ON THE ORDER OF A STARLIKE FUNCTION

BY
F. HOLLAND AND D. K. THOMAS

Abstract. It is shown that if $f \in S$, the class of normalised starlike functions in the unit disc Δ , then

(i)
$$\lim_{r \to 1^-} \frac{\log P_{\lambda}(r)}{-\log (1-r)} = \alpha \lambda \quad \text{for } \lambda > 0;$$

(ii)
$$\lim_{r \to 1^{-}} \frac{\log \|f_r\|_p}{-\log (1-r)} = \alpha p - 1 \quad \text{for } \alpha p > 1;$$

and

(iii)
$$\lim_{r \to 1^{-}} \frac{\log \|f'_r\|_p}{-\log (1-r)} = (1+\alpha)p - 1 \quad \text{for } (1+\alpha)p > 1,$$

where $P_{\lambda}(r) = \sum_{n=1}^{\infty} n^{\lambda-1} |a_n|^{\lambda} r^n$, (a_n) is the sequence of coefficients and α the order of f, and where

$$||f_r||_p = \frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^p d\theta.$$

The results extend work of Pommerenke.

The methods of the paper yield various other results, one in particular being

$$\limsup_{n\to\infty}\frac{\log^+ n|a_n|}{\log n}=\alpha,$$

a result which has an analogy in the theory of entire functions.

1. **Introduction.** Let μ be a probability measure on the unit circle Γ , and define the function f on the unit disc Δ by

(1.1)
$$f(z) = z \exp \left\{-2 \int \log (1-z\tilde{\gamma}) d\mu(\gamma)\right\}, \quad z \in \Delta.$$

Then f is regular and starlike on Δ , that is, f is univalent and maps Δ onto a domain in the complex plane that is starshaped with respect to the origin.

Following Pommerenke [7] we call

$$\alpha_f = 2 \max \{ \mu(\{\gamma\}) : \gamma \in \Gamma \}$$

the order of f. Since, by hypothesis, μ is positive and $\int d\mu = 1$, it follows that $0 \le \alpha_f \le 2$. Further, $\alpha_f = 0$ if and only if μ is continuous; and $\alpha_f = 2$ if and only if f is (a rotation of) the Koebe function. If μ is discontinuous, then $\alpha_f > 0$, and μ has at least one maximum jump of height $\alpha_f/2$.

Received by the editors August 31, 1970.

AMS 1970 subject classifications. Primary 30A32; Secondary 30A32.

Key words and phrases. Starlike function, order of a starlike function, integral means, coefficient means.

In [7], Pommerenke showed that if $M(r, f) = \max\{|f(z)| : |z| = r, (0 \le r < 1)\}$ then α_f is connected to M(r, f) by the relationship

$$(1.2) \qquad (\log M(r,f))/\log (1-r)^{-1} \to \alpha_f \quad \text{as } r \to 1,$$

a result which has an analogy in theory of entire functions. Using (1.2), Pommerenke [8] was then able to show that

(1.3)
$$\alpha_f = \lim_{r \to 1} \frac{(1-r)M'(r,f)}{M(r,f)},$$

where M' denotes the left derivative.

The geometrical significance of α_f is as follows. If $\alpha_f > 0$, then $f(\Delta)$ contains at least one sector of opening $\pi \alpha_f$ and no sector of larger opening. Thus the area of $f(\Delta)$ is infinite if $\alpha_f > 0$. On the other hand, $\alpha_f = 0$ does not necessarily imply that the area of $f(\Delta)$ is finite. In the light of this observation and Pommerenke's results (loc. cit.), it is natural to study the connection between α_f and the rate of growth of $\pi A(r, f)$, the area of the image of the disc $\Delta_r = \{z : |z| \le r\}$ under f.

The present investigation stems from an attempt to extend (1.2) and (1.3) to A(r, f). More specifically, we sought to prove that

(1.4)
$$(\log A(r, f))/\log (1-r)^{-1} \to 2\alpha_f \text{ as } r \to 1,$$

and

(1.5)
$$2\alpha_f = \lim_{r \to 1} \frac{(1-r)A'(r,f)}{A(r,f)}.$$

It is clear that (1.5) implies (1.4). In this paper, a simple proof of (1.4) is given. (1.5) seems to be very much deeper and a proof will be given in [6].

Some by-products of our efforts to prove (1.4) and (1.5) are presented in §3, where, amongst other things, we derive results similar to (1.2) for the integral means of f and f'. In §4, we study analogous problems for certain means of the coefficients (a_n) of f. In particular, we prove that

$$\alpha_f = \limsup_{n \to \infty} \frac{\log^+ n |a_n|}{\log n}.$$

Notation. Throughout the paper, μ will denote a fixed probability measure on Γ , and f a function defined by (1.1). In order to simplify the writing a little, we shall write α in place of α_f , M(r) in place of M(r, f), etc. Also ω will denote a point on Γ such that $\alpha = 2\mu(\{\omega\})$. We define the function F on Δ by

$$F(z) = zf'(z)/f(z)$$
 $(z \in \Delta),$

so that F is regular and Re F > 0. Finally by σ we shall mean normalised Lebesgue measure on Γ , and we will adopt the convention that

$$\int g(rt) d\sigma(t) = \frac{1}{2\pi} \int_0^{2\pi} g(re^{i\theta}) d\theta.$$

2. Preliminaries. We begin by proving a general lemma.

LEMMA 1. If $2\beta > 1$, then

(2.1)
$$\lim_{r \to 1} (1-r)^{2\beta-1} \int \frac{d\sigma(t)}{|1-rt|^{2\beta}} = \frac{\Gamma(\beta-\frac{1}{2})}{2\sqrt{\pi}\Gamma(\beta)}$$

Proof. Set

$$(1-z)^{-\beta} = \sum_{n=0}^{\infty} c_n(\beta) z^n \qquad (z \in \Delta),$$

then [10, p. 58]

$$c_n(\beta) = \frac{\Gamma(\beta+n)}{\Gamma(\beta)\Gamma(n+1)}, \qquad n = 0, 1, 2, ...,$$

$$\sim \frac{n^{\beta-1}}{\Gamma(\beta)} \qquad \text{as } n \to \infty.$$

Thus

$$\int \frac{d\sigma(t)}{|1-rt|^{2\beta}} = \sum_{n=0}^{\infty} |c_n(\beta)|^2 r^{2n} \qquad (0 \le r < 1),$$

$$\sim \frac{1}{\Gamma^2(\beta)} \sum_{n=1}^{\infty} n^{2\beta - 2} r^{2n} \quad \text{as } r \to 1,$$

$$\sim \frac{\Gamma(2\beta - 1)}{\Gamma^2(\beta)(1 - r^2)^{2\beta - 1}} \quad \text{as } r \to 1$$

[10, p. 225]. This and the duplication formula for the gamma function gives (2.1). Next we use (1.1) to derive lower bounds for |f| and Re F.

LEMMA 2. For all $z \in \Delta$,

$$|f(z)| \ge |z|2^{\alpha}/4|1-z\bar{\omega}|^{\alpha},$$

and

(2.3) Re
$$F(z) \ge \alpha (1-|z|^2)/2|1-z\bar{\omega}|^2$$
.

Moreover, equality can occur in each of (2.2) and (2.3) if, and only if, f is (a rotation of) the Koebe function.

Proof. We shall only prove (2.2), the proof of (2.3) is similar. Fix $z \in \Delta$, $z \neq 0$ and observe from (1.1) that

(2.4)
$$\log |f(z)| - \log |z| = -2 \int \log |1 - z\overline{t}| \ d\mu(t).$$

Now for $t \in \Gamma$, $\log 2 > \log |1 - z\overline{t}|$, and μ is positive. Thus from (2.4)

$$\log 4|f(z)| - \log |z| = 2 \int \log \frac{2}{|1 - z\overline{t}|} d\mu(t)$$

$$\geq 2\mu(\{\omega\}) \log \frac{2}{|1 - z\overline{\omega}|} = \alpha \log \frac{2}{|1 - z\overline{\omega}|}$$

and (2.2) follows. Clearly the inequality is strict, unless μ is concentrated at ω , in which case $\alpha=2$, and f is the Koebe function.

A straightforward application of (2.2) and (2.3), together with Lemma 1, will yield the following result, the proof of which we omit.

LEMMA 3. If a and b are nonnegative and such that $\alpha a + 2b > 1$, then

$$(2.5) \liminf_{r\to 1} (1-r)^{\alpha a+b-1} \int |f(rt)|^a (\operatorname{Re} F(rt))^b \, d\sigma(t) \ge \frac{\alpha^b 2^{\alpha a-1} \Gamma(b+(\alpha a-1)/2)}{4^a \sqrt{\pi \Gamma(b+\alpha a/2)}}.$$

For ease of reference, we include the following theorem, a proof of which may be found in [5].

THEOREM A. If p > 1, then

(2.6)
$$\lim_{r\to 1} (1-r)^{p-1} \int |F(rt)|^p d\sigma(t) = \frac{\Gamma(p/2-1)}{2\sqrt{\pi}\Gamma(p/2)} \sum_{t\in \mathbb{P}} |\mu(\{t\})|^p.$$

3. Integral means. In this section, if p > 0 and g is regular in Δ , we set

$$||g_r||_p = \int |g(rt)|^p d\sigma(t)$$
 $(0 \le r < 1).$

With this notation we have

THEOREM 1. If $\alpha p > 1$, then

(3.1)
$$\lim_{r\to 1} \frac{\log \|f_r\|p}{-\log (1-r)} = \alpha p - 1.$$

Proof. Choosing a=p and b=0 in (2.5), we have

$$\liminf_{r\to 1} (1-r)^{\alpha p-1} ||f_r||_p \ge \frac{2^{\alpha p-1} \Gamma((\alpha p-1)/2)}{4^p \sqrt{\pi \Gamma(\alpha p/2)}},$$

and so

(3.2)
$$\liminf_{r\to 1} \frac{\log \|f_r\|_p}{-\log (1-r)} \ge \alpha p - 1.$$

On the other hand, for $t \in \Gamma$,

$$r \partial \log |f(rt)|/\partial r = \operatorname{Re} F(rt),$$

and therefore

$$r \frac{d}{dr} \|f_r\|_p = p \int |f(rt)|^p \operatorname{Re} F(rt) \, d\sigma(t)$$

$$\leq p(M(r))^p \int \operatorname{Re} F(rt) \, d\sigma(t) = p(M(r))^p,$$

since Re F(z) > 0, $z \in \Delta$. Thus

(3.3)
$$||f_{\tau}||_{p} \leq p \int_{0}^{\tau} \frac{(M(s))^{p}}{s} ds.$$

But, it follows from (1.2), that for every $\varepsilon > 0$,

$$M(r) = O(1)(1-r)^{-\alpha-\varepsilon}$$
 as $r \to 1$,

and thus (3.3) gives

$$||f_r||_p = O(1)(1-r)^{-\alpha p - \varepsilon p + 1}$$
 as $r \to 1$

giving

(3.4)
$$\limsup_{r \to 1} \frac{\log \|f_r\|_p}{-\log (1-r)} \le \alpha p - 1.$$

Theorem 1 now follows from (3.2) and (3.4).

We require slightly different techniques to deal with the next theorem, which gives a similar estimate for f'.

THEOREM 2. If $(1+\alpha)p-1>0$, then

(3.5)
$$\lim_{r \to 1} \frac{\log \|f_r'\|_p}{-\log (1-r)} = (1+\alpha)p - 1.$$

Proof. We have zf'(z) = f(z)F(z), $z \in \Delta$, and so, if $0 \le r < 1$,

$$|r^p||f_r'||_p = \int |f(rt)|^p |F(rt)|^p d\sigma(t) \ge \int |f(rt)|^p (\operatorname{Re} F(rt))^p d\sigma(t).$$

Taking a=b=p in (2.5), it now follows easily that

(3.6)
$$\liminf_{r \to 1} \frac{\log \|f_r'\|_p}{-\log (1-r)} \ge (1+\alpha)p - 1.$$

To obtain the lim sup variant of (3.6), we treat separately the cases: (i) p > 1; (ii) p = 1 and (iii) 0 .

Case (i). p > 1. Here

$$r^{p} \|f'_{r}\|_{p} = \int |f(rt)|^{p} |F(rt)|^{p} d\sigma(t)$$

$$\leq (M(r))^{p} \|F_{r}\|_{p} = O(1)(M(r))^{p} (1-r)^{1-p} \text{ as } r \to 1$$

by Theorem A. Consequently, using (1.2) we have

(3.7)
$$\limsup_{r\to 1} \frac{\log \|f_r'\|_p}{-\log (1-r)} \le p \lim_{r\to 1} \frac{\log M(r)}{-\log (1-r)} + p - 1 = \alpha p + p - 1,$$

and the result follows from this and (3.6).

Case (ii). p=1. Since Re F>0,

$$||F_r|| = \int |F(rt)| \ d\sigma(t) = O(1) \log (1-r)^{-1} \text{ as } r \to 1,$$

and so

$$||f_r'|| = O(1)M(r)\log(1-r)^{-1}$$
 as $r \to 1$,

from which (3.7) follows with p=1.

Case (iii). $0 . Set <math>\lambda = 1/p$, $\lambda' = 1/(1-p)$. As before,

(3.8)
$$r^{p} \|f'_{r}\|_{p} = \int |f(rt)|^{p} |F(rt)|^{p} d\sigma(t)$$

$$\leq \left(\int |f(rt)|^{p\lambda'} d\sigma(t) \right)^{1/\lambda'} \left(\int |F(rt)|^{p\lambda} d\sigma(t) \right)^{1/\lambda}$$

$$= \|f_{r}\|_{p\lambda'}^{1/\lambda'} \cdot \|F_{r}\|_{p\lambda}^{1/\lambda},$$

by Hölder's inequality. Now since $p\lambda = 1$,

(3.9)
$$||F_r||_{p\lambda}^{1/\lambda} = O(1)(\log (1-r)^{-1})^{1/\lambda} \text{ as } r \to 1.$$

Also by Theorem 1 since $\alpha p \lambda' > 1$ by hypothesis,

(3.10)
$$\lim_{r \to 1} \frac{\log \|f_r\|_{p\lambda'}}{-\log (1-r)} = \alpha p \lambda' - 1.$$

Combining (3.9) and (3.10), we deduce from (3.8) that

$$\limsup_{r\to 1} \frac{\log \|f'_r\|_p}{-\log (1-r)} \leq \frac{\alpha p \lambda' - 1}{\lambda'} = (1+\alpha)p - 1,$$

and this together with (3.6) again gives (3.5). This completes the proof.

4. Coefficient means. The function f defined by (1.1) has an expansion of the form

$$f(z) = \sum_{n=1}^{\infty} a_n z^n, \qquad z \in \Delta.$$

In this section, we shall study the growth of the sequence (a_n) and the means

$$P_{\lambda}(r) = \sum_{n=1}^{\infty} n^{\lambda-1} |a_n|^{\lambda} r^n, \qquad \lambda > 0, \quad 0 \le r < 1.$$

We begin by stating an important lemma, due essentially to Clunie and Keogh [1].

LEMMA 4. If
$$0 \le r < 1$$
, then $(n+1)|a_n|r^n \le 2M(r)$, $n=1, 2, \ldots$

We now establish

THEOREM 3. If $\lambda > 0$, then, with the above notation,

(4.1)
$$\lim_{r\to 1} \frac{\log P_{\lambda}(r)}{-\log(1-r)} = \alpha\lambda.$$

Proof. To begin with, by Lemma 4 we have, for $0 \le r < 1$,

$$P_{\lambda}(r^{\lambda+1}) = \sum_{n=1}^{\infty} (n|a_n|r^n)^{\lambda} \frac{r^n}{n} \le (2M(r))^{\lambda} \log (1-r)^{-1},$$

and so by (1.2)

(4.2)
$$\limsup_{r\to 1} \frac{\log P_{\lambda}(r)}{-\log(1-r)} \leq \alpha \lambda.$$

Next, if $\lambda \ge 1$, a direct application of Hölder's inequality shows that

$$P_{\lambda}(r)(\log (1-r)^{-1})^{\lambda-1} \geq (M(r))^{\lambda},$$

thus

$$\liminf_{r\to 1}\frac{\log P_{\lambda}(r)}{-\log (1-r)}\geq \alpha\lambda,$$

and so (4.1) is proved for $\lambda \ge 1$.

If $0 < \lambda < 1$, then for $0 \le r < 1$, we have, again using Hölder's inequality,

$$P_{1}(r) = \sum_{n=1}^{\infty} |a_{n}| r^{n} = \sum_{n=1}^{\infty} (n^{\lambda-1} |a_{n}|^{\lambda} r^{n})^{\lambda} (n^{\lambda} |a_{n}|^{1+\lambda} r^{n})^{1-\lambda}$$

$$\leq \left(\sum_{n=1}^{\infty} n^{\lambda-1} |a_{n}|^{\lambda} r^{n}\right)^{\lambda} \left(\sum_{n=1}^{\infty} n^{\lambda} |a_{n}|^{1+\lambda} r^{n}\right)^{1-\lambda}$$

$$= (P_{\lambda}(r))^{\lambda} (P_{1+\lambda}(r))^{1-\lambda}.$$

Hence

$$\frac{\log P_1(r)}{-\log(1-r)} \leq \lambda \frac{\log P_{\lambda}(r)}{-\log(1-r)} + (1-\lambda) \frac{\log P_{1+\lambda}(r)}{-\log(1-r)}$$

Since $M(r) \leq P_1(r)$, we obtain from this and (1.2) that

$$\alpha \leq \lambda \liminf_{r \to 1} \frac{\log P_{\lambda}(r)}{-\log (1-r)} + (1-\lambda)(1+\lambda)\alpha.$$

(In the last expression we have used (4.1) for the case $\lambda \ge 1$, already proved.) Thus

(4.3)
$$\alpha \lambda \leq \liminf_{r \to 1} \frac{\log P_{\lambda}(r)}{-\log (1-r)}.$$

From (4.2) and (4.3) we obtain (4.1) for $0 < \lambda < 1$.

COROLLARY. If $\pi A(r)$ denotes the area of the image of Δ_r under f, then

$$\lim_{r\to 1}\frac{\log A(r)}{-\log (1-r)}=2\alpha.$$

Proof. It is well known that, for $0 \le r < 1$,

$$A(r) = \sum_{n=1}^{\infty} n|a_n|^2 r^{2n} = P_2(r^2),$$

and so the corollary follows immediately from (4.1).

REMARK. If $\lambda = 1$, then Theorem 3 shows that

$$\lim \frac{\log P_1(r)}{-\log (1-r)} = \alpha,$$

where $P_1(r) = \sum_{n=1}^{\infty} |a_n| r^n$, $0 \le r < 1$.

The following theorem, which we state without proof, can be proved using similar arguments to those used in Theorem 3.

THEOREM 4. If $\lambda > 0$ and $\alpha \lambda - \lambda + 1 > 0$, then

$$\lim_{r\to 1}\frac{\log\sum\limits_{n=1}^{\infty}|a_n|^{\lambda}r^n}{-\log(1-r)}=\alpha\lambda-\lambda+1.$$

The next result connects the sequence of coefficients (a_n) , with the order α , and has an analogy in the theory of entire functions.

THEOREM 5.

(4.4)
$$\limsup_{n\to\infty} \frac{\log^+ n|a_n|}{\log n} = \alpha.$$

Proof. Since the Bieberbach conjecture holds for starlike functions [4] $n|a_n| \le n^2$, $n=1, 2, \ldots$, thus

$$O \leq \frac{\log^+ n|a_n|}{\log n} \leq 2, \qquad n = 1, 2, \ldots$$

Set

$$\tau = \limsup_{n \to \infty} \frac{\log^+ n |a_n|}{\log n},$$

and let $\varepsilon > 0$ be given. Then there exists N such that $n|a_n| < n^{\tau + \varepsilon}$ for all n > N. Hence

$$M(r) \leq \sum_{n=1}^{\infty} |a_n| r^n = \sum_{n=1}^{N} |a_n| r^n + \sum_{n=N+1}^{\infty} |a_n| r^n$$

$$\leq \sum_{n=1}^{N} |a_n| r^n + \sum_{n=N+1}^{\infty} n^{\tau + \varepsilon - 1} r^n = O(1)(1 - r)^{-\tau - \varepsilon} \quad \text{as } r \to 1,$$

which gives, since ε is arbitrary,

$$\limsup_{r\to 1}\frac{\log M(r)}{-\log (1-r)}\leq \tau,$$

and so by (1.2) $\alpha \leq \tau$.

On the other hand, there is an increasing sequence of integers $\{n_k\}$, such that $n_k|a_{n_k}| > n_k^{\tau-\varepsilon}$, $k=1, 2, \ldots$ With $r_k=1-1/n_k$, we deduce from Lemma 4, that

$$2M(r_k) \ge (1-1/n_k)^{n_k}(1-r_k)^{-\tau+\varepsilon}, \qquad k=1,2,\ldots,$$

which gives, again since ε is arbitrary,

$$\limsup_{r\to 1}\frac{\log M(r)}{-\log (1-r)}\geq \tau,$$

and so $\alpha \ge \tau$. Hence (4.4) is proved.

REMARK. If, in place of Lemma 4, we use Theorem 1 of [2], the above proof shows that even for a close-to-convex function f, we have

$$\limsup_{r\to 1} \frac{\log M(r,f)}{-\log (1-r)} = \limsup_{n\to\infty} \frac{\log^+ n|a_n|}{\log n}.$$

5. The growth of A(r). In this section we present a number of results concerning the growth of the area function A(r).

THEOREM 6. The map

(5.1)
$$r \to (1-r)^4 A(r)/r^2$$

is decreasing on the interval (0, 1). Furthermore,

$$\lim_{r\to 1} (1-r)^4 A(r) = 0$$

unless f is (a rotation of) the Koebe function, in which case the limit is 3/8.

Proof. Since, by definition F(z) = zf'(z)/f(z), $z \in \Delta$, (1.1) gives

$$F(z) = \int \frac{1+z\bar{\gamma}}{1-z\bar{\gamma}} d\mu(\gamma), \qquad z \in \Delta.$$

Therefore, by the Schwarz inequality,

$$|F(z)|^2 \le \int \frac{(1+|z|)^2}{|1-z\bar{\gamma}|^2} d\mu(\gamma) = \frac{1+|z|}{1-|z|} \operatorname{Re} F(z).$$

Thus, for $0 \le r < 1$.

$$\int |f(rt)|^2 |F(rt)|^2 d\sigma(t) \le \frac{1+r}{1-r} \int |f(rt)|^2 \operatorname{Re} F(rt) d\sigma(t).$$

But $\pi A(r)$ represents the area of the image of Δ_r under f, and so

$$A(r) = \sum_{n=1}^{\infty} n|a_n|^2 r^{2n} = \int rtf'(rt)\overline{f(rt)} d\sigma(t)$$
$$= \int |f(rt)|^2 \operatorname{Re} F(rt) d\sigma(t),$$

which gives

$$rA'(r) \leq 2 \frac{1+r}{1-r} A(r).$$

Hence

$$\frac{d}{dr}\log A(r) \le 2\frac{1+r}{r(1-r)} = \frac{d}{dr}\log\frac{r^2}{(1-r)^4}$$

and the first part of the theorem is now obvious.

Let $\beta = \lim_{r \to 1} (1-r)^4 A(r)$, and suppose that $\beta \neq 0$. Then [3, p. 170] $A'(r) \sim 4\beta/(1-r)^5$ as $r \to 1$. Thus $\lim_{r \to 1} (1-r)A'(r)/A(r) = 4$. From (1.4) and (1.5) we deduce therefore that when $\beta \neq 0$, $\alpha = 2$ so that μ is concentrated at ω , that is, f is (a rotation of) the Koebe function. If f is a Koebe function then $|a_n| = n$, $n = 1, 2, \ldots$, and

$$\lim_{r\to 1} (1-r)^4 A(r) = \lim_{r\to 1} (1-r)^4 \sum_{n=1}^{\infty} n^3 r^{2n} = 3/8.$$

This completes the proof.

The following corollary is sometimes quite useful:

COROLLARY. $rA(\sqrt{r}) < 16A(r), 0 < r < 1.$

Proof. $(1-\sqrt{r})^4 A(\sqrt{r})/r < (1-r)^4 A(r)/r^2$, and the result is then obvious.

A similar result, with a worse constant, can be proved for any *univalent* function using Theorem 1.3 [4].

THEOREM 7. If $\lambda \ge 2$ and $||f_r||_{\lambda} = \int |f(rt)|^{\lambda} d\sigma(t)$, $0 \le r < 1$, then

(5.2)
$$\liminf_{r \to 1} \frac{\|f_r\|_{\lambda}}{(1-r)(A(r))^{\lambda/2}} \ge \frac{\lambda}{2\lambda - 1}.$$

The inequality is sharp for $\lambda = 2$.

Proof. For $0 \le r < 1$,

$$r \frac{d}{dr} \|f_r\|_{\lambda} = \lambda \int |f(rt)|^{\lambda} \operatorname{Re} F(rt) d\sigma(t)$$

$$\geq \lambda \left(\int |f(rt)|^2 \operatorname{Re} F(rt) d\sigma(t) \right)^{\lambda/2} = \lambda (A(r))^{\lambda/2},$$

where we have used Hölder's inequality and the fact that Re F(z) > 0 for $z \in \Delta$. Hence, using the monotonicity of (5.1) we deduce that

$$||f_r||_{\lambda} \geq \lambda \int_0^r \frac{(A(s))^{\lambda/2}}{s} ds \geq \lambda \left(\frac{(1-r)^4 A(r)}{r^2}\right)^{\lambda/2} \int_0^r \frac{s^{\lambda-1}}{(1-s)^{2\lambda}} ds.$$

Consequently

$$\liminf_{r \to 1} \frac{\|f_r\|_{\lambda}}{(1-r)(A(r))^{\lambda/2}} \ge \lambda \lim_{r \to 1} (1-r)^{2\lambda-1} \int_0^r \frac{s^{\lambda-1}}{(1-s)^{2\lambda}} ds = \frac{\lambda}{2\lambda-1},$$

and this is (5.2).

If $\lambda=2$ and f is the Koebe function, then as $r \to 1$, $||f_r||_2 \sim 2(1-r^2)^{-3}$ and $A(r) \sim 6(1-r^2)^{-4}$, giving

$$\lim_{r\to 1}\frac{\|f_r\|_2}{(1-r)A(r)}=2/3,$$

which shows that (5.2) is sharp when $\lambda = 2$.

Our next result extends Theorem 2 [8] in two directions.

THEOREM 8. Let $\alpha > 0$ and $p \ge 1$, then

(5.3)
$$||f_r'||_p = O(1)(A(r))^{p/2}(1-r)^{1-p} \quad as \ r \to 1.$$

Proof. In what follows, K will denote a positive constant depending on α , but will not necessarily be the same at each occurrence.

In view of (1.3) there is an r_0 , such that $M(r) \le K(1-r)M'(r,f)$, if $0 < r_0 < r < 1$. Now

$$M'(r,f) \leq M(r,f') \leq \sum_{n=1}^{\infty} n|a_n|r^{n-1}, \quad 0 \leq r < 1,$$

and so, if $0 < r_0 < r < 1$,

$$M(r) \leq K(1-r) \sum_{n=1}^{\infty} n|a_n|r^{n-1} \leq K(1-r) \sqrt{\left(\sum_{n=1}^{\infty} n|a_n|^2 r^n\right)} \sqrt{\left(\sum_{n=1}^{\infty} n r^n\right)}.$$

Thus by the corollary to Theorem 6

$$(5.4) M(r) \leq K\sqrt{(A(r))}.$$

If p=1, Theorem 2 of [8] together with (5.4) gives

$$||f_r'||_1 = O(1)M(r) = O(1)\sqrt{A(r)}$$
 as $r \to 1$,

which is (5.3) when p=1. On the other hand, if p>1, we deduce from Theorem A and (5.4) that

$$r^{p}||f'_{r}||_{p} = \int |f(rt)|^{p}|F(rt)|^{p} d\sigma(t) \leq K(A(r))^{p/2}(1-r)^{1-p},$$

and this is (5.3) when p > 1.

REMARK. In connection with (5.4), we mention that Sheil-Small, in his thesis [9] considered, inter alia,

$$\lim_{r\to 1} \sup_{i \to 1} A(r)/M^2(r)$$

and found the sharp bounds for these expressions in terms of α .

In conclusion we prove

THEOREM 9. If $0 \le r < 1$, then

(5.5)
$$\int |F(rt) - 1|^2 d\sigma(t) \le \frac{r^2 \log (16r^{-2}A(r))}{(1 - r^2) \log 2/(1 - r^2)}.$$

Proof. Define $\tilde{\mu}$ on the Borel sets E of Γ by $\tilde{\mu}(E) = \mu(\overline{E})$, and let ν denote the convolution of $\tilde{\mu}$ and μ . Then ν is a positive measure on Γ , and $\int d\nu = 1$.

Since, by (1.1)

$$F(z) = \int \frac{1+z\bar{\gamma}}{1-z\bar{\gamma}} d\mu(\gamma), \qquad z \in \Delta,$$
$$= 1+2\sum_{n=1}^{\infty} z^n \int \bar{\gamma}^n d\mu(\gamma),$$

we have

$$\int \bar{t}^n \operatorname{Re} F(rt) \, d\sigma(t) = r^n \int \bar{\gamma}^n \, d\mu(\gamma), \qquad n = 0, 1, 2, \ldots$$

It follows that

$$\int \overline{g(rt)} \operatorname{Re} F(rt) d\sigma(t) = \int g(r^2t) d\mu(t), \qquad 0 \leq r < 1,$$

for a variety of g, and certainly if g is the real part of a regular function. In particular, if $0 \le r < 1$,

$$\int \log (r^{-2}|f(r^{2}t)|) d\mu(t) = \int \log (r^{-1}|f(rt)|) \operatorname{Re} F(rt) d\sigma(t)$$

$$= 2 \iint \log \frac{1}{|1 - rt\overline{\gamma}|} d\mu(\gamma) \operatorname{Re} F(rt) d\sigma(t)$$

$$= 2 \operatorname{Re} \sum_{n=1}^{\infty} \frac{r^{n}}{n} \int \overline{\gamma}^{n} d\mu(\gamma) \int t^{n} \operatorname{Re} F(rt) d\sigma(t)$$

$$= 2 \operatorname{Re} \sum_{n=1}^{\infty} \frac{r^{2n}}{n} \int \overline{\gamma}^{n} d\mu(\gamma) \int \gamma^{n} d\mu(\gamma)$$

$$= 2 \operatorname{Re} \sum_{n=1}^{\infty} \frac{r^{2n}}{n} \int \gamma^{n} d\nu(\gamma)$$

$$= 2 \int \log \frac{1}{|1 - r^{2}\gamma|} d\nu(\gamma).$$

Since $\int d\mu = \int d\nu = 1$, we deduce that

$$\int \log (4r^{-2}|f(r^2t)|) d\mu(t) = 2 \int \log \frac{2}{|1-r^2\gamma|} d\nu(\gamma).$$

But, for each $\gamma \in \Gamma$,

$$\log \frac{2}{|1-r^2\gamma|} / \log \frac{2}{1-r^2}$$

is a decreasing function of r, and so

$$r \to \int \log (4r^{-2}|f(r^2t)|) d\mu(t) / \log \frac{2}{1-r^2}$$

is likewise decreasing on (0, 1). Consequently, the derivative of this last displayed function is nonpositive, and we deduce that

$$\int (\operatorname{Re} F(r^2t) - 1) \ d\mu(t) \le r^2 \frac{\int \log (4r^{-2}|f(r^2t)|) \ d\mu(t)}{(1 - r^2) \log 2/(1 - r^2)};$$

that is,

$$\int (\operatorname{Re} F(rt) - 1) \operatorname{Re} F(rt) \, d\sigma(t) \le \frac{r^2 \int \log (4r^{-1}|f(rt)|) \operatorname{Re} F(rt) \, d\sigma(t)}{(1 - r^2) \log 2/(1 - r^2)}$$

whenever $0 \le r < 1$. Now

$$2\int (\operatorname{Re} F(rt) - 1) \operatorname{Re} F(rt) d\sigma(t) = \int |F(rt) - 1|^2 d\sigma(t),$$

and the convexity of the exponential function implies that

$$2 \int \log (4r^{-1}|f(rt)|) \operatorname{Re} F(rt) \, d\sigma(t) \le \log (16r^{-2}A(r)),$$

thus (5.5) follows, and the proof is complete.

We remark finally that, in view of (1.3), (1.5), and [6], the following problems suggest themselves:

Show

(i)
$$\lim_{r\to 1} (1-r) \frac{P_{\lambda}'(r)}{P_{\lambda}(r)} = \alpha \lambda \quad \text{for } \lambda > 0;$$

(ii)
$$\lim_{r \to 1} \frac{(1-r) d \|f_r\|_p / dr}{\|f_r\|_p} = \alpha p - 1 \quad \text{for } \alpha p > 1;$$

(iii)
$$\lim_{r \to 1} \frac{(1-r) d \|f'_r\|_p / dr}{\|f'_r\|_p} = (1+\alpha)p - 1 \quad \text{for } (1+\alpha)p > 1.$$

All these questions are open ones.

REFERENCES

- 1. J. G. Clunie and F. R. Keogh, On starlike and convex schlicht functions, J. London Math. Soc. 35 (1960), 229-233. MR 22 #1682.
- 2. J. G. Clunie and Ch. Pommerenke, On the coefficients of close-to-convex univalent functions, J. London Math. Soc. 41 (1966), 161-165. MR 32 #7734.
 - 3. G. H. Hardy, Divergent series, Clarendon Press, Oxford, 1949. MR 11, 25.
- 4. W. K. Hayman, *Multivalent functions*, Cambridge Tracts in Math. and Math. Phys., no. 48, Cambridge Univ. Press, Cambridge, 1958. MR 21 #7302.
- 5. —, On functions with positive real part, J. London Math. Soc. 36 (1961), 35-48. MR 27 #311.
- 6. R. R. London and D. K. Thomas, An area theorem for starlike functions, Proc. London Math. Soc. (3) 20 (1970), 734-748.
- 7. Ch. Pommerenke, On starlike and convex functions, J. London Math. Soc. 37 (1962), 209-224. MR 25 #1279.
- 8. ———, On starlike and close-to-convex functions, Proc. London Math. Soc. (3) 13 (1963), 290-304. MR 26 #2597.
- 9. T. B. Sheil-Small, On starlike univalent functions, Ph.D. Thesis, Imperial College, London, 1965.
 - 10. E. C. Titchmarsh, The theory of functions, Oxford Univ. Press, Oxford, 1960.

University College, Cork, Ireland University College, Swansea, Wales