ERRATA TO "CONCERNING ARCWISE CONNECTEDNESS AND THE EXISTENCE OF SIMPLE CLOSED CURVES IN PLANE CONTINUA"

BY CHARLES L. HAGOPIAN

Substitute the following for the last two paragraphs in the proof of Theorem 2 of my paper [1].

Assume without loss of generality that the sequence F_1, F_2, F_3, \ldots is such that for each positive integer n, there exist two arc-segments R_n and E_n such that (1) $R_n \subset \operatorname{Bd} R$, (2) $E_n \subset \operatorname{Bd} E$, and (3) each arc-segment meets F_1, F_2, F_3, \ldots only in F_{2n} and has one endpoint in F_{2n-1} and the other endpoint in F_{2n+1} . Let p_1, p_2, p_3, \ldots be a sequence of points converging to p such that for each positive integer n, the point p_n is in $F_{2n} \cap (R - \operatorname{Cl} E)$. The sequence R_1, R_2, R_3, \ldots converges to a point w_1 of $M \cap \operatorname{Bd} R$ and E_1, E_2, E_3, \ldots converges to a point w_2 of $M \cap \operatorname{Bd} E$.

Since M is aposyndetic, for n=1 and 2, there exist a subcontinuum M_n of M and a circular region G_n (Cl $(G_1 \cup G_2) \cap \{y, z\} = \text{Cl } G_1 \cap \text{Cl } G_2 = \emptyset$) in S such that G_n contains w_n and meets only one component of Bd (R-E), the point p is in the interior of M_n relative to M and $\operatorname{Cl} G_n \cap M_n = \emptyset$. Let G denote a circular region in S containing p such that Cl $G \cap \text{Cl } (G_1 \cup G_2) = \emptyset$ and $G \cap M$ is contained in $M_1 \cap M_2$. Assume without loss of generality that for each positive integer i, Cl $R_i \subset G_1$, Cl $E_i \subset G_2$, and p_i belongs to G. Let k be a positive integer such that $\operatorname{Cl}(U_k \cup V_k) \cap \operatorname{Cl}(G_1 \cup G_2) = \emptyset$ and F_1, F_2, \dots, F_7 all lie in Y_k . Let j be a positive integer such that $U_k \cup V_k \supseteq \operatorname{Cl}(U_i \cup V_i)$. Let P_1 be a circular region in G centered on p_1 such that Cl P_1 does not meet $F_1 \cup F_3 \cup R_1 \cup E_1$. Since M is not aposyndetic at p_1 with respect to $\{y, z\}$, the component of $M - (U_i \cup V_j)$ which contains p_1 is not open relative to M at p_1 . Hence the boundary of P_1 contains an arc-segment S_1 whose endpoints a_1 and b_1 lie in different components of $M-(U_i \cup V_i)$ such that $M \cap S_1 = \emptyset$. There exists a simple closed curve C_1 which separates a_1 from b_1 in S and contains no point of $M-(U_i \cup V_j)$ such that $C_1 \cap S_1$ is connected. In C_1 there exists an arc-segment T_1 which crosses S_1 , contains no point of $M \cup Cl(U_i \cup V_i)$, and has its endpoints in Bd $(U_i \cup V_i)$. Let P_2 be a circular region in G centered on p_2 such that $\operatorname{Cl} P_2$ does not meet $F_3 \cup F_5 \cup R_2$ $\cup E_2 \cup T_1$. The component of $(M \cup S_1 \cup \operatorname{Cl} T_1) - (U_j \cup V_j)$ which contains p_2 is not open relative to $M \cup S_1 \cup \operatorname{Cl} T_1$ at p_2 . Hence the boundary of P_2 contains

an arc-segment S_2 whose endpoints a_2 and b_2 lie in different components of $(M \cup S_1 \cup \operatorname{Cl} T_1) - (U_j \cup V_j)$ such that $M \cap S_2 = \emptyset$. There exists a simple closed curve C_2 which separates a_2 from b_2 in S and contains no point of $(M \cup S_1 \cup \operatorname{Cl} T_1) - (U_j \cup V_j)$ such that $C_2 \cap S_2$ is connected. In C_2 there exists an arc T_2 which crosses S_2 , contains no point of $M \cup \operatorname{Cl} (U_j \cup V_j)$, and has its endpoints in $\operatorname{Bd} (U_j \cup V_j)$. Continue this process. There exist a circular region P_3 centered on P_3 , arc-segments S_3 and T_3 , and a simple closed curve C_3 such that (1) $\operatorname{Cl} P_3$ does not meet $F_5 \cup F_7 \cup R_3 \cup E_3 \cup T_1 \cup T_2$, (2) S_3 has endpoints a_3 and b_3 in M and is contained in $(S - M) \cap \operatorname{Bd} P_3$, (3) C_3 separates a_3 from b_3 and contains no point of $(M \cup \bigcup_{i=1}^2 (S_i \cup \operatorname{Cl} T_i)) - (U_j \cup V_j)$, (4) $C_3 \cap S_3$ is connected, and (5) T_3 is contained in $C_3 - \operatorname{Cl} (U_j \cup V_j)$, meets S_3 , and has its endpoints in $\operatorname{Bd} (U_j \cup V_j)$.

For each i (i=1, 2, and 3), no component of Cl ($G_1 \cup G_2$) contains both a point of T_i which precedes and a point of T_i which follows $T_i \cap S_i$ with respect to the order of T_i ; for otherwise, T_i union a component of Bd ($G_1 \cup G_2$) would separate a_i from b_i in S which contradicts the existence of M_1 and M_2 [5, Theorem 32, p. 181]. For m=1, 2, and 3, let v_m denote a point of Bd ($U_j \cup V_j$) $\cap Cl$ T_m . For m=1, 2, and 3, since $F_{2m-1} \cup F_{2m+1} \cup R_m \cup E_m$ separates v_m from $T_m \cap S_m$ in S and $F_{2m-1} \cup F_{2m+1}$ is in Y_k , there exists a component L_m of $R_m \cup E_m$ such that $L_m \cup Y_k$ separates v_m from $T_m \cap S_m$ in S [5, Theorem 20, p. 173]. For m=1, 2, and 3, the set $L_m \cup Y_k$ separates v_m from the other endpoint v_m of v_m in v_m in v_m . It follows that v_m contains a point which precedes and a point which follows v_m of v_m with respect to the order of v_m . Since v_m is contained in a component of v_m of v_m this is impossible. Note that for v_m is contained in a component of v_m of v_m belongs to v_m belongs to v_m without loss of generality that for v_m and 3, the point v_m belongs to v_m belongs to v_m

Some two of L_1 , L_2 , and L_3 , say L_1 and L_2 , are contained in the same component of $G_1 \cup G_2$. Assume that $L_1 \cup L_2$ is contained in G_1 . For m = 1 and 2, let D_m be the arc-segment $(R_m \cup E_m) - L_m$. Let A be an arc in $G_2 \cap Bd$ E which contains $D_1 \cup D_2$. There exists an arc-segment B in $E \cap G_2$ such that Cl B contains the endpoints of A. The simple closed curve $A \cup B$ contains $D_1 \cup D_2$ and there exists a complementary domain K of $A \cup B$ which does not meet $F_1 \cup F_3 \cup F_5 \cup Bd$ R. Assume that for m=1 and 2, the order of the arc-segment T_m indicates that T_m goes from v_m to z_m . For m=1 and 2, since $L_m \cup Y_k$ separates v_m from $T_m \cap S_m$, the arcsegment T_m must meet L_m before S_m ; and since $L_m \cup D_m \cup F_{2m-1} \cup F_{2m+1}$ separates $S_m \cap T_m$ from z_m and $L_m \cap T_m$ does not contain both a point which precedes and a point which follows $T_m \cap S_m$, $T_m \cap D_m$ must contain a point which follows $T_m \cap S_m$ with respect to the order of T_m . If for m=1 or 2, $T_m \cap (A \cup B)$ contains a point which precedes and a point which follows $T_m \cap S_m$ with respect to the order of T_m , then $T_m \cup A \cup B$ separates a_m from b_m in S and does not meet M_2 . This contradicts the fact that M_2 is connected. Hence for m=1 and 2, T_m must meet $A \cup B$ only at points which follow $T_m \cap S_m$ with respect to the order of T_m .

For m=1 and 2, let c_m be the first point of $T_m \cap (A \cup B)$ with respect to the order of T_m , let K_m be the arc-segment in T_m from v_m to c_m , and let N_m denote the arc in Cl T_m which goes from c_m to z_m . Note that for m=1 and 2, the point c_m is in D_m . The set $K_1 \cup K_2 \cup \text{Bd } U_j$ is contained in S-Cl K. For m=1 and 2, since T_m does not meet Bd $(U_i \cup V_i)$, $N_m \cap \text{Bd } U_i = K_m \cap \text{Bd } V_i = \emptyset$. Let U be an arcsegment in $K_1 \cup K_2 \cup Bd$ U_i which has endpoints c_1 and c_2 . The arc Cl U separates F_1 from F_3 in S-K [5, Theorem 28, p. 156]. Hence there exist arcs X_1 and X_2 in $\operatorname{Cl} L_1$ such that (1) X_1 and X_2 abut on $\operatorname{Cl} U$ from opposite sides with respect to a simple closed curve in $U \cup A \cup B$, (2) $X_1 \cap F_1 \neq \emptyset$, and (3) $X_2 \cap F_3 \neq \emptyset$. Since $\operatorname{Cl} T_1 \cap \operatorname{Cl} T_2 = \emptyset$, $(N_1 \cup N_2) \cap \operatorname{Cl} (U_j \cup G_1) = \emptyset$, and $(K_1 \cup K_2) \cap \operatorname{Bd} V_j = \emptyset$, there exists a simple closed curve J in $U \cup N_1 \cup N_2 \cup Bd \ V_i$ such that X_1 and X_2 abut on Cl U from opposite sides with respect to J. It follows that J separates F_1 from F_3 in S. Since $J \cap (M - (U_k \cup V_k)) = \emptyset$ and $F_1 \cup F_3$ is contained in the x-component of $M-(U_k \cup V_k)$, this is a contradiction. Evidently $L_1 \cup L_2$ is not contained in G_1 . It can be shown by the same method that assuming $L_1 \cup L_2$ is in G_2 also involves a contradiction. It follows that M is not aposyndetic at p with respect to both w_1 and w_2 which contradicts the hypothesis of the theorem. Hence L_{yz}^{x} is locally connected.

REFERENCES

1. Charles L. Hagopian, Concerning arcwise connectedness and the existence of simple closed curves in plane continua, Trans. Amer. Math. Soc. 147 (1970), 389-402.

SACRAMENTO STATE COLLEGE,
SACRAMENTO, CALIFORNIA 95819