SEMIPRIMARY HEREDITARY ALGEBRAS

BY ABRAHAM ZAKS

Abstract. Let Σ be a semiprimary k-algebra, with radical M. If Σ admits a splitting then $\dim_k \Sigma/M \le \dim_k \Sigma$. The residue algebra Σ/M^2 is finite (cohomological) dimensional if and only if all residue algebras are finite dimensional. If $\dim_k \Sigma = 1$ then all residue algebras are finite dimensional.

- 1. **Introduction.** We consider the following properties of algebras over a field k:
 - (p1): $\dim_k \Sigma \leq 1$.
 - (p2): $\dim_k \Sigma/I$ is finite for every two sided ideal I in Σ .
 - (p3): $\dim_k \Sigma/M^2$ is finite, where M is the (Jacobson) radical of Σ .
 - (p4): Σ is a residue algebra of Ω , where gl.dim $\Omega \leq 1$, dim_k Σ/M is finite and Σ/M is isomorphic to Ω/N , N being the (Jacobson) radical of Ω .
 - (p5): Σ is a residue algebra of Ω , where $\dim_k \Omega \leq 1$ and Σ/M^2 is isomorphic to Ω/N^2 .

For a finite dimensional k-algebra Σ , it was proved by Eilenberg, Nagao and Nakayama in [6] that (p1) \Rightarrow (p2), while Jans and Nakayama proved in [7] the implications (p3) \Rightarrow (p4) \Rightarrow (p5). Thus for finite dimensional k-algebras one has the equivalences (p2) \Leftrightarrow (p3) \Leftrightarrow (p4) \Leftrightarrow (p5).

The purpose of this paper is to establish the implication $(p1) \Rightarrow (p2)$, and the equivalences $(p2) \Leftrightarrow (p3) \Leftrightarrow (p4)$ for semiprimary rings that are k-algebras. The equivalence $(p4) \Leftrightarrow (p5)$ can be deduced in certain particular cases as for instance if Σ/M is a finite dimensional k-algebra. To this extent we give an example of a semiprimary ring Σ for which $\dim_k \Sigma = 1$ and $\dim_k \Sigma/M = 1$.

As it turns out the passage from finite dimensional k-algebras to semiprimary ones is made possible by a lemma that seems to be of some interest in its own sake, namely:

A semiprimary k-algebra Σ that admits a splitting $\Sigma = \Delta + M$ [9] satisfies the inequality $\dim_k \Delta \leq \dim_k \Sigma$, where Δ denotes the residue algebra Σ/M .

In [2] Auslander proved that if Δ is a finite dimensional k-algebra and $\dim_k \Sigma$ is finite, then $\dim_k \Sigma = \operatorname{gl.dim} \Sigma$. He raised the problem whether it is necessary that $\dim_k \Delta = 0$ (e.g. [4] and [5]). We prove the answer to be affirmative in case that $\dim_k \Sigma/M^2$ is finite.

Received by the editors February 27, 1970.

AMS 1969 subject classifications. Primary 1690; Secondary 1650.

Key words and phrases. Semiprimary hereditary algebra, splitting of a ring, finite dimensional algebra, separable algebra, ring of triangular matrices.

2. Hereditary algebras. A k-algebra Σ is said to be a semiprimary k-algebra if Σ is a semiprimary ring, i.e. its (Jacobson) radical M is nilpotent and the residue ring Σ/M is a semisimple (Artinian) ring. Set $\Delta = \Sigma/M$. We say that a k-algebra Σ is an hereditary k-algebra if $\dim_k \Sigma \le 1$. By Σ° we denote the apposite ring to Σ . By $(\Sigma:k) < \infty$ we denote that the k-algebra Σ is finite dimensional (as a k-vector space). For the rest we write dim for \dim_k , and \otimes for \otimes_k . We say that Σ admits a splitting if $\Sigma = \Delta + M$ [7], [9]. A crucial step towards our main theorem is the following lemma:

LEMMA 1. If Σ admits a splitting, $\Sigma = \Delta + M$, then $\dim \Delta \leq \dim \Sigma$.

Proof. If $\dim \Sigma = \infty$ we are done. Otherwise $\dim \Sigma$ is finite, and we may assume that $\dim \Sigma = t < \infty$. By [4] we have the equality $\operatorname{gl.dim} \Sigma \otimes \Delta^{\circ} = \dim \Sigma = t < \infty$. Since Δ is a semisimple ring, M is a projective right Δ -module. From the natural isomorphism of $M \otimes \Delta^{\circ}$ with $M \otimes_{\Delta} (\Delta \otimes \Delta^{\circ})$ it follows that $M \otimes \Delta^{\circ}$ is a projective right $\Delta \otimes \Delta^{\circ}$ -module. Hence via the natural embedding of $\Delta \otimes \Delta^{\circ}$ into $\Sigma \otimes \Delta^{\circ}$, $\Sigma \otimes \Delta^{\circ}$ becomes a projective right $\Delta \otimes \Delta^{\circ}$ -module. Denote by f the natural embedding of $\Delta \otimes \Delta^{\circ}$ into $\Sigma \otimes \Delta^{\circ}$, and denote by g the canonical epimorphism of $\Sigma \otimes \Delta^{\circ}$ onto $\Delta \otimes \Delta^{\circ}$, then $g \circ f$ is the identity map on $\Delta \otimes \Delta^{\circ}$.

For any left $\Delta \otimes \Delta^{\circ}$ -module A we set $A_f = (\Sigma \otimes \Delta^{\circ}) \otimes_{(\Delta \otimes \Delta^{\circ})} A$.

For any left $\Sigma \otimes \Delta^{\circ}$ -module B we set $B_g = (\Delta \otimes \Delta^{\circ}) \otimes_{(\Sigma \otimes \Delta^{\circ})} B$.

There results a $\Delta \otimes \Delta^{\circ}$ isomorphism from A onto $(A_f)_g$, for every left $\Delta \otimes \Delta^{\circ}$ -module A.

Let A be a left $\Delta \otimes \Delta^{\circ}$ -module, and let

$$0 \rightarrow L \rightarrow P_{t-1} \rightarrow \cdots \rightarrow P_0 \rightarrow A \rightarrow 0$$

be an exact sequence of left $\Delta \otimes \Delta^{\circ}$ -modules, where P_0, \ldots, P_{t-1} are projective $\Delta \otimes \Delta^{\circ}$ -modules. We claim that either L is a projective $\Delta \otimes \Delta^{\circ}$ -module, or else L=0

Since $\Sigma \otimes \Delta^{\circ}$ is a projective right $\Delta \otimes \Delta^{\circ}$ -module, there results an exact sequence of left $\Sigma \otimes \Delta^{\circ}$ -modules:

$$0 \rightarrow L_f \rightarrow (P_{t-1})_f \rightarrow \cdots \rightarrow (P_0)_f \rightarrow A_f \rightarrow 0$$

where $(P_i)_f = (\Sigma \otimes \Delta^\circ) \otimes_{(\Delta \otimes \Delta^\circ)} P_i$, for $i = 0, \ldots, (t-1)$. Thus $(P_0)_f, \ldots, (P_{t-1})_f$ are $\Sigma \otimes \Delta^\circ$ -projective. Since l.gl.dim $\Sigma \otimes \Delta^\circ = \dim \Sigma = t$, it follows that either L_f is a projective $\Sigma \otimes \Delta^\circ$ -module, or else $L_f = 0$. Hence L is $\Delta \otimes \Delta^\circ$ isomorphic to the $\Delta \otimes \Delta^\circ$ -module $(L_f)_g = (\Delta \otimes \Delta^\circ) \otimes_{(\Sigma \otimes \Delta^\circ)} L_f$. Therefore L = 0 or else L is a projective $\Delta \otimes \Delta^\circ$ -module.

Therefore for every left $\Delta \otimes \Delta^{\circ}$ -module A we have $l.p.dim_{\Delta \otimes \Delta^{\circ}} A \leq t$, thus $l.gl.dim \Delta \otimes \Delta^{\circ} \leq t$. Since by [4] we have the equality dim $\Delta = l.gl.dim \Delta \otimes \Delta^{\circ}$ we may conclude that the inequality dim $\Delta \leq \dim \Sigma$ holds.

Recall that all residue rings of a semiprimary ring Σ are of finite global dimension iff Σ is a residue ring of a semiprimary ring Ω for which gl.dim $\Omega \leq 1$, and this

is the case iff gl.dim Σ/M^2 is finite [9]. Under each of these equivalent conditions Σ admits a splitting $\Sigma = \Delta + M$.

The splitting of Σ is inherited by every residue ring Σ_1 of Σ , $\Sigma_1 = \Delta_1 + M_1$. Furthermore, Δ_1 is (up to an isomorphism) a direct factor of Δ .

We are now ready to state and prove our main theorem that establishes the equivalences $(p2) \Leftrightarrow (p3) \Leftrightarrow (p4)$ for semiprimary k-algebras.

THEOREM 1. The following are equivalent:

- (a) dim $\Delta < \infty$ and gl.dim $\Sigma/M^2 < \infty$.
- (b) dim $\Sigma/I < \infty$ for every two sided ideal I in Σ .
- (c) dim $\Sigma/M^2 < \infty$.

Proof. (a) \Rightarrow (b): From gl.dim $\Sigma/M^2 < \infty$ it follows by [9] that gl.dim $\Sigma/I < \infty$ for every two sided ideal I in Σ . Set $\Delta_1 = (\Sigma/I)/(I+M/I)$ then Δ_1 is a direct factor of Δ , hence dim $\Delta_1 \leq \dim \Delta$. Combining the equality dim $\Sigma/I = l$.gl.dim $\Sigma/I \otimes \Delta_1^\circ$ [4] with the inequality l.gl.dim $\Sigma/I \otimes \Delta_1^\circ \leq l$.gl.dim $\Sigma/I + \dim \Delta_1^\circ$ [5] it results that dim Σ/I is finite.

- (b) \Rightarrow (c) is obvious.
- (c) \Rightarrow (a): Since gl.dim $\Sigma/M^2 \le \dim \Sigma/M^2$ [5], then gl.dim $\Sigma/M^2 < \infty$. Hence by [9] Σ/M^2 admits a splitting, and thus Lemma 1 implies the inequality dim $\Delta \le \dim \Sigma/M^2$, therefore dim Δ is finite.

Observe that under each of the equivalent conditions in Theorem 1, Σ is a residue of a semiprimary k-algebra Ω with radical N, such that Ω/N is isomorphic with Δ , and gl.dim $\Omega \le 1$. This is an immediate consequence of Theorem 1 applied to $\Omega(\Delta, N)$ [9]. It is worth noticing that Σ admits a splitting, $\Sigma = \Delta + M$.

As for dim Ω , from dim $\Omega=l.gl.dim\ \Omega\otimes\Delta^{\circ}$ it follows that dim $\Delta\leq dim\ \Omega\leq dim\ \Delta+1$.

In the next section we will bring some examples showing that it is possible that dim $\Omega = \dim \Delta + 1$, but it is also possible that the equality dim $\Omega = \dim \Delta$ will hold.

Consider the case where k is the center of Σ . One can easily construct examples in which Σ is a residue ring of a semiprimary hereditary ring Ω with radical N, such that Ω/N is isomorphic with Δ , but Ω is not a k-algebra, i.e., not every semiprimary hereditary ring—of which Σ is a residue ring—is a k-algebra [10, Example 1].

Notice that if Δ is a finite dimensional k-algebra then dim $\Delta = 0$. One verifies that if $M \neq 0$ then dim $\Omega = 1$. Furthermore, if Ω is any semiprimary hereditary ring with radical N of which Σ is a residue ring, such that Ω/N is isomorphic with Δ , then Ω admits a splitting, $\Omega = \Delta + A + N^2$. Therefore, if one insists on Ω/N^2 being isomorphic to Σ/M^2 it follows that up to an isomorphism Ω is uniquely determined. This establishes the equivalence (p4) \Leftrightarrow (p5) in case Δ is a finite dimensional k-algebra. Also in this case we have dim $\Omega/I = \text{gl.dim } \Omega/I$ for every two sided ideal I in Ω . In particular from [10] it results that dim $\Omega/I \leq \dim \Omega/N^2$, whenever $I \subset N^2$.

We do not know if this last inequality holds without the assumption dim $\Delta = 0$. Our next aim is to prove the implication (p1) \Rightarrow (p2) for semiprimary k-algebras. Recall that the validity of this implication for finite dimensional k-algebras is based on the equality dim $\Sigma = \text{gl.dim }\Sigma$, which is a consequence of dim $\Delta = 0$ under these circumstances (e.g. [6]). For semiprimary k-algebras we have by [5] the inequality gl.dim $\Sigma \leq \dim \Sigma$. Furthermore, if gl.dim Σ/M^2 is finite then by [9] Σ admits a splitting $\Sigma = \Delta + M$. We proceed with a sequence of corollaries to get the desired implication.

COROLLARY 1. If Σ admits a splitting, $\Sigma = \Delta + M$, then dim $\Delta \leq \dim \Sigma / I$ for every two sided ideal I in Σ that is contained in the radical.

Proof. Since the splitting is inherited by all residue rings of Σ , and since $I \subset M$ implies that $(\Sigma/I)/(I+M/I)$ is isomorphic with Δ , then we have applying Lemma 1: dim $\Delta \leq \dim \Sigma/I$.

COROLLARY 2. If $M^2 = 0$ then dim $\Delta \leq \dim \Sigma$.

Proof. If dim $\Sigma = \infty$ we are done. Otherwise dim Σ is finite, hence gl.dim Σ is finite. Therefore Σ admits a splitting, $\Sigma = \Delta + M$, and the result follows from Lemma 1.

COROLLARY 3. If dim $\Sigma = 1$ then dim $\Delta \leq 1$.

Proof. The proof is an immediate consequence of Lemma 1 which is applicable in this case, since gl.dim $\Sigma \le \dim \Sigma = 1$ implies the splitting of Σ .

It seems interesting to notice that one can prove that dim Δ is finite by observing that $\Delta \otimes \Delta^{\circ}$ is a residue ring of the hereditary ring $\Sigma \otimes \Delta^{\circ}$ by the nilpotent two sided ideal $M \otimes \Delta^{\circ}$ (e.g. [6]).

As a consequence there results the implication $(p1) \Rightarrow (p2)$.

COROLLARY 4. If dim $\Sigma = 1$ then dim Σ / I is finite for every two sided ideal I in Σ .

Proof. This is an immediate consequence of Theorem 1 since by Corollary 3 dim $\Delta \le 1$, and since gl.dim $\Sigma \le \dim \Sigma$ implies that gl.dim Σ/M^2 is finite.

3. **Examples.** In this section we will bring some examples of k-algebras, all the residue algebras of which have finite cohomological dimension. We will be mainly concerned with the inequalities $\dim \Delta \leq \dim \Delta + \operatorname{gl.dim} \Sigma$, and with the equality $\dim \Sigma = \operatorname{gl.dim} \Sigma$ without $(\Delta:k)$ being finite.

Let $k(x_1, ..., x_n, y_1, ..., y_m)$ be the field of rational functions in n+m variables over the field k. We will identify k ($k(x_1, ..., x_n), k(y_1, ..., y_m)$) with its natural embedding in $k(x_1, ..., x_n, y_1, ..., y_m)$.

EXAMPLE 1. Let Σ be the k-subalgebra of the 2×2 matrix algebra over the field of rational functions in one variable over a field k, k(x). A matrix σ belongs to Σ iff σ is of the form

$$\begin{vmatrix} a & 0 \\ b & c \end{vmatrix}$$

where a is an element of k, and b, c are elements of k(x).

Obviously Σ is a left Artinian hereditary ring with radical M of square zero, and dim $\Delta = 1$. We claim that dim $\Sigma = 1$. It will suffice to show that l.gl.dim $\Sigma \otimes k(x) = 1$. Identify $\Sigma \otimes k(x)$ with a subring of the 2×2 matrix algebra over $k(x) \otimes k(x)$, namely: σ' belongs to $\Sigma \otimes k(x)$ iff σ' is of the form:

$$\begin{bmatrix} \alpha & 0 \\ \beta & \gamma \end{bmatrix}$$

where α belongs to $k \otimes k(x)$ (which is isomorphic to k(x)), and β , γ belong to $k(x) \otimes k(x)$.

Let J be a left ideal in $\Sigma \otimes k(x)$, then one readily verifies that J is of one of the following two types:

Type 1. Every element in J is of the form

$$\begin{vmatrix} 0 & 0 \\ \beta & \gamma \end{vmatrix}$$
.

Type 2. J is a direct sum of two subideals J_1 and J_2 where every element of J_1 is of the form

$$\begin{bmatrix} 0 & 0 \\ 0 & \gamma \end{bmatrix}$$

and a matrix σ' belongs to J_2 iff it is of the form

$$\begin{bmatrix} \alpha & 0 \\ \beta & 0 \end{bmatrix}$$
.

Since dim k(x)=1 it follows from [3, Theorem 5.4, p. 14] that in either case J is a projective left $\Sigma \otimes k(x)$ -module. Hence by [3, Theorem 5.4, p. 14] it follows that $l.gl.\dim \Sigma \otimes k(x)=1$.

A similar treatment, using the fact that $k(x_1, ..., x_n) \otimes k(x_1, ..., x_n)$ is a Neotherian ring—where $k(x_1, ..., x_n)$ is the field of rational functions in n variables over k—gives:

EXAMPLE 1*. Let Σ be the k-subalgebra of the 2×2 matrix algebra over $k(x_1, \ldots, x_n)$. A matrix σ belongs to Σ iff σ is of the form

$$\begin{vmatrix} a & 0 \\ b & c \end{vmatrix}$$

where a is an element of k, and b, c are elements of $k(x_1, \ldots, x_n)$.

 Σ is a left Artinian ring with radical M of square zero, dim $\Delta = n$ [5], and gl.dim $\Sigma = 1$. Finally, by the remark made above, we have by checking dim Σ via l.gl.dim $\Sigma \otimes k(x_1, \ldots, x_n)$ that dim $\Sigma = n$.

EXAMPLE 2. By taking successive rings of triangular matrices of the ring Σ that was constructed in Example 1 (1*) we obtain a left Artinian ring $\Lambda = T_{n_i}(\cdots T_{n_1}(\Sigma)\cdots)$. By [5] it follows that

$$\dim \Lambda = \operatorname{gl.dim} \Lambda = t+1$$
 $(\dim \Lambda = t+n, \operatorname{gl.dim} \Lambda = t+1).$

Furthermore, if N is the radical of Λ then dim $\Lambda/N = \dim \Delta$, since Λ/N is isomorphic to a direct product of $n_1 \cdots n_t$ copies of Δ .

Summarizing we have:

PROPOSITION 1. For every pair of positive integers n, s there exists a k-algebra Σ for which gl.dim $\Sigma = s$, dim $\Delta = n$, and dim $\Sigma < \text{gl.dim } \Sigma + \text{dim } \Delta$.

Taking n=1 there will result a k-algebra Σ for which dim $\Sigma = \text{gl.dim } \Sigma < \infty$, such that dim $\Delta = 1$.

EXAMPLE 3. Let Σ be the k-subalgebra of the 2×2 matrix algebra over k(x, y)—the field of rational functions in two variables over the field k. A matrix σ belongs to Σ iff σ is of the form

$$\begin{bmatrix} a & 0 \\ b & c \end{bmatrix}$$

where a belongs to k(y), b belongs to k(x, y), and c belongs to k(x).

 Σ is a semiprimary ring with radical of square zero. Obviously dim $\Delta = 1$, gl.dim $\Sigma = 1$, and it is an easy exercise to check that dim $\Sigma = 2$.

EXAMPLE 3*. Take Σ to be the k-subalgebra of the 2×2 matrix algebra over $k(x_1, \ldots, x_n, y_1, \ldots, y_n)$ —the field of rational functions in 2n variables over the field k. A matrix σ belongs to Σ iff σ is of the form

$$\begin{vmatrix} a & 0 \\ b & c \end{vmatrix}$$

where a belongs to $k(y_1, \ldots, y_n)$, b belongs to $k(x_1, \ldots, x_n, y_1, \ldots, y_n)$, and c belongs to $k(x_1, \ldots, x_n)$.

 Σ is a semiprimary ring, and gl.dim $\Sigma = 1$. Again by straightforward computations it follows that dim $\Sigma = n + 1$, and from [5] dim $\Delta = n$.

EXAMPLE 4. By taking successive rings of triangular matrices of the ring Σ that was constructed in Example 3 (3*) we obtain a semiprimary ring $\Lambda = T_{n_t}(\cdots T_{n_1}(\Sigma)\cdots)$ with radical N. From [5] it follows that gl.dim $\Lambda = t+1$, and dim $\Lambda = t+2$ (dim $\Lambda = t+n+1$). Furthermore, since Λ/N is the direct product of $n_1 \cdots n_t$ copies of Δ , dim $\Lambda/N = 1$ (dim $\Lambda/N = n$).

Summarizing we obtain:

PROPOSITION 2. For every pair of positive integers n, s there exists a k-algebra Σ for which gl.dim $\Sigma = s$, dim $\Delta = n$, and dim $\Sigma = \text{gl.dim } \Sigma + \text{dim } \Delta$.

Notice that in all our examples, k is the center of each of the constructed rings.

4. **Applications.** In [2] Auslander proved that if $\dim \Sigma < \infty$ and if $(\Delta:k) < \infty$ then $\dim \Sigma = \operatorname{gl.dim} \Sigma$. He raised the problem whether $\dim \Sigma$ is necessarily zero. In [4] Eilenberg proved that if $\dim \Sigma < \infty$ and $(\Sigma:k) < \infty$ then $\dim \Delta = 0$ and $\dim \Sigma = \operatorname{gl.dim} \Sigma$. In §3 we saw that it is possible to have $\dim \Sigma < \infty$ and $\dim \Sigma = \operatorname{gl.dim} \Sigma$ without $(\Sigma:k)$ nor $(\Delta:k)$ being finite. Furthermore, $\dim \Sigma = \operatorname{gl.dim} \Sigma$ may hold without $\dim \Delta$ being zero. Still we have:

PROPOSITION 3. If $M^2 = 0$, if $(\Delta : k) < \infty$, and if dim Σ is finite then dim $\Delta = 0$.

Proof. By Corollary 2 dim $\Delta \le \dim \Sigma < \infty$. Since $(\Delta:k) < \infty$ we now have dim $\Delta = 0$.

In this respect it is worth stating an immediate consequence of Theorem 1, that turns out to be just an affirmative answer to the problem raised by Auslander in a particular case.

COROLLARY 5. If $(\Delta:k) < \infty$ then the following are equivalent:

- (a) dim $\Delta = 0$ and gl.dim $\Sigma/M^2 < \infty$,
- (b) dim $\Sigma/M^2 < \infty$.

Under each of these equivalent conditions dim $\Sigma/I = \text{gl.dim } \Sigma/I < \infty$ for every two sided ideal I in Σ .

Let Σ_1 (Σ_2) be a semiprimary k-algebra with radical M_1 (M_2), and set $\Delta_i = \Sigma_i/M_i$ for i=1, 2. Assuming that $(\Delta_i:k) < \infty$, and dim $\Sigma_i/M_i^2 < \infty$ for i=1, 2 it follows that dim $\Delta_i = 0$ for i=1, 2. Denote $\Delta = \Delta_1 \otimes \Delta_2$, and $N = M_1 \otimes \Delta_2 + \Delta_1 \otimes M_2$ then it readily follows that dim $\Omega \le 1$, where $\Omega = \Omega(\Delta, N)$ [9]. Furthermore, $\Sigma_1 \otimes \Sigma_2$ is a residue k-algebra of Ω , and $(\Delta:k) < \infty$. We therefore have:

THEOREM 2. The class of semiprimary k-algebras $\mathfrak E$ is closed under tensor products. A semiprimary k-algebra Σ belongs to $\mathfrak E$ iff $\dim \Sigma/M^2 < \infty$ and $(\Delta:k) < \infty$.

Notice that this theorem is no longer valid if we replace dim $\Sigma/M^2 < \infty$ by gl.dim $\Sigma/M^2 < \infty$.

REFERENCES

- 1. M. Auslander, On the dimension of modules and algebras. III: Global dimension, Nagoya Math. J. 9 (1955), 67-77. MR 17, 579.
- 2. —, On the dimension of modules and algebras. VI: Comparison of global and algebra dimension, Nagoya Math. J. 11 (1957), 61-65. MR 19, 14.
- 3. H. Cartan and S. Eilenberg, *Homological algebra*, Princeton Univ. Press, Princeton, N. J., 1956. MR 17, 1040.
- 4. S. Eilenberg, Algebras of cohomologically finite dimension, Comment. Math. Helv. 28 (1954), 310-319. MR 16, 442.
- 5. S. Eilenberg, A. Rosenberg and D. Zelinsky, On the dimension of modules and algebras. VIII: Dimension of tensor products, Nagoya Math. J. 12 (1957), 71-93. MR 20 #5229.
- 6. S. Eilenberg, H. Nagao and T. Nakayama, On the dimension of modules and algebras. IV: Dimension of residue rings of hereditary rings, Nagoya Math. J. 10 (1956), 87-95. MR 18, 9.
- 7. J. P. Jans and T. Nakayama, On the dimension of modules and algebras. VII: Algebras with finite-dimensional residue-algebras, Nagoya Math. J. 11 (1957), 67-76. MR 19, 250.
- 8. I. Kaplansky, *Modules over Dedekind rings and valuation rings*, Trans. Amer. Math. Soc. 72 (1952), 327-340. MR 13, 719.
- 9. A. Zaks, Residue rings of semi-primary hereditary rings, Nagoya Math. J. 30 (1967), 279-283. MR 37 #1409.
 - 10. ——, Semi-primary hereditary rings, Israel J. Math. 6 (1968), 359-362.

TECHNION, ISRAEL INSTITUTE OF TECHNOLOGY, HAIFA, ISRAEL