ON THE EXISTENCE OF STRONGLY SERIES SUMMABLE MARKUSCHEVICH BASES IN BANACH SPACES

BY WILLIAM B. JOHNSON

Abstract. The main result is: Let X be a complex separable Banach space. If the identity operator on X* is the limit in the strong operator topology of a uniformly bounded net of linear operators of finite rank, then X admits a strongly series summable Markuschevich basis.

I. Introduction. Let X be a separable Banach space. A biorthogonal sequence $\{x_i, f_i\}_{i=1}^{\infty}$ in (X, X^*) is called a Markuschevich basis (M-basis) for X provided $\{x_i\}_{i=1}^{\infty}$ is fundamental in X and $\{f_i\}_{i=1}^{\infty}$ is total over X. Following Ruckle [8], we say that an M-basis $\{x_i, f_i\}_{i=1}^{\infty}$ for X is strongly series summable (s.s.s.) provided there exists a set $\{\lambda_{i,n}: i=1, 2, \ldots, n; n=1, 2, \ldots\}$ of scalars (called a summation matrix for $\{x_i, f_i\}_{i=1}^{\infty}$) such that, for each x in X, $x = \lim_{n \to \infty} \sum_{i=1}^{n} \lambda_{i,n} f_i(x) x_i$. Note that a Schauder basis is a s.s.s. M-basis for which each $\lambda_{i,n}$ can be chosen to be 1.

The results of [8], [9], and [4] indicate that the duality theory of a space which has a s.s.s. M-basis is essentially the same as that of a space which admits a Schauder basis. The reason for this appears to be that if $\{x_i, f_i\}_{i=1}^{\infty}$ is a s.s.s. M-basis for X with summation matrix $(\lambda_{i,n})$ then, for each f in the coefficient space(1) of the basis, f is the norm limit of $\{\sum_{i=1}^{n} \lambda_{i,n} f(x_i) f_i\}_{n=1}^{\infty}$. Thus the adjoints of the "partial sum" operators defined by $T_n(x) = \sum_{i=1}^{n} \lambda_{i,n} f_i(x) x_i$ also act like partial sum operators. In this respect s.s.s. M-bases behave more like Schauder bases than do such weaker structures as generalized summation bases (see [3]).

In this paper we prove the following rather strong existence theorem for s.s.s. *M*-bases:

THEOREM 1. Let X be a separable complex Banach space such that X^* has the λ -metric approximation property for some $\lambda \ge 1$. If Y is a separable subspace of X^* , then there exists a strongly series summable Markuschevich basis for X whose coefficient space contains Y.

If $\lambda \ge 1$, we say that the Banach space X has the λ -metric approximation property $(\lambda$ -m.a.p.) if there is a net $\{S_d : d \in D\}$ of linear operators of finite rank on X

Received by the editors April 20, 1970.

AMS 1969 subject classifications. Primary 4610.

Key words and phrases. Strongly series summable Markuschevich bases, complete biorthogonal sequences, Schauder bases, metric approximation property.

⁽¹⁾ The coefficient space of an M-basis $\{x_i, f_i\}_{i=1}^{\infty}$ for X is the norm closure in X^* of the linear span of $\{f_i\}_{i=1}^{\infty}$.

uniformly bounded by λ which converges pointwise (i.e., in the strong operator topology) to the identity operator on X. Equivalently, X has the λ -m.a.p. provided that, for each finite-dimensional subspace F of X and positive number ε , there is an operator S of finite rank on X such that $||S|| \le \lambda$ and $||S(x) - x|| \le \varepsilon ||x||$ for each $x \in F$.

The 1-m.a.p. was introduced by Grothendieck [2] under the name metric approximation property. Grothendieck showed that if X is reflexive and has the (topological) approximation property, then in fact both X and X^* have the 1-m.a.p. This result together with Theorem 1 implies that every separable, reflexive complex Banach space which has the approximation property also admits a s.s.s. M-basis. Of course, it may be that Theorem 1 is always applicable, for it is not even known that there exists a Banach space which does not have the 1-m.a.p.

We use the following notation: X represents a complex Banach space and X^* is the dual to X. The complex assumption is used in an essential way in Lemma 4, and we do not know whether the real version of Theorem 1 is true. I denotes the identity operator on either X or X^* . "Operator" means "bounded linear operator". The range space and null space of an operator, L, are denoted by, respectively, $\mathcal{B}(L)$ and ker L. If L is an operator on X and S is a subspace of X, $L_{|S|}$ denotes the restriction of L to S. The linear span of a subset, A, of a linear space is denoted by sp A. The canonical embedding of X into X^{**} is denoted by " $^{\circ}$ ".

II. The existence theorem. Our first lemma is both a generalization and a special case of Helly's theorem [11, p. 103].

LEMMA 1. Let F be a finite-dimensional Banach space, S a finite-dimensional subspace of X^* , L an operator from X^* into F, and $\varepsilon > 0$. There exists a weak*-continuous operator T from X^* into F such that $T_{|S} = L_{|S}$ and $||T|| \le ||L|| + \varepsilon$.

Proof. We use the notation of [10] in this proof. We identify the weak*-continuous operators from X^* to F with $X \otimes_{\lambda} F$ and the operators from X^* to F with $X^{**} \otimes_{\lambda} F$ [10, p. 30]. Since F is finite dimensional, $X^{**} \otimes_{\lambda} F$ is thereby identified with $(X \otimes_{\lambda} F)^{**}$. Now $S \otimes F^*$ is identified with a (finite-dimensional) subspace of $(X \otimes_{\lambda} F)^{**}$, so by Helly's theorem [11, p. 103], there is T in $X \otimes_{\lambda} F$ such that $||T|| \leq ||L|| + \varepsilon$ and f(T(s)) = f(L(s)) for each $s \in S$ and $f \in F^{**}$. Since F^{**} is total over F, T(s) = L(s) for each $s \in S$ and hence $T_{|S|} = L_{|S|}$. Q.E.D.

A Banach space X is said to have the λ duality metric approximation property $(\lambda \ge 1)$ provided there is a net $\{S_d : d \in D\}$ of operators of finite rank on X uniformly bounded by λ such that $\{S_d : d \in D\}$ converges pointwise to I and $\{S_d^* : d \in D\}$ converges pointwise to I. Equivalently, X has the λ duality m.a.p. provided that, for each $\varepsilon > 0$ and each pair of finite-dimensional subspaces E of X and F of X^* , there is an operator L of finite rank on X such that $\|L\| \le \lambda$, $\|L(x) - x\| \le \varepsilon \|x\|$ for each $x \in E$, and $\|L^*(f) - f\| \le \varepsilon \|f\|$ for each $f \in F$.

LEMMA 2. Suppose that X^* has the λ -m.a.p. Then X has the λ duality m.a.p.

Proof. Using the hypothesis and Lemma 1, we can construct a net $\{S_d: d \in D\}$ of operators of finite rank on X uniformly bounded by λ such that $\{S_d^*: d \in D\}$ is pointwise convergent on X^* to I. For each $x \in X$, the net $\{S_d(x): d \in D\}$ weakly converges to x, hence (cf., e.g., [1, p. 477]) there is a net $\{T_e: e \in E\}$ of operators on X such that $\{T_e: e \in E\}$ is pointwise convergent on X to I; each T_e is a convex combination of a subset $\{S_{e(i)}\}_{i=1}^{n_e}$ of $\{S_d: d \in D\}$; and for each $d \in D$ there is $e' \in E$ such that if $e \ge e'$ then $e(i) \ge d$ for $i=1,2,\ldots,n_e$. Thus $\{T_e: e \in E\}$ is uniformly bounded by λ and $\{T_e^*: e \in E\}$ is pointwise convergent on X^* to I. Q.E.D.

The proof of the next lemma is suggested by the proof of Lemma 3.1 of [5].

Lemma 3. Suppose that X has the λ duality m.a.p., E is a finite-dimensional subspace of X, F is a finite-dimensional subspace of X^* , and $\varepsilon > 0$. Then there exists an operator L of finite rank on X such that $||L|| \le \lambda + \varepsilon$, $L_{|E} = I_{|E}$, and $L_{|F}^* = I_{|F}$.

Proof. Let $n = \dim E$ and $m = \dim F$. Choose $1 > \beta > 0$ small enough so that $\beta + \beta m(\lambda + \beta)/(1 - \beta) \le \varepsilon$ and choose $1 > \alpha > 0$ small enough so that $(n\alpha/(1 - \alpha))\lambda \le \beta/2$.

Let M be an operator of finite rank on X such that $||M|| \le \lambda$ and, for each $x \in E$ and $f \in F$,

- (1) $||x-M(x)|| \le \alpha ||x||$ and
- (2) $||f M^*(f)|| \le \beta/2||f||$.

By (1), for each $x \in E$, $(1-\alpha)||x|| \le ||M(x)||$, hence $M_{|E}$ has an inverse, Q, satisfying $||Q|| \le 1/(1-\alpha)$. Also, for each $y \in M[E]$, $||Q(y)-y|| \le (\alpha/(1-\alpha))||y||$.

Let P be a projection of X onto M[E] such that $||P|| \le n$. Let N = QPM + (I-P)M. Clearly N has finite rank and $N_{|E} = I_{|E|}$. Now if $x \in X$,

$$||N(x)-M(x)|| = ||QPM(x)-PM(x)|| \le \frac{\alpha}{1-\alpha} ||P|| ||M|| ||x|| \le \frac{n\alpha\lambda}{1-\alpha} ||x||.$$

Thus $||N-M|| \le n\alpha\lambda/(1-\alpha)$, from which it follows that $||N^*|| \le \lambda + \beta/2$ and $||N^*-M^*|| \le \beta/2$. This last inequality and (2) imply that, for each $f \in F$, $||N^*(f)-f|| \le \beta||f||$.

As in the first part of the proof, we have that $N_{|F|}^*$ is an isomorphism with inverse, Q', satisfying $\|Q'(f)-f\| \le (\beta/(1-\beta))\|f\|$ for each $f \in N^*[F]$. Let P' be a projection of X^* onto $N^*[F]$ such that $\|P'\| \le m$ and let $L^* = Q'P'N^* + (I-P')N^*$. (Note that L^* is indeed weak*-continuous because N^* is weak*-continuous and has finite rank.) Then $L_{|F|}^* = I_{|F|}$ and, for each $f \in X^*$,

$$||L^*(f) - N^*(f)|| \le \frac{\beta}{1-\beta} ||P'|| ||N^*|| ||f|| \le \frac{\beta m(\lambda+\beta)}{1-\beta} ||f||.$$

Thus $||L^*|| \le \lambda + \beta + \beta m(\lambda + \beta)/(1 - \beta) \le \lambda + \varepsilon$.

Since $||L|| = ||L^*||$, it remains to be seen only that $L_{|E} = I_{|E}$. Let $x \in E$ and suppose that $f \in X^*$. Then using the fact that x = N(x), we have

$$f(L(x)) = L^*(f)(x) = L^*(f)(N(x))$$

$$= N^*Q'P'N^*(f)(x) + N^*(I-P')N^*(f)(x)$$

$$= P'N^*(f)(x) + f(N(N(x))) - P'N^*(f)(N(x)) = f(x).$$

Since X^* is total over E, L(x) = x. Q.E.D.

LEMMA 4. Let $\{x_i, f_i\}_{i=1}^n$ be a finite biorthogonal set in (X, X^*) , let T be an operator of finite rank on X such that $T(x_i) = x_i$ and $T^*(f_i) = f_i$ for i = 1, 2, ..., n, and let $\varepsilon > 0$. Then there exists a finite biorthogonal set $\{x_i, f_i\}_{i=n+1}^{n+m}$ in (X, X^*) and a set $\{\lambda_i\}_{i=1}^m$ of complex numbers such that $\{x_i, f_i\}_{i=1}^{n+m}$ is biorthogonal and $\|L-T\| \le \varepsilon$, where L is the operator on X defined by

$$L(x) = \sum_{i=1}^{n} f_i(x)x_i + \sum_{i=n+1}^{n+m} \lambda_{i-n}f_i(x)x_i.$$

Proof. Define a projection U on X by $U(x) = \sum_{i=1}^{n} f_i(x)x_i$ and let $X_0 = \mathcal{R}(I-U)$. Note that TU = UT = U, so $T[X_0] \subset X_0$ and ker $T \subset X_0$. Let P be a projection of finite rank on X_0 such that PT(I-U) = TP(I-U) = T(I-U). (For example, choose ker P to be a closed complement in ker T to $\mathcal{R}(T) \cap \ker T$ and choose $\mathcal{R}(P)$ to be a complement in X_0 to ker P which contains $\mathcal{R}(T) \cap X_0$.)

Let $m=\dim \mathscr{R}(P)$ and choose a basis $\{z_i\}_{i=1}^m$ for $\mathscr{R}(P)$ such that the matrix representation $(\alpha_{ij})_{i,j=1}^m$ of $T_{|\mathscr{R}(P)}$ with respect to $\{z_i\}_{i=1}^m$ is lower triangular—i.e., $\alpha_{ij}=0$ if j>i. Now pick a sequence $\{\lambda_i\}_{i=1}^m$ of pairwise distinct complex numbers sufficiently close to $\{\alpha_{ii}\}_{i=1}^m$ so that

$$||Q-T_{|\mathcal{R}(P)}|| \leq \varepsilon/||P|| ||I-U||,$$

where Q is the operator on $\mathcal{R}(P)$ whose matrix representation, (β_{ij}) , with respect to $\{z_i\}_{i=1}^m$ is given by

$$\beta_{ij} = \lambda_i \quad \text{if } i = j,$$

$$= \alpha_{ij} \quad \text{if } i \neq j.$$

Since (β_{ij}) is lower triangular, $\{\lambda_i\}_{i=1}^m$ is the set of eigenvalues for Q. The λ_i 's are distinct, so there is a basis $\{x_i\}_{i=n+1}^{n+m}$ for $\mathcal{R}(P)$ such that $Q(x_i) = \lambda_{i-n}x_i$ for $i=n+1,\ldots,n+m$. Picking $\{f_i\}_{i=n+1}^{n+m}$ in $\mathcal{R}([P(I-U)]^*)$ biorthogonal to $\{x_i\}_{i=n+1}^{n+m}$, we have that, for each $x \in \mathcal{R}(P)$, $Q(x) = \sum_{i=n+1}^{n+m} \lambda_{i-n}f_i(x)x_i$.

Now $\{x_i, f_i\}_{i=1}^{n+m}$ is biorthogonal and if L is defined by

$$L(x) = \sum_{i=1}^{n} f_{i}(x)x_{i} + \sum_{i=n+1}^{n+m} \lambda_{i-n}f_{i}(x)x_{i},$$

then clearly L = TU + QP(I - U). Thus

$$||L-T|| = ||TU+QP(I-U)-TU-TP(I-U)||$$

$$\leq ||Q-T|_{\mathcal{R}(P)}|| ||P|| ||I-U|| \leq \varepsilon.$$
 Q.E.D.

Proof of Theorem 1. Let λ be such that X has the λ duality m.a.p. (Lemma 2). Let $\{z_i\}_{i=1}^{\infty}$ be fundamental in X and let $\{g_i\}_{i=1}^{\infty}$ be a subset of X^* such that Y is contained in the closure of the linear span of $\{g_i\}_{i=1}^{\infty}$. Assume, without loss of generality, that $||z_1|| = ||g_1|| = g_1(z_1) = 1$. We define the desired s.s.s. M-basis $\{x_i, f_i\}_{i=1}^{\infty}$ for X and a summability matrix $(\lambda_{i,n})$ for $\{x_i, f_i\}_{i=1}^{\infty}$ by induction. Set k(1) = 1, $x_1 = z_1$, $f_1 = g_1$, $\lambda_{1,1} = 1$. Now suppose k(m), $\{x_i, f_i\}_{i=1}^{k(m)}$, and

 $\{\lambda_{i,n}: i \leq n; n=1, 2, \ldots, k(m)\}$ have been defined. Extend $\{x_i, f_i\}_{i=1}^{k(m)}$ to a biorthogonal set $\{x_i, f_i\}_{i=1}^{j}$ (j=k(m), k(m)+1, or k(m)+2) so that $z_{m+1} \in \operatorname{sp} \{x_i\}_{i=1}^{j}$ and $g_{m+1} \in \operatorname{sp} \{f_i\}_{i=1}^{j}$ (cf., e.g., the proof of Theorem III.1 in [3]). Now by Lemma 3 and Lemma 4 there are a positive integer $k(m+1) \geq j$, a biorthogonal set $\{x_i, f_i\}_{i=j+1}^{k(m+1)}$ in (X, X^*) , and complex numbers $\{\alpha_i\}_{i=j+1}^{k(m+1)}$ such that $\{x_i, f_i\}_{i=1}^{k(m+1)}$ is biorthogonal and if T is defined on X by $T(x) = \sum_{i=1}^{j} f_i(x)x_i + \sum_{i=j+1}^{k(m+1)} \alpha_i f_i(x)x_i$, then $\|T\| \leq \lambda + 1/m$. We complete the induction by defining

$$\lambda_{i,n} = \lambda_{i,k(m)}$$
 if $i \le k(m) < n < k(m+1)$,
 $= 0$ if $k(m) < i \le n < k(m+1)$,
 $= 1$ if $i \le k(m)$ and $n = k(m+1)$,
 $= \alpha_i$ if $k(m) < i \le k(m+1) = n$.

It is easy to check that $\{x_i, f_i\}_{i=1}^{\infty}$ has the desired properties. Q.E.D.

REMARK 1. Suppose that X is separable and X^* has the λ -m.a.p. for some λ . Theorem 1 shows that there are s.s.s. M-bases for X whose coefficient spaces are "arbitrarily large". One might guess that if Y is a separable subspace of X^* and Y contains a subspace which is the coefficient space of some s.s.s. M-basis for X, then Y is itself the coefficient space for some s.s.s. M-basis for X, because the corresponding statement for generalized summation bases is true (cf. [3, proof of Theorem IV.1]). This is not the case: Let $X = l_1$. It is a rather easy consequence of Theorem 4.3 of [6] that the coefficient space of any s.s.s. M-basis for l_1 is an \mathscr{L}_{∞} space in the sense of [6]. Simply pick Y to be a separable subspace of l_{∞} (= l_1^*) which contains c_0 but is not an \mathscr{L}_{∞} space. (For example, Y can be the closed span of $c_0 \cup K$, where K is a subspace of l_{∞} isomorphic to l_2 . It follows from Theorem 1 of [7] that Y is isomorphic to $c_0 \oplus l_2$ and is thus not an \mathscr{L}_{∞} space.)

Recall that an M-basis $\{x_i, f_i\}_{i=1}^{\infty}$ for X whose coefficient space is X^* is called shrinking (see [3]). Now if $\{x_i, f_i\}_{i=1}^{\infty}$ is a s.s.s. M-basis then the remarks in the introduction show that $\{f_i, \hat{x}_i\}_{i=1}^{\infty}$ is a s.s.s. M-basis for the coefficient space of the basis. Thus a shrinking M-basis $\{x_i, f_i\}_{i=1}^{\infty}$ which is s.s.s. is also shrinking as a s.s.s. M-basis in the sense that $\{f_i, \hat{x}_i\}_{i=1}^{\infty}$ is a s.s.s. M-basis for X^* . In view of Theorem 1, we thus have

COROLLARY 1. If X^* is separable and has the λ -m.a.p. for some $\lambda \ge 1$, then X admits a shrinking s.s.s. M-basis.

Let us say that a s.s.s. M-basis $\{x_i, f_i\}_{i=1}^{\infty}$ is boundedly complete provided there is a summability matrix $(\lambda_{i,n})$ for $\{x_i, f_i\}_{i=1}^{\infty}$ such that for every sequence $\{t_i\}_{i=1}^{\infty}$ of scalars, if $\{\sum_{i=1}^{n} t_i \lambda_{i,n} x_i\}_{n=1}^{\infty}$ is bounded then it is convergent. A simple modification of Theorem II.3 of [3] shows that a s.s.s. M-basis is boundedly complete if and only if it is boundedly complete as an M-basis in the sense of [3] (and thus in the above definition of boundedly complete "there is a summability matrix" can be replaced by "for each summability matrix"). Thus using Corollary 1 and the results of [3] we have

THEOREM 2. X admits a boundedly complete s.s.s. M-basis if and only if X has the λ -m.a.p. for some $\lambda \ge 1$ and X is isomorphic to a separable conjugate Banach space.

We conclude with a conjecture which, by Theorem 2, has an affirmative answer if X is a conjugate space:

Conjecture 1. If X is separable and has the λ -m.a.p. for some $\lambda \ge 1$, then X admits a s.s.s. M-basis.

REFERENCES

- 1. N. Dunford and J. T. Schwartz, *Linear operators*. I: General theory, Pure and Appl. Math., vol. 7, Interscience, New York, 1958. MR 22 #8302.
- 2. A. Grothendieck, *Produits tensoriels topologiques et espaces nucléaires*, Mem. Amer. Math. Soc. No. 16 (1955). MR 17, 763.
- 3. W. B. Johnson, Markuschevich bases and duality theory, Trans. Amer. Math. Soc. 149 (1970), 171-177.
 - 4. ——, Markuschevich bases and duality theory. II (in preparation).
- 5. J. Lindenstrauss, Extension of compact operators, Mem. Amer. Math. Soc. No. 48 (1964). MR 31 #3828.
 - 6. J. Lindenstrauss and H. P. Rosenthal, The \mathcal{L}_p spaces, Israel J. Math. 8 (1970).
- 7. H. P. Rosenthal, On totally incomparable Banach spaces, J. Functional Analysis 4 (1969), 167-175. MR 40 #1758.
- 8. W. H. Ruckle, Representation and series summability of complete biorthogonal sequences, Pacific J. Math. 34 (1970), 511-528.
- 9. ——, The tensor product of complete biorthogonal sequences, Clemson University Technical Report #25, Clemson, S.C., 1969.
- 10. R. Schatten, A theory of cross-spaces, Ann. of Math. Studies, no. 26, Princeton Univ. Press, Princeton, N. J., 1950. MR 12, 186.
 - 11. A. Wilanski, Functional analysis, Blaisdell, Waltham, Mass., 1964. MR 30 #425.

University of Houston, Houston, Texas 77004