TOPOLOGIES FOR 2^x; SET-VALUED FUNCTIONS AND THEIR GRAPHS(¹)

BY LOUIS J. BILLERA

Abstract. We consider the problem of topologizing 2^x , the set of all closed subsets of a topological space X, in such a way as to make continuous functions from a space Y into 2^x precisely those functions with closed graphs. We show there is at most one topology with this property, and if X is a regular space, the existence of such a topology implies that X is locally compact. We then define the compact-open topology for 2^x , which has the desired property for locally compact Hausdorff X. The space 2^x with this topology is shown to be homeomorphic to a space of continuous functions with the well-known compact-open topology. Finally, some additional properties of this topology are discussed.

1. **Introduction.** Given a topological space X, let 2^x denote the set of all closed subsets of X (including the empty set \varnothing). We will consider the problem of putting a topology on the set 2^x which has a natural relationship to the given topology on X. In particular we choose conditions for the topology on 2^x which will identify continuous maps from spaces Y into 2^x in terms of the topologies of Y and X.

Let Y be a topological space, and $F: Y \to 2^X$. Define the graph of F to be the set $G_F = \{(x, y) \in X \times Y \mid x \in F(y)\}$. We say a topology on 2^X is admissible if for any space Y and any continuous map $F: Y \to 2^X$, G_F is a closed subset of $X \times Y$. Conversely, we say a topology on 2^X is proper if for any space Y and function $F: Y \to 2^X$, if G_F is closed then F is continuous. We will consider the problem of giving 2^X a topology which is both admissible and proper, i.e., one for which continuity of functions is equivalent to their having closed graphs. (Recall that for point-valued functions into a compact Hausdorff space X it is in fact true that the properties of continuity and closed graph are equivalent.)

In §2 we consider some properties of proper and admissible topologies for 2^x . In particular, we will show that there is at most one topology for 2^x which is both proper and admissible. In addition if X is a regular space (T_1, T_2) and points and closed

Received by the editors December 19, 1969.

AMS 1969 subject classifications. Primary 5465, 5452, 5428; Secondary 9010.

Key words and phrases. Set-valued function, hyperspace, closed graph, proper topology, splitting topology, conjoining topology, admissible topology, multifunction, space of subsets, function space, locally compact space.

⁽¹⁾ This work was supported by the National Science Foundation, primarily while the author was a National Science Foundation Postdoctoral Fellow at The Hebrew University of Jerusalem and Cornell University, and partially under N.S.F. Grant No. GK-4795.

sets can be separated), the existence of a proper-admissible topology for 2^x implies that X is locally compact. In §3 we define a topology for 2^x (called the compact-open topology) which for Hausdorff spaces X is always proper, and is admissible if and only if X is locally compact. In §4 we will show that we can weaken the restriction on X, and instead require that $X \times Y$ be a k-space, and this will imply that $F: Y \rightarrow 2^x$ is continuous in the compact-open topology if and only if G_F is closed. We will also describe some other properties of this topology.

2. Admissible and proper topologies. We begin by giving a characterization of an admissible topology.

LEMMA 2.1. A topology on 2x is admissible if and only if

$$\Omega = \{(x, A) \in X \times 2^x \mid x \in A\}$$

is closed in $X \times 2^X$.

Proof. If the topology is admissible, then Ω is closed since it is the graph of the identity from 2^x to itself, which is obviously continuous.

Suppose now that Ω is closed. Let Y be any space and F: $Y \to 2^X$ be continuous. Then $G_F = (1, F)^{-1}(\Omega)$ where $(1, F): X \times Y \to X \times 2^X$ is given by (1, F)(x, y) = (x, F(y)) and is continuous. Hence G_F is closed.

If t_1 and t_2 are two topologies for the same set, and $t_1 \subset t_2$, we say t_1 is weaker than t_2 , and t_2 is stronger than t_1 . When more than one topology is being considered at one time, we will denote by $2^X(t)$, the space 2^X with the topology t.

LEMMA 2.2. (a) A topology stronger than an admissible topology is also admissible.

- (b) A topology weaker than a proper topology is also proper.
- (c) Any admissible topology is stronger than any proper topology.

Proof. Parts (a) and (b) are clear. To prove (c), let t_1 be a proper topology and t_2 be an admissible topology. Then by Lemma 2.1, $\{(x, A) \mid x \in A\}$ is closed in $X \times 2^X(t_2)$, which implies $1: 2^X(t_2) \to 2^X(t_1)$ is continuous. Thus $t_1 \subset t_2$.

From Lemma 2.2(c) we obtain the uniqueness of a topology which is both proper and admissible.

Theorem 2.3. For any topological space X, 2^x can have at most one topology which is both proper and admissible. Such a topology is necessarily the strongest proper topology on 2^x and the weakest admissible topology on 2^x . (By "strongest" or "weakest" we mean "containing" or "contained in" all other such topologies.)

We are thus naturally led to consider the question of when 2^x can have a strongest proper topology or a weakest admissible topology. Such topologies must necessarily be unique. The first question is easily settled.

Proposition 2.4. For any X, 2^{X} has a strongest proper topology.

Proof. Let $\{t_{\alpha}\}$ be the family of all proper topologies. Let t be the topology which has the set $\bigcup_{\alpha} t_{\alpha}$ as a subbasis. Since this is stronger than any proper topology, we need only show that it is proper.

Let Y be any space, and $F: Y \to 2^X$ be such that G_F is closed. Since any subbasic $V \in t$ is an open set for some proper topology, $F^{-1}(V)$ must be open and hence F is continuous.

On the question of a weakest admissible topology, we first state the following proposition whose proof is clear.

PROPOSITION 2.5. If 2^x has a weakest admissible topology, it must be the intersection of all admissible topologies.

We now prove the main result of this section.

THEOREM 2.6. If X is a regular space and 2^{x} has a weakest admissible topology then X is locally compact.

Proof. Let t be the weakest admissible topology on 2^x . Let $x \in X$. We will show that x has a relatively compact neighborhood.

Since t is admissible, there is an open set $V \subset X$ and a $\mathscr{U} \in t$ such that $x \in V$, $\varnothing \in \mathscr{U}$ and $V \times \mathscr{U} \subset \widetilde{\Omega}$, the complement in $X \times 2^X$ of the set Ω defined in Lemma 2.1. We will show that \overline{V} , the closure of V, is compact.

Let \mathscr{A} be an open cover of \overline{V} , and let $\mathscr{A}^* = \mathscr{A} \cup \{X - \overline{V}\}$, an open cover of X. Let $\{F_{\alpha}\}$ be the collection of all closed subsets of X each of which is contained in some member of \mathscr{A}^* , and let the sets $\{A \in 2^X \mid A \subseteq X - F_{\alpha}\}$ be a subbasis for a topology t' on 2^X . We will show now that t' is admissible.

Suppose $y \in X$, $B \in 2^X$ and $y \notin B$. There is an $A^* \in \mathscr{A}^*$ such that $y \in A^*$. Since X is regular, there is an open set $W \subseteq X$ such that

$$v \in W \subset \overline{W} \subset \widetilde{B} \cap A^*$$
.

 $\overline{W} \subset A^*$ implies $\overline{W} \in \{F_{\alpha}\}$, and $\overline{W} \subset \widetilde{B}$ implies that $B \subseteq X - \overline{W}$. Thus

$$Z = W \times \{A \mid A \subseteq X - \overline{W}\}$$

is an open set in $X \times 2^{x}(t')$, $(y, B) \in Z$ and $Z \subset \tilde{\Omega}$, showing that Ω is closed in $X \times 2^{x}(t')$, and hence that t' is admissible.

Since t is the weakest admissible topology, we must have $t \subseteq t'$ and thus $\mathscr{U} \in t'$. From this it follows that there exist F_1, \ldots, F_n in $\{F_{\alpha}\}$ such that

$$\varnothing \in \bigcap_{i=1}^{n} \{A \mid A \subseteq X - F_i\} = \{A \mid A \subseteq X - \bigcup_{i=1}^{n} F_i\} \subseteq \mathscr{U}.$$

We show that $V \subset \bigcup_{i=1}^n F_i$. Suppose, to the contrary, that there is a $y \in V - \bigcup F_i$. We have then that $\{y\} \in \{A \mid A \subseteq X - \bigcup F_i\} \subseteq \mathcal{U}$ and therefore $(y, \{y\}) \in V \times \mathcal{U} \subseteq \widetilde{\Omega}$. However, this is impossible since $y \in \{y\}$, and thus we have $V \subseteq \bigcup F_i$. It follows that also $\overline{V} \subset \bigcup F_i$.

To complete the proof, for i = 1, ..., n let $V_i \in \mathcal{A}^*$ be such that $F_i \subset V_i$. Therefore $\overline{V} \subset \bigcup_{i=1}^n V_i$, and we have produced a finite subcover of \mathcal{A}^* . We also have a finite subcover of \mathcal{A} since we can omit $X - \overline{V}$ if it occurs among the V_i .

COROLLARY 2.7. Let X be a regular space. If the intersection of all admissible topologies for 2^{x} is admissible, then X is locally compact.

COROLLARY 2.8. Let X be a regular space. If 2^x has a topology which is both proper and admissible, then X is locally compact.

In the next section we will show that converses of Theorem 2.6 and the corollaries are true. That is, we will show that if X is a locally compact Hausdorff space, then it has a proper-admissible topology, and hence a weakest admissible topology. (It is clearly regular.)

The problem remains as to whether the hypothesis on X can be weakened, say, to Hausdorff. Theorem 2.6 says that if X is a regular space which is not locally compact (e.g. X = Q, the space of rationals in the real line), then 2^X has no weakest admissible topology (and thus no proper-admissible topology). An open question is whether a nonregular Hausdorff space can have a weakest admissible topology.

Before proceeding to the next section, we will study an interesting consequence of the proof of Theorem 2.6. If X is regular, and \mathscr{A} is a cover of X by open sets, then \mathscr{A} gives rise to an admissible topology, $t_{\mathscr{A}}$ on 2^{X} as follows. Let $\{F_{\alpha}\}$ denote the set of closed subsets of X each of which is contained in some member of \mathscr{A} . Let $t_{\mathscr{A}}$ be the topology on 2^{X} whose subbasis consists of all sets of the form

$${A \in 2^X \mid A \subseteq X - F_\alpha}.$$

PROPOSITION 2.9. (a) Let X be a regular space. For each open cover \mathscr{A} of X, $t_{\mathscr{A}}$ is an admissible topology on 2^{x} .

- (b) If \mathscr{A} and \mathscr{B} are open covers, and \mathscr{A} is a refinement of \mathscr{B} , then $t_{\mathscr{A}} \subset t_{\mathscr{B}}$.
- (c) If \mathscr{A} is an open cover which is closed under finite unions, then the sets $\{A \in 2^{\mathbb{X}} \mid A \subseteq X F_{\alpha}\}$ form a basis for $t_{\mathscr{A}}$.
- (d) Let X be a normal space. If \mathcal{B} is an open cover, and \mathcal{A} is an open cover consisting of all elements of \mathcal{B} and finite unions of elements of \mathcal{B} , then $t_{\mathcal{A}} = t_{\mathcal{B}}$ and hence a basis for $t_{\mathcal{B}}$ is formed by the sets given in (c).

Proof. The proof of (a) is contained in the proof of Theorem 2.6. Part (b) follows from the fact that if $\mathscr A$ is a refinement of $\mathscr B$ then we have $\{F_{\alpha}\} \subset \{F_{\beta}\}$ where these are the respective collections used in the construction of $t_{\mathscr A}$ and $t_{\mathscr B}$. Part (c) follows from the fact that

$$\bigcap_{i=1}^{n} \{A \mid A \subseteq X - F_i\} = \left\{A \mid A \subseteq X - \bigcup_{i=1}^{n} F_i\right\}.$$

For part (d), since \mathscr{B} is a refinement of \mathscr{A} , we have $t_{\mathscr{B}} \subset t_{\mathscr{A}}$. That $t_{\mathscr{A}} \subset t_{\mathscr{B}}$ follow from the fact that in a normal space if F is closed and $F \subset A_1 \cup \cdots \cup A_n$, where the A_i are open, then there exist closed sets F_i such that $F_i \subset A_i$ and $F = F_1 \cup \cdots \cup F_n$.

We remark here that if X is any Hausdorff space, and if we take the open cover $\mathscr{A} = \{X\}$, then the collection $\{F_{\alpha}\}$ consists of all closed subsets of X and $t_{\mathscr{A}}$ is the well-known *upper semifinite* topology. See Michael [7, p. 179] and Ponomarev [9] (where it is called the κ topology). Notice that for any open cover \mathscr{B} , $t_{\mathscr{B}} \subseteq t_{\mathscr{A}}$. Also, since for a regular space the weakest admissible topology t is weaker than $t_{\mathscr{A}}$, this topology t will not be Hausdorff.

In the next section we shall consider a topology for 2^x which for locally compact Hausdorff X can be described as that derived from the cover of X by relatively compact open sets. It therefore must be admissible. In fact, we will show it is also proper, and thus is the weakest admissible topology.

3. Compact-open topology: 2^x as a function space. Let X be a topological space, and let $\{C_\alpha\}$ be the set of all *compact* subsets of X. We define the *compact-open topology* on 2^x to be the topology with the basis consisting of sets of the form $\{A \in 2^x \mid A \subseteq X - C_\alpha\}$.

THEOREM 3.1. Let X be a Hausdorff space. Then the compact-open topology on 2^{x} is admissible if and only if X is locally compact.

Proof. Suppose X is locally compact and let \mathscr{C} be the open cover of X consisting of all relatively compact open sets. It follows that the compact-open topology is the topology $t_{\mathscr{C}}$, and since X is regular, Proposition 2.9(a) shows that $t_{\mathscr{C}}$ is admissible.

Now suppose the compact-open topology is admissible and let $U \subseteq X$ be open and let $x \in U$. We will find a relatively compact open set $V \subseteq X$ such that

$$x \in V \subset \overline{V} \subset U$$
.

Since Ω is closed in $X \times 2^x$, we can find an open set $V \subset X$ and a basic open set $\mathcal{W} = \{A \in 2^x \mid A \subset X - C\}$, C compact, so that

$$(x, X-U) \in V \times \mathscr{W} \subset \tilde{\Omega}.$$

It follows that $V \subset C$ and thus we have

$$x \in V \subset \overline{V} \subset C \subset U$$

and the proof is complete.

We will also show that for any space X, the compact-open topology on 2^{X} is proper. Before doing this, however, we will discuss a perhaps more familiar space which is homeomorphic to 2^{X} with the compact-open topology.

We let \mathscr{S} denote the space having two points, 0 and 1, for which the open sets are \varnothing , \mathscr{S} , and $\{0\}$. (This is known as the Sierpinski space, see [2, p. 63].) Consider the *set* of all continuous functions from X into \mathscr{S} , denoted \mathscr{S}^X . For each $f \in \mathscr{S}^X$, there corresponds a closed set $\Gamma(f) \in 2^X$ given by $\Gamma(f) = f^{-1}(1)$. Similarly, for each closed set $A \in 2^X$, we can define $\Phi(A) \in \mathscr{S}^X$ by

$$\Phi(A)(x) = 1 \quad \text{if } x \in A,$$
$$= 0 \quad \text{if } x \notin A.$$

Clearly, $\Gamma(\Phi(A)) = A$ and $\Phi(\Gamma(f)) = f$. Thus we have a bijection of the set \mathscr{S}^x onto the set 2^x . Now consider 2^x as a topological space with the compact-open topology defined earlier, and consider \mathscr{S}^x with the compact-open topology as defined for spaces of continuous functions (see, e.g., [2, p. 257]).

LEMMA 3.2. If \mathcal{S}^x and 2^x have the respective compact-open topologies, the bijection $\Gamma \colon \mathcal{S}^x \to 2^x$ is a homeomorphism.

Proof. We need only verify that $\Gamma(\{f \mid f(C) \subseteq \{0\}\}) = \{A \mid A \subseteq X - C\}$ for any compact $C \subseteq X$. But

$$\Gamma(\{f \mid f(C) \subset \{0\}\}) = \{A \mid \Phi(A)(C) \subset \{0\}\} = \{A \mid A \cap C = \emptyset\},\$$

which concludes the proof.

Thus the compact-open topology on 2^x is in fact the compact-open topology on a space of continuous functions. We will use this connection to show that the compact-open topology on 2^x is proper.

Suppose Y is any space. For every map $\alpha: X \times Y \to \mathcal{G}$, where α is continuous on X for each fixed $y \in Y$, there is an associated map $\alpha: Y \to \mathcal{G}^X$ given by $[\hat{\alpha}(y)](x) = \alpha(x, y)$. Conversely, given $\hat{\alpha}: Y \to \mathcal{G}^X$, we can define $\alpha: X \times Y \to \mathcal{G}$. Recall that a topology on the function space \mathcal{G}^X is said to be proper if for any space Y and function $\alpha: X \times Y \to \mathcal{G}$, the continuity of α (jointly in x and y) implies the continuity of $\hat{\alpha}$. Similarly, a topology on \mathcal{G}^X is said to be admissible if for any space Y and function $\hat{\alpha}: Y \to \mathcal{G}^X$, the continuity of $\hat{\alpha}$ implies that of α . Equivalently, \mathcal{G}^X has an admissible topology if and only if the evaluation map $\alpha: \mathcal{G}^X \times X \to \mathcal{G}$, given by $\alpha(f, x) = f(x)$, is continuous. See [2, p. 274].

Since the sets \mathscr{S}^x and 2^x are in a one-to-one correspondence, a topology on one can be viewed as a topology on the other, making Γ a homeomorphism. We now show that the various definitions of admissible and proper are compatible.

LEMMA 3.3. A topology on the set of subsets 2^x is admissible [proper] if and only if as a topology on the function space \mathcal{S}^x it is admissible [proper].

Proof. The proof follows from the observation that $\alpha: X \times Y \to \mathcal{S}$ is continuous if and only if

$$\alpha^{-1}(1) = \{(x, y) \in X \times Y \mid [\hat{\alpha}(y)](x) = 1\}$$

$$= \{(x, y) \mid x \in \Gamma(\hat{\alpha}(y))\}$$

$$= G_{\Gamma \circ \hat{\alpha}}$$

is closed.

We remark here that the continuity of the evaluation map ω is equivalent to the closure of the set Ω defined in §2.

COROLLARY 3.4. The compact-open topology on 2^x is always proper.

Proof. This follows by Lemmas 3.2 and 3.3 and the fact that the compact-open topology on \mathscr{S}^x is always proper (see [2, Theorem 3.1, p. 261]).

COROLLARY 3.5. Let X be a Hausdorff space. Then the compact-open topology on \mathcal{S}^X is admissible if and only if X is locally compact.

The next two results provide converses to Theorem 2.6 and its corollaries.

THEOREM 3.6. If X is a locally compact Hausdorff space, then the compact-open topology on 2^x is both proper and admissible, and hence is the weakest admissible topology on 2^x .

COROLLARY 3.7. If X is a locally compact Hausdorff space, then the intersection of all admissible topologies for 2^{x} is admissible.

In the next section, we will exploit further the function space structure of 2^x .

4. Compact-open topology: Further properties. Each space of subsets and function space considered in this section will be assumed to have the respective compact-open topology.

We now change the original problem somewhat. Given spaces X and Y we ask under what conditions can we assert that, for any function $F: Y \to 2^X$, the continuity of F (in the compact-open topology) is equivalent to its graph G_F being closed.

To give an answer to that question, we must recall the definition of a k-space. A Hausdorff space Z is said to be a k-space if $U \subset X$ is open in X if and only if for every compact subset C of Z, $U \cap C$ is open in C. It is known (see [2, p. 248]) that all locally compact and all first countable Hausdorff spaces (and hence all metric spaces) are k-spaces. Also if both X and Y are first countable Hausdorff spaces, or one is a locally compact Hausdorff space and the other is a k-space then $X \times Y$ is a k-space (see [2, p. 263]). This is important because of the following result.

THEOREM 4.1. If X is locally compact Hausdorff or if $X \times Y$ is a k-space, then the continuity of $F: Y \to 2^X$ is equivalent to its graph G_F being closed.

Proof. For the case where X is locally compact Hausdorff, this is Theorem 3.6. Since the compact-open topology is always proper, we always have that closed graph implies continuity. Thus we need only prove that if $X \times Y$ is a k-space, then continuity of F implies G_F is closed. This follows from [2, Corollary 3.2, p. 261] and the observation made in the proof of Lemma 3.3.

Theorem 4.1 tells us that, with the right conditions on X or $X \times Y$, any continuous function $F: Y \to 2^X$ gives rise to a closed subset of $X \times Y$. Conversely, any closed subset $A \subset X \times Y$ gives rise to a continuous function $F: Y \to 2^X$, defined by $F(y) = \{x \mid (x, y) \in A\}$, having the property that $G_F = A$. Thus we have a bijection G between the set of continuous functions from Y into 2^X , denoted $(2^X)^Y$, and the set of closed subsets of $X \times Y$, $2^{X \times Y}$, defined by $G(F) = G_F$.

THEOREM 4.2. Let X be a locally compact Hausdorff space, or let $X \times Y$ be a k-space. Then the function $G: (2^{x})^{y} \to 2^{x \times y}$, which assigns to each continuous F its graph G_{F} , is defined and is a homeomorphism.

Proof. This follows from Lemma 3.2 and [2, Theorem 5.3, p. 265].

COROLLARY 4.3. If $X \times Y$ is a k-space, then $(2^X)^Y$ is homeomorphic to $(2^Y)^X$. In fact the homeomorphism is given by mapping the function $F: Y \to 2^X$ to the function $F^*: X \to 2^Y$ given by $F^*(x) = \{y \mid x \in F(y)\}$.

COROLLARY 4.4. Let $F: Y \to 2^X$ and let $F^*(x) = \{y \mid x \in F(y)\}$ for all $x \in X$. If X is locally compact Hausdorff, then F is continuous implies $F^*: X \to 2^Y$ is defined and is continuous. If $X \times Y$ is a k-space, then F is continuous if and only if F^* is defined and is continuous. (Note that by F^* is defined we mean $F^*(x)$ is closed for all $x \in X$.)

Thus, under the proper conditions, the study of continuous closed-set valued functions from Y to X is equivalent to the study of closed subsets of $X \times Y$. Conversely, consideration of closed subsets of $X \times Y$ leads to the study of continuous closed-set valued functions from one factor into the other.

The remaining results of this section describe some further continuity properties of the compact-open topology on 2^x . The following is obvious.

Proposition 4.5. Let X be a Hausdorff space. Then

- (a) the map $i: X \to 2^X$ given by $i(x) = \{x\}$ is continuous, and
- (b) if $f: Y \to X$ is continuous, the map $F: Y \to 2^X$ given by $F(y) = \{f(y)\}$ is continuous.

THEOREM 4.6. Let X and Y be any spaces. Then the map $H: Y^x \times 2^y \to 2^x$ given by $H(f, B) = f^{-1}(B)$ is continuous in f for fixed B and in B for fixed f. If Y is a locally compact Hausdorff space, then H is continuous jointly in f and B.

Proof. The theorem is true for the map $T: Y^X \times \mathscr{S}^Y \to \mathscr{S}^X$ given by $T(f, g) = g \circ f$ [2, p. 259]. Noting that if $g \in \mathscr{S}^Y$ is such that $B = g^{-1}(1)$, then $(g \circ f)^{-1}(1) = f^{-1}(g^{-1}(1)) = f^{-1}(B)$, the proof follows from Lemma 3.2.

We will denote by $H_B: Y^X \to 2^X$ the map $H_B(f) = H(f, B)$ and by $H_f: 2^Y \to 2^X$ the map $H_f(B) = H(f, B)$.

COROLLARY 4.7. Let X be a Hausdorff space. Let $f: Y \to X$ be continuous. Then the map $f^{-1}: X \to 2^Y$ is continuous.

Proof. The map $H_f \circ i \colon X \to 2^X \to 2^Y$ is continuous, and $H_f \circ i(x) = H_f(\{x\})$ $= f^{-1}(x)$.

We remark here that if $f: Y \to X$ and if $F: Y \to 2^X$ is given by $F(y) = \{f(y)\}$, then $F^*: X \to 2^Y$ is given by $F^*(x) = \{y \mid x \in \{f(y)\}\} = f^{-1}(x)$, provided F^* is defined, i.e., provided $f^{-1}(x)$ is closed for all $x \in X$. Thus by Corollary 4.4 we get that if $X \times Y$ is a k-space then f^{-1} is defined and is continuous if and only if F is continuous. Notice that F^* acts in some sense as an inverse of F.

THEOREM 4.8. Let X be a compact Hausdorff space and Y a k-space. Then $f: Y \to X$ is continuous if and only if $f^{-1}: X \to 2^Y$ is defined and is continuous.

Proof. By Corollary 4.7 and the preceding discussion, all we need prove is that if $F(y) = \{f(y)\}\$ is continuous then f is continuous.

Let $U \subseteq X$ be open. Since X is compact Hausdorff, $\mathscr{V} = \{A \in 2^X \mid A \subseteq U\}$ is open in 2^X , hence the continuity of F implies $F^{-1}(\mathscr{V})$ is open in Y. But

$$F^{-1}(\mathscr{V}) = \{ y \in Y \mid f(y) \in U \} = f^{-1}(U).$$

Proposition 4.9. The map

$$\Sigma: 2^x \times 2^x \rightarrow 2^x$$

given by $\Sigma(A, B) = A \cup B$, is continuous.

Proof. Notice that

$$\{(A, B) \in 2^{\mathsf{X}} \times 2^{\mathsf{X}} \mid A \cup B \subseteq U\} = \{A \in 2^{\mathsf{X}} \mid A \subseteq U\} \times \{B \in 2^{\mathsf{X}} \mid B \subseteq U\}.$$

COROLLARY 4.10. If $F_i: Y \to 2^x$ is continuous for i = 1, 2, then $F_1 \cup F_2: Y \to 2^x$, given by $(F_1 \cup F_2)(y) = F_1(y) \cup F_2(y)$, is continuous.

Proof. Let $F_1 \times F_2$: $Y \to 2^X \times 2^X$ be the product map, then $F_1 \cap F_2 = \Sigma \circ (F_1 \times F_2)$.

LEMMA 4.11. Let $F_{\alpha}: Y \to 2^{X}$ and let $\bigcap F_{\alpha}: Y \to 2^{X}$ be given by $(\bigcap F_{\alpha})(y) = \bigcap F_{\alpha}(y)$. Then $G \cap_{F_{\alpha}} = \bigcap G_{F_{\alpha}}$.

Proof.

$$G_{\bigcap F_{\alpha}} = \{(x, y) \mid x \in \bigcap F_{\alpha}(y)\}$$

$$= \{(x, y) \mid x \in F_{\alpha}(y) \text{ for all } \alpha\}$$

$$= \bigcap \{(x, y) \mid x \in F_{\alpha}(y)\}$$

$$= \bigcap G_{F_{\alpha}}.$$

PROPOSITION 4.12. Let X be a locally compact Hausdorff space or let $X \times Y$ be a k-space. Then if F_{α} : $Y \to 2^{X}$ is continuous for all α , then $\bigcap F_{\alpha}$ is continuous.

Proof. By Theorem 4.1, $G_{F_{\alpha}}$ is closed for all α . From Lemma 4.11, we conclude that $G \cap_{F_{\alpha}}$ is closed, hence that $\bigcap F_{\alpha}$ is continuous.

The last few results suggest some applications of the continuity properties of the compact-open topology.

PROPOSITION 4.13. Let X be a locally compact topological group. Then the map $C: 2^{x} \times X \rightarrow 2^{x}$, given by C(A, x) = xA, is continuous.

Proof. X is necessarily Hausdorff (see [8, p. 27]). We need only show G_c is closed. But

$$G_C = \{ (A, x, y) \mid y \in xA \}$$

= \{ (A, x, y) \cong x^{-1}y \in A \}
= (1, m)^{-1}(\Omega),

where $(1, m): 2^{x} \times X \times X \rightarrow 2^{x} \times X$ is given by $(1, m)(A, x, y) = (A, x^{-1}y)$ and is continuous. Thus G_{C} is closed.

COROLLARY 4.14. Multiplication by an element of a locally compact topological group X is a homeomorphism of 2^{x} onto itself.

In fact, Corollary 4.14 also follows from a more general result. Recall the definition $H_f(B) = f^{-1}(B)$.

PROPOSITION 4.15. Let $f: X \to Y$ and $g: Y \to Z$ be continuous, then $H_{g \circ f} = H_f \circ H_g$. In particular, if f is a homeomorphism of X onto Y then H_f is a homeomorphism of 2^Y onto 2^X .

Now consider the space $2^{X \times X}$ as the space of all closed binary relations R on X. We define the maps

$$M: 2^{X \times X} \rightarrow 2^X$$

by $M(R) = \{x \in X \mid \{x\} \times X \subseteq R\}$, and

$$E: 2^{X \times X} \times X \rightarrow 2^X$$

by $E(R, x) = \{y \in X \mid (x, y) \in R, (y, x) \in R\}$. It is easy to show that M(R) and E(R, x) are always closed sets, thus M and E are defined. The map M takes R to its set of "maximum" elements, while the map E takes R and x to the "equivalence class" of x with respect to R.

THEOREM 4.16. If X is locally compact, then both M and E are continuous.

Proof. Let $\Omega_2 = \{(R, x, y) \mid (x, y) \in R\}$, by hypothesis a closed set in $2^{X \times X} \times X \times X$. Then

$$G_{M} = \{(R, x) \mid x \in M(R)\}$$

$$= \{(R, x) \mid \{x\} \times X \subseteq R\}$$

$$= \{(R, x) \mid (R, x, y) \in \Omega_{2}, \text{ for all } y \in X\}$$

$$= (2^{x} \times X) - p(\tilde{\Omega}_{2}),$$

where p is the projection of $2^{X \times X} \times X \times X$ onto the first two coordinates. Hence G_M is closed.

Also,

$$G_E = \{ (R, x, y) \mid y \in E(R, x) \}$$

= \{ (R, x, y) \cdot (x, y) \in R, (y, x) \in R \}
= \Omega_2 \cap \Omega_2',

where $\Omega_2' = \{(R, x, y) \mid (y, x) \in R\}$ is also closed. Thus G_E is closed.

5. **Discussion.** If we had viewed the space 2^x as a function space earlier, then Lemma 2.2, Theorem 2.3 and Proposition 2.4 could be seen as following from known results about function spaces [2, p. 275]. However, it seemed simpler to directly indicate their proofs, which follow the proofs in [2].

The proof of Theorem 2.6 follows Arens' proof of the fact that if I^x has a weakest (he calls it strongest) admissible topology where I is the unit interval and X is completely regular, then X is locally compact [1, Theorem 3]. Note that what we have essentially proved is that if the function space \mathcal{S}^x has a weakest admissible topology where X is regular, then X is locally compact.

Notice that the compact-open topology coincides with the upper-semifinite topology (defined at the end of $\S 2$ or see [7, p. 179]) when the space X is compact Hausdorff.

We note here that if X is a locally compact Hausdorff space with a countable base, then by [2, Theorem 5.2, p. 65], 2^x will have a countable base. In addition, for any space X, 2^x with the compact-open topology is trivially compact since 2^x itself must belong to any open cover.

The compact-open topology for 2^x appears as half of the generating set for Fell's H-topology [4]. It was later isolated by Effros, who called it the global topology [3, p. 931]. Effros describes convergence in this topology when X is a locally compact Hausdorff space. It is interesting to note that this description is equivalent to Arens' description of convergence in Y^x for locally compact Hausdorff X [1, Theorem 4] when one consider 2^x as the space \mathcal{S}^x . See also [5].

Finally, an equivalent version of the compact-open topology (for spaces of open subsets) was considered by Kannai [6] in connection with some problems in Mathematical Economics. Theorem 2.6 and Theorem 3.1 would seem to indicate that Kannai's methods will not work in spaces which are not locally compact.

REFERENCES

- 1. R. F. Arens, A topology for spaces of transformations, Ann. of Math. (2) 47 (1946), 480-495. MR 8, 165.
 - 2. J. Dugundji, Topology, Allyn and Bacon, Boston, Mass., 1966. MR 33 #1824.
- 3. E. G. Effros, Convergence of closed subsets in a topological space, Proc. Amer. Math. Soc. 16 (1965), 929-931. MR 31 #6208.
- 4. J. M. G. Fell, A Hausdorff topology for the closed subsets of a locally compact non-Hausdorff space, Proc. Amer. Math. Soc. 13 (1962), 472-476. MR 25 #2573.
- 5. J. Flachsmeyer, Verschiedene Topologisierungen im Raum der abgeschlossenen Mengen, Math. Nachr. 26 (1964), 321-337. MR 30 #4233.
 - 6. Y. Kannai, Continuity properties of the core of a market, Econometrica 38 (1970).
- 7. E. Michael, Topologies on spaces of subsets, Trans. Amer. Math. Soc. 71 (1951), 152-182, MR 13, 54.
- 8. D. Montgomery and L. Zippin, *Topological transformation groups*, Interscience Tracts in Pure and Appl. Math., vol. 1, Interscience, New York, 1955. MR 17, 383.
- 9. V. I. Ponomarev, A new space of closed sets and multivalued continuous mappings of bicompacta, Mat. Sb. 48 (90) (1959), 191-212; English transl., Amer. Math. Soc. Transl. (2) 38 (1964), 95-118. MR 22 #8473.

CORNELL UNIVERSITY,
ITHACA, NEW YORK 14850