd ed., Cambridge Tracts in Math. and Math. Phys., no. 28, Cambridge Univ. Press, New York, 1952. MR 13, 734.
- 2. W. K. Hayman, *Multivalent functions*, Cambridge Tracts in Math. and Math. Phys., no. 48, Cambridge Univ. Press, New York, 1958. MR 21 #7302.
- 3. P. Montel, Leçons sur les fonctions univalentes ou multivalentes, Gauthier-Villars, Paris, 1933.
 - 4. Z. Nehari, Conformal mapping, McGraw-Hill, New York, 1952. MR 13, 640.
- 5. B. Pinchuk, On starlike and convex functions of order α , Duke Math. J. 35 (1968), 721-734. MR 37 #6454.
- 6. M. S. Robertson, Analytic functions star-like in one direction, Amer. J. Math. 58 (1936), 465-472.
- 7. Z. Rubinstein, Some inequalities for polynomials and their zeroes, Proc. Amer. Math. Soc. 16 (1965), 72-75. MR 30 #2127.
- 8. M. H. Stone, Linear transformations in Hilbert space, Amer. Math. Soc. Colloq. Publ., vol. 15, Amer. Math. Soc., Providence, R. I., 1932.
 - 9. E. Strohäcker, Beiträge zur theorie der Schlichten funktionen, Math. Z. 37 (1933), 362.
- 10. T. Umezawa, Analytic functions convex in one direction, J. Math. Soc. Japan 4 (1952), 194-202. MR 14, 461.

University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201