LIE-ADMISSIBLE, NODAL, NONCOMMUTATIVE JORDAN ALGEBRAS(1)

BY D. R. SCRIBNER

Abstract. The main theorem is that if A is a central simple flexible algebra, with an identity, of arbitrary dimension over a field F of characteristic not 2, and if A is Lie-admissible and A^+ is associative, then ad (A)' = [A, A]/F is a simple Lie algebra. It is shown that this theorem applies to simple nodal noncommutative Jordan algebras of arbitrary dimension, and hence that such an algebra A also has derived algebra ad (A)' simple.

1. **Introduction.** An algebra A is said to be nodal in case every element can be written as $\alpha 1 + n$ for α in the base field, 1 the identity of A, and n a nilpotent element, and if the set of nilpotent elements is not an ideal of A. A is called Lie-admissible if A^- (which has multiplication $(a, b) \rightarrow [a, b] = ab - ba$) is a Lie algebra. It was shown by R. H. Oehmke in [3] that if A is a finite-dimensional simple, Lie-admissible, nodal, noncommutative Jordan algebra of characteristic p > 2, then ad (A)' is a simple Lie algebra.

The main result here is to prove this theorem without any assumptions about dimensionality of the algebra A.

We first show, in §2, that if A is a simple nodal noncommutative Jordan algebra, then A^+ (which has the multiplication $(a, b) \rightarrow a \cdot b = \frac{1}{2}(ab + ba)$) is associative. Thus the above theorem turns out to be the characteristic $\neq 0$ of the following theorem:

Let A satisfy

- (1) A is central simple, flexible, with an identity, over a field of characteristic $\neq 2$:
 - (2) A is Lie-admissible, and $[A, A] \neq 0$; and
 - (3) A^+ is associative.

Then ad (A)' is a simple Lie algebra.

The inclusion of characteristic 0 seems to be nice; however, in §4 we show that there do not exist any such characteristic 0 algebras which are algebraic.

2. As mentioned in the introduction, we show here that if A is a simple nodal, noncommutative Jordan algebra over a field F, then A^+ is associative. Suppose A

Received by the editors April 29, 1970.

AMS 1969 subject classifications. Primary 1730, 1760.

Key words and phrases. Nodal algebras, noncommutative Jordan algebras, Lie-admissible algebras, infinite-dimensional algebras.

⁽¹⁾ This work was supported by a NASA Traineeship while the author was at the University of Iowa.

is such an algebra. Then a result of McCrimmon [2] implies (without the assumption of simplicity) that $A^+ = Fl + N$, for N the nilradical of A^+ . Moreover, as in [5, p. 145] it is true that A^+ is D-simple; i.e., A^+ has no ideals invariant under all derivations. That A^+ is associative now follows from the following proposition (which does not use the fact that A^+ is commutative or that N is nil).

PROPOSITION (DUE TO T. S. RAVISANKAR). Any D-simple nonassociative algebra of the form A = F1 + R (where 1 is the identity of A, R is an ideal) is associative.

Proof. In [4], Ravisankar has given the following simple proof for when A is finite dimensional. However, his proof is valid without this assumption. For completeness, we summarize the argument.

Let P= the set of associators of A. Then P is a D-subspace and $P \subseteq R$. But the ideal generated by P, say P^* , equals $P + PA + AP + A(AP)A + A(PA) + \cdots$, and it is clear from this that P^* is also D-invariant and contained in R. I.e., P^* is a proper D-ideal. Thus $P^* = 0$ and P = 0.

- 3. We shall let \mathcal{A} denote the class of algebras satisfying
- (1) A is central simple, flexible, with an identity, over a field of characteristic $\neq 2$;
- (2) A is Lie-admissible, and $[A, A] \neq 0$; and
- (3) A^+ is associative.

The proof that A in \mathcal{A} implies that ad (A)' is simple is modeled on Herstein's results [1] for the associative case and is based on the following sequence of lemmas and on Theorem 1, which we shall state later. By ad x, for x in A, we shall mean $[x,]=L_x-R_x$. For A in \mathcal{A} , we have ad x is a derivation of A^- ; also by [5, p. 146] ad x is a derivation of A^+ . Therefore we have

LEMMA 1. Let A be in \mathcal{A} , and x in A. Then ad x is a derivation of A.

LEMMA 2. Let A be in \mathcal{A} , and suppose the characteristic of the base field F is p > 2. Then A is algebraic over F and N, the nilradical of A^+ , equals the set of noninvertible elements of A^+ .

Proof. Let $T = \{x^p : x \text{ is in } A\}$. Then [A, T] = 0, for given x, y in A, $[y, x^p] = px^{p-1} \cdot [y, x] = 0$. But then associativity of A^+ implies directly that T is in the nucleus, whence the center, of A. That is, $T \subseteq F1$, which in turn proves the lemma.

LEMMA 3. Let A be in \mathcal{A} , and suppose the characteristic is 0. Then N, the nilradical of A^+ , =0. More generally, if A is a flexible, Lie-admissible algebra over a field of characteristic 0, and if A^+ is associative, then N is an ideal of A.

Proof. First suppose A is a flexible, Lie-admissible algebra over a field F of characteristic 0, and that A^+ is associative. That $(\operatorname{ad} a)^j(x^k)$ is in $x \cdot A$ for $k = 1, 2, \ldots$ and $0 \le j < k$, and a, x arbitrary elements in A follows by induction on k and by the Leibnitz formula. Using this result, induction and Leibnitz again, it next follows that $(\operatorname{ad} a)^j(x^j) = j!$ $[a, x]^j$ $(\operatorname{mod} x \cdot A)$ for $j = 1, 2, \ldots$ Now suppose x is in N, the nilradical of A^+ . If $x^m = 0$,

$$0 = (ad a)^m (x^m) = m! [a, x]^m$$

1971] LIE-ADMISSIBLE, NODAL, NONCOMMUTATIVE JORDAN ALGEBRAS 107

holds for arbitrary a in A. This forces $[a, x]^m = 0$ and therefore [a, x] to be in N. But N an ideal of A^- implies N is an ideal of A.

LEMMA 4. Let A be flexible and Lie-admissible and U be an ideal of A^- . Define $T(U) = \{x \text{ in } A; [x, A] \subseteq U\}$. Then T(U) is both a Lie ideal of A^- and a subalgebra of A. Moreover, $U \subseteq T(U)$.

Proof. Let a, b be in T(U), and r in A. By the Jacobi identity, $[[a, r], A] \subseteq [[a, A], r] + [a, [A, r]] \subseteq [U, r] + [a, A] \subseteq U$. Thus [a, r] is in T(U) and $[A, T(U)] \subseteq T(U)$, so T(U) is a Lie ideal of A^- . Next $[a^2, r] = 2a \cdot [a, r] = 2[a, a \cdot r]$, which is in U because a is in T(U); since r is arbitrary this implies a^2 is in T(U). I.e., a in T(U) implies a^2 is in T(U); linearizing implies ab + ba is in T(U), and adding this to ab - ba in T(U) yields ab = ab in ab - ba in ab -

LEMMA 5. Let A be in \mathcal{A} and U be an ideal of A^- . Then [U, U] = 0 or $[A, A] \subseteq U$.

Proof. Consider T(U). If T(U)=A, $[A, A]=[A, T(U)]\subseteq U$ and we are done. Hence suppose $T(U)\subsetneq A$. By Lemma 1, for a, b in T(U) and x in A, [a, b]x=[a, bx]-b[a, x], and so Lemma 4 implies that [a, b]x is in T(U). Similarly x[a, b] is in T(U), so by multiplying in A^+ , we have $[T(U), T(U)] \cdot A \subseteq T(U) \subsetneq A$. However $[T(U), T(U)] \cdot A$, an ideal of A^+ by associativity, is also an ideal of A^- . So $[T(U), T(U)] \cdot A$ is a proper ideal of A, and as such it must A = 0. But 1 in A = 00 implies that [T(U), T(U)] = 0, so $U \subseteq T(U)$ finishes the proof.

LEMMA 6. Let A be in \mathcal{A} and U be an ideal of A^- such that [U, U] = 0. Then [U, A] = 0.

Proof. Let u be in U, a in A. Then $0 = [u, [u, a^2]] = [u, a[u, a]] + [u, [u, a]a]$. But also [u, a[u, a]] - [u, [u, a]a] = [u, [a, [u, a]]] = 0, and adding these two equations implies [u, a[u, a]] = 0, or 0 = [u, a][u, a] + a[u, [u, a]]. But again [u, [u, a]] is 0, implying finally $0 = [u, a]^2$. Thus [u, a] is in N, the nilradical of A^+ , so in general $[U, A] \subseteq N$, and $[U, A] \cdot A \subseteq N$. But $[U, A] \cdot A$ is an ideal of both A^+ and A^- so is an ideal of A. As it is not all of A, it must be 0. Consequently [U, A] = 0.

These six lemmas, together with the fact that $[U, A] = 0 \Rightarrow U \subseteq F1$, imply

THEOREM 1. Let A be in \mathscr{A} and U be an ideal of A^- . Then $[A, A] \subseteq U$ of $U \subseteq F1$.

LEMMA 7. Let A be in $\mathscr A$ and U be an ideal of $[A, A]^-$. If $U \subseteq M$, for M a primary ideal of A^+ , then $U \subseteq F1$. In particular if $U \subseteq N$, the nilradical of A^+ , then U = 0.

Proof. Let u be in U, a in A. Then $[u, a]^2 = [u, a] \cdot [u, a] \cdot [u, a] - a \cdot [u, [u, a]] = [u, [a \cdot u, a]] - a \cdot [u, [u, a]]$. But this last expression is contained in $U + A \cdot U \subseteq M$. Thus the assumption that M be primary implies that already [u, a] is in M. That is $U \subseteq M$ implies $[U, A] \subseteq M$. But the Jacobi identity implies that [U, A] is also an ideal of $[A, A]^-$, so the argument may be repeated to get $[[U, A], A] \subseteq M$, and by

induction, then for $n=1, 2, \ldots$, we obtain $B_n = [[\ldots [[U, A], A], \ldots], A] \subseteq M$, where there are n A's in B_n . Therefore also $B = \sum_{n=0}^{\infty} B_n \subseteq M$. But clearly $[B_n, A] \subseteq B_{n+1}$ holds for all n, so actually B is an ideal of A^- . We may assume $B \Rightarrow [A, A]$, for if $[A, A] \subseteq B$ occurred we would have M an ideal of A ($[M, A] \subseteq [A, A] \subseteq B \subseteq M$ means M is an ideal of A^-) forcing M = 0 and the lemma to be trivial. That is, B is a Lie ideal of A^- which does not contain [A, A] so by Theorem 1, $B \subseteq F1$. Since $U \subseteq B$ by definition we have $U \subseteq F1$. Finally if M = N is nil, since N is primary, $U \subseteq F1 \cap N = 0$.

LEMMA 8. Let A be in $\mathscr A$ and U be an ideal in $[A, A]^-$ such that [U, U] = 0. Then $U \subseteq F1$.

Proof. Let u, v, w be in U, x in [A, A], and z be in A. Then

$$0 = [u, [v, [x, zw]]]$$

$$= [u, [v, z[x, w]]] + [u, [v, [x, z]w]]$$

$$= [u, [v, z][x, w]] + [u, z[v, [x, w]]] + [u, [v, [x, z]]w] + [u, [x, z][v, w]]$$

$$= [u, [v, z][x, w]] + [u, [v, [x, z]]w]$$

$$= [v, z][u, [x, w]] + [u, [v, z]][x, w] + [v, [x, z]][u, w] + [u, [v, [x, z]]]w$$

$$= [u, [v, z]][x, w].$$

Thus [U, [U, A]][[A, A], U] = 0. Then for V = [U, [U, A]] we have that V is an ideal of $[A, A]^-$ and that $V^2 = 0$, as $V^2 \subseteq [U, [U, A]][U, [A, A]] = 0$. In particular, V is contained in N, so Lemma 7 implies V = 0.

Now consider u in U, a in A; using V=0, we obtain $[u, a]^2=[u, a][u, a]$ = $[u, a[u, a]]-a[u, [u, a]]=[u, a[u, a]]=[u, [u, a^2]]-[u, [u, a]a]=-[u, [u, a]a]$ = $-[u, a]^2$. Therefore, characteristic not 2 implies $[u, a]^2=0$, so in particular [u, a] is in N, and therefore $[U, A] \subseteq N$. But as [U, A] is a Lie ideal of [A, A], Lemma 7 implies [U, A]=0. Finally, this implies $U \subseteq F1$, which was to be proved.

LEMMA 9. Let A be in $\mathscr A$ and U be an ideal of $[A, A]^-$ such that $[U, U] \subseteq F1$. Then $U \subseteq F1$.

Proof. Let v be in U and suppose there exists a u in U such that $[u, v] = \alpha \neq 0$ in F1. Let x = [y, v] so x, xv = [y, v]v = [yv, v] and (xv)v = [yv, v]v = [(yv)v, v] are all in [A, A]. Then F1 contains

$$\gamma = [u, [x, v]],
\beta = [u, [xv, v]]
= [u, [x, v]v]
= [x, v][u, v] + [u, [x, v]]v
= \alpha[x, v] + \gamma v,$$

1971] LIE-ADMISSIBLE, NODAL, NONCOMMUTATIVE JORDAN ALGEBRAS 109 and thirdly,

$$\delta = [u, [(xv)v, v]]$$

$$= [u, [xv, v]v]$$

$$= [xv, v][u, v] + [u, [xv, v]]v$$

$$= \alpha[x, v]v + \beta v.$$

Thus we have

- (1) $\beta v + \alpha [x, v]v = \delta$,
- (2) $\gamma v + \alpha[x, v] = \beta$, with α, β, γ and δ in F1.

Then v times equation (2) minus equation (1) yields $\gamma v^2 - 2\beta v + \delta = 0$. If $\gamma \neq 0$ for some choice of y, then this equation implies $v^2 = (2\beta/\gamma)v - (\delta/\gamma)$, so $[u, v^2] = (2\beta/\gamma)\alpha$, which is in F1. However $[u, v^2] = [u, v]v + v[u, v] = 2\alpha v$, and equating gives $2\alpha v = (2\beta/\gamma)\alpha$ in F1, and hence the assumption that $\alpha \neq 0$ implies v is in F1, a contradiction. This means that we may assume $\gamma = 0$ no matter which x is chosen. In particular, for x = [y, v]v we have [u, [[y, v]v, v]] = 0, and for x = [y, v], we have [u, [[y, v]v]] = 0. Thus

$$0 = [u, [[y, v]v, v]] = [u, [[y, v], v]v] + [u, [y, v][v, v]] = [u, [[y, v], v]v]$$

= $[[y, v], v][u, v] + [u, [[y, v], v]]v = \alpha[[y, v], v].$

Again we apply the assumption that $\alpha \neq 0$, this time to get [[y, v], v] = 0. This holds for all y in A, and any v for which there exists a u in U with $[v, u] \neq 0$. In other words $[v, U] \neq 0$ implies [[A, v], v] = 0. Next consider $U^* = \{u \text{ in } U; [u, U] = 0\}$. We note that $[[U^*, [A, A]], U] \subseteq [[U^*, U], [A, A]] + [U^*, [[A, A], U]] = 0$, so $[U^*, [A, A]] \subseteq U^*$. Therefore U^* is a Lie ideal of $[A, A]^-$ satisfying $[U^*, U^*] = 0$, and so Lemma 8 implies that $U^* \subseteq F1$. In particular v in U^* implies [v, v] = 0, so also [[y, v], v] = 0 trivially. Thus we now have that for any v in U (v in U^* or not) we have [[y, v], v] = 0 for all v in v. By linearizing this in the subspace v, we get

$$[[y, u], v] + [[y, v], u] = 0$$
 for all u, v in U, y in A .

But

$$[[y, u], v] + [[v, y], u] = [[v, u], y] = 0$$
 by the Jacobi identity,

and adding these equations yields [[y, u], v] = 0 for all u, v in U, y in A. That is [[A, U], U] = 0, which by the proof of Lemma 8 already implies $U \subseteq F1$, the desired conclusion.

REMARK. The last two lemmas imply that if U is an ideal of $[A, A]^-$, and if U is solvable, then $U \subseteq F1$. The next two lemmas will imply that any proper ideal of $[A, A]^-$ is solvable, and therefore is contained in Fl.

LEMMA 10. Let U be an ideal of $[A, A]^-$ for A Lie-admissible and flexible. Define $T(U) = \{x \text{ in } A : [x, A] \subseteq U\}$. Then

- (1) $[U, U] \subseteq T(U)$,
- $(2) [U, T(U)] \subseteq T(U),$

- (3) $[[A, T(U)], T(U)] \subseteq T(U) \cap U$,
- (4) $[[T(U), T(U)], A] \subseteq T(U) \cap U$,
- (5) $[T(U), T(U)] \subseteq T(U),$
- (6) T(U) is a subalgebra of A.

Proof. We shall only include the proof of (6). For a in T(U) and r in A we have $[a^2, r] = 2[a, a \cdot r]$ is in U, and thus a in T(U) implies a^2 is in T(U). Linearizing and using part (5) then gives that T(U) is a subalgebra.

LEMMA 11. Let A be in \mathscr{A} and U be an ideal of $[A, A]^-$. Then U = [A, A] or $U^{(3)} = [[[U, U], [U, U]], [[U, U], [U, U]]] \subseteq F1$.

Proof. Let T(U) be as in Lemma 10. T(U) = A implies $[A, A] \subseteq U$ or [A, A] = U, so we may suppose $T(U) \subseteq A$. Define B = [T(U), T(U)], and let a, b be in B, and r in A. Then [b, a]r = -a[b, r] + [b, ar], which is contained in T(U) by Lemma 10. Similarly r[a, b] is in T(U). Clearly then $A \cdot [B, B] \subseteq T(U) \subseteq A$. Since $A \cdot [B, B]$ is thus a proper ideal of A^+ containing [B, B], we may suppose by a Zorn's lemma argument that $[B, B] \subseteq M$ for M a maximal (hence primary) ideal of A^+ . Also $[T(U), A, A], A \subseteq U$ implies $[T(U), A, A] \subseteq T(U)$. Thus T(U), whence also [T(U), T(U)] = B, and finally [B, B] are Lie ideals of $[A, A]^-$. Therefore, by Lemma $[B, B] \subseteq F1$, so $[T(U), T(U)], [T(U), T(U)] \subseteq F1$, so that $[u, u] \subseteq T(U)$ completes the proof.

THEOREM 2. Let A be in \mathcal{A} . Then ad (A)' is a simple Lie algebra.

Proof. Three things must be shown:

- (i) $[A, A] \neq F1$, so that ad (A)' = [A, A]/F1 will be nontrivial;
- (ii) [A, A] = [[A, A], [A, A]]; and
- (iii) if U is an ideal of $[A, A]^-$, then U = [A, A] or $U \subseteq F1$.
- (iii) is now clear by the last three lemmas, for suppose U is a proper Lie ideal of $[A, A]^-$. Lemma 11 implies that $U^{(3)} \subseteq F1$, so $U^{(2)} = [[U, U], [U, U]]$ is a Lie ideal of $[A, A]^-$ satisfying $[U^{(2)}, U^{(2)}] = U^{(3)} \subseteq F1$. Thus Lemma 9 first implies $U^{(2)} \subseteq F1$, then applied to U' = [U, U] it implies $U' \subseteq F1$ and finally applied to U it implies $U \subseteq F1$.

Now (iii) implies that if $[[A, A], [A, A]] \subseteq [A, A]$, then we must already have $[[A, A], [A, A]] \subseteq F1$, whence Lemma 9 implies $[A, A] \subseteq F1$. Thus it suffices to prove $[A, A] \subseteq F1$ cannot happen, or that indeed $[A, A] \notin F1$. Now, if this fails to happen, there would exist x, y in A with $[x, y] = \alpha 1$ in F1 and $\alpha \ne 0$. But $\alpha x = [x, y]x = [x, yx]$ in F1 forces x to be in F1 and [x, y] = 0, a contradiction.

COROLLARY. If A is a simple, nodal, noncommutative Jordan algebra which is Lie-admissible and of characteristic p > 2, then ad (A)' is a simple Lie algebra.

4. We included characteristic 0 in the previous section; however, we have the following

PROPOSITION. There do not exist any algebras in the class of characteristic 0 which are algebraic.

Proof. Let A be in \mathcal{A} and first assume that the nilradical, N, of A^+ equals the set of noninvertible elements of A^+ . Then by Lemma 3, A^+ is actually a field (since N=0). Hence for arbitrary (algebraic) elements x, y, z in A, the subalgebra of A^+ generated by x, y, z is a finite field extension of F. Such an extension (of characteristic 0) has a primitive element, say w, so that x, y, z are all polynomials in w. But as powers in A^+ and A coincide this holds in A also, so finally power associativity implies that x, y, z both commute and associate in A. That is, A is commutative and associative, A=the center of A=F1, and A is trivial. We now complete the proof of the proposition by proving the

LEMMA. If A is in \mathcal{A} and is algebraic over the arbitrary field F of characteristic 0, then N, the nilradical of A^+ , equals the set of noninvertible elements of A^+ .

Proof. First, A is of (idempotent) degree 1, for suppose $e \neq 0$ is an idempotent of A. Then the Peirce decomposition of A^+ is simply $A^+ = A_e^+(1) + A_e^+(0)$ and so $A = A_e(1) + A_e(0)$ is also the Peirce decomposition of A. This implies $A_e(1)$ is actually an ideal of A, whence $A_e(1) = A$ and finally e = 1. Now because A is algebraic, the subalgebra generated by x, F[x], is a finite-dimensional commutative associative algebra. Hence, if x is not in x, x is not nilpotent, so x is in x is invertible. Hence any nonnilpotent element is invertible. As the converse is obvious, the lemma is proved.

BIBLIOGRAPHY

- 1. I. N. Herstein, Topics in ring theory, Math. Lecture Notes, University of Chicago, 1965.
- 2. Kevin McCrimmon, Jordan algebras of degree 1, Bull. Amer. Math. Soc. 70 (1964), 702. MR 29 #2286.
- 3. Robert H. Oehmke, Nodal noncommutative Jordan algebras, Trans. Amer. Math. Soc. 112 (1964), 416-431. MR 31 #3469.
- 4. T. S. Ravisankar, A note on a theorem of Kokoris, Proc. Amer. Math. Soc. 21 (1969), 355-356. MR 39 #271.
- 5. R. D. Schafer, An introduction to nonassociative algebras, Pure and Appl. Math., vol. 22, Academic Press, New York, 1966. MR 35 #1643.

University of Iowa, Iowa City, Iowa 52240 University of Georgia, Athens, Georgia 30601