HOMOLOGY IN VARIETIES OF GROUPS. III

BY C. R. LEEDHAM-GREEN

Abstract. A spectral sequence is used to calculate approximately the homology groups $\mathfrak{P}_2(\Pi, Z)$ as defined in the first paper in this series, for Π a finitely generated abelian group and \mathfrak{P} the variety of all nilpotent groups of class at most c.

Introduction. In previous papers [21] and [25], henceforth referred to as [HI] and [HII] respectively, (co-) homology groups $\mathfrak{B}_n(\Pi, A)$, $\mathfrak{B}^n(\Pi, A)$ were discussed, where \mathfrak{B} is a variety containing Π , and A is a suitable Π -module. If \mathfrak{B} is a variety containing \mathfrak{B} , there are homomorphisms

$$\phi_n \colon \mathfrak{W}_n(\Pi, A) \to \mathfrak{V}_n(\Pi, A)$$
 and $\phi^n \colon \mathfrak{V}^n(\Pi, A) \to \mathfrak{W}^n(\Pi, A)$.

Their basic properties are discussed in §1, and a spectral sequence with ϕ_n as an edge homomorphism is constructed in §2. Similar spectral sequences have been constructed by various authors; the point of this treatment is to calculate the edge homomorphisms. Using the exact sequence of terms of low degree, the wild behaviour of $\mathfrak{B}_2(\Pi, Z)$ is demonstrated. In so far as one's intuition is based on the homology of groups, this comes near to being a universal counterexample.

The conventions and definitions used in [HI] and [HII] will remain in force. In particular the reader is referred to [HI, §1] for the definition of the (co-) homology groups $\mathfrak{B}_n(\Pi, A)$ and $\mathfrak{B}^n(\Pi, A)$.

1. Change of variety morphisms. If $P^{\mathfrak{B}}_* \to \Pi$ and $P^{\mathfrak{B}}_* \to \Pi$ are simplicial resolutions of Π by \mathfrak{B} -splitting groups and \mathfrak{B} -splitting groups respectively, then since \mathfrak{B} contains \mathfrak{B} there is a simplicial map of $P^{\mathfrak{B}}_*$ into $P^{\mathfrak{B}}_*$ over 1_{Π} which is unique up to homotopy, (cf. Tierney and Vogel [18]). For example if $\Pi B^{\mathfrak{B}}_* \to \Pi$ and $\Pi B^{\mathfrak{B}}_* \to \Pi$ are the Barr-Beck resolutions of Π in \mathfrak{B} and \mathfrak{B} respectively (see [HI, §2]), so that $\Pi B^{\mathfrak{B}}_n$ is \mathfrak{B} -free on $\Pi B^{\mathfrak{B}}_{n-1}$, $n \geq 0$, $\Pi B^{\mathfrak{B}}_{-1} = \Pi$, and $\Pi B^{\mathfrak{B}}_n$ is similarly defined, then a simplicial map $\eta_* \colon \Pi B^{\mathfrak{B}}_* \to \Pi B^{\mathfrak{B}}_*$ may be defined inductively by $[w]\eta_n = w\eta_{n-1}$, where $w \in \Pi B^{\mathfrak{B}}_{n-1}$, [w] is the corresponding \mathfrak{B} -free generator of $\Pi B^{\mathfrak{B}}_n$, and $[w\eta_{n-1}]$ is the \mathfrak{B} -free generator of $\Pi B^{\mathfrak{B}}_n$ corresponding to $w\eta_{n-1}$; $\eta_{-1} = 1_{\Pi}$. If A is a left $\mathfrak{B}\Pi$ -module, using these simplicial resolutions to calculate $\mathfrak{B}_*(\Pi, A)$ and $\mathfrak{B}_*(\Pi, A)$, one obtains well-defined homomorphisms

$$\phi_n(\mathfrak{W}, \mathfrak{V}, \Pi, A) : \mathfrak{W}_n(\Pi, A) \to \mathfrak{V}_n(\Pi, A), \qquad n \ge 0.$$

Received by the editors September 28, 1970.

AMS 1970 subject classifications. Primary 18H40, 20E10; Secondary 18C15, 18G10, 18H10, 20J05.

Key words and phrases. Homology in varieties of groups.

 $\phi_n(\mathfrak{W}, \mathfrak{V}, \Pi, A)$ is the "change of variety morphism"; some or all of $\mathfrak{W}, \mathfrak{V}, \Pi$ and A will generally be omitted from the notation.

The following results are routine; we omit the proofs.

LEMMA 1.1. ϕ_0 : Diff $(\Pi, A) \rightarrow$ Diff (Π, A) is the identity map.

We shall see later that ϕ_1 is a surjection.

LEMMA 1.2. If X is a variety containing XX,

$$\phi_*(\mathfrak{X},\mathfrak{B}) = \phi_*(\mathfrak{X},\mathfrak{W})\phi_*(\mathfrak{W},\mathfrak{B}).$$

LEMMA 1.3. $\phi_*(\Gamma, A)$ is natural in $\Gamma \to \Pi \in [(\mathfrak{B}, \Pi)]$ and in left $\mathfrak{B}\Pi$ -modules A.

Lemma 1.4. Given a short exact sequence of $\mathfrak{B}\Pi$ -modules, ϕ_* commutes with the appropriate connecting homomorphisms.

LEMMA 1.5. If $\alpha: \Gamma_0 \to \Gamma_1$ is a surjection in (\mathfrak{B}, Π) , there is a commutative diagram

$$\cdots \longrightarrow \mathfrak{B}_{n}(\Gamma_{1}, A) \longrightarrow M_{n-1}^{\mathfrak{B}}(\alpha, A) \longrightarrow \mathfrak{B}_{n-1}(\Gamma_{0}, A) \longrightarrow \cdots$$

$$\downarrow \phi_{n} \qquad \qquad \downarrow \qquad \qquad \downarrow \phi_{n-1}$$

$$\cdots \longrightarrow \mathfrak{B}_{n}(\Gamma_{1}, A) \longrightarrow M_{n-1}^{\mathfrak{B}}(\alpha, A) \longrightarrow \mathfrak{B}_{n-1}(\Gamma_{0}, A) \longrightarrow \cdots$$

whose rows are Rinehart's exact sequence as in [HI, (2.1)], which was equated with the Barr-Beck exact sequence in [HII, \(\frac{1}{2}\)].

LEMMA 1.6. There is a commutative diagram

$$\mathfrak{B}_{n}(\Pi, A) \xrightarrow{\theta^{\mathfrak{M}}} \operatorname{Tor}_{n}^{\mathfrak{M}\Pi}(D_{\mathfrak{M}}\Pi, A)$$

$$\downarrow \phi_{n} \qquad \qquad \downarrow$$

$$\mathfrak{B}_{n}(\Pi, A) \xrightarrow{\theta^{\mathfrak{M}}} \operatorname{Tor}_{n}^{\mathfrak{M}\Pi}(D_{\mathfrak{M}}\Pi, A).$$

Here $\theta^{\mathfrak{B}} = \theta^{\mathfrak{B}}_{n}(\Pi, A)$ and $\theta^{\mathfrak{B}} = \theta^{\mathfrak{B}}_{n}(\Pi, A)$ as in [HII, §1], and $\operatorname{Tor}_{n}^{\mathfrak{B}\Pi}(D_{\mathfrak{B}}\Pi, A) \to \operatorname{Tor}_{n}^{\mathfrak{B}\Pi}(D_{\mathfrak{B}}\Pi, A)$ is the "change of rings" homomorphism given by the unique δ -morphism of $\operatorname{Tor}_{n}^{\mathfrak{B}\Pi}(D_{\mathfrak{B}}\Pi, -)$ to $\operatorname{Tor}_{n}^{\mathfrak{B}\Pi}(D_{\mathfrak{B}}\Pi, -)$, regarded as δ -functors from the category of left $\mathfrak{B}\Pi$ -modules to Ab, which is the identity in dimension 0.

Dually there are homomorphisms $\phi^n(\mathfrak{B}, \mathfrak{W}, \Pi, A) : \mathfrak{B}^n(\Pi, A) \to \mathfrak{W}^n(\Pi, A)$ (note the change of direction), and Lemmas 1.1 to 1.6 all dualize.

2. A spectral sequence. The spectral sequence which appears below has the same E^2 terms and limit as can be obtained as a special case of spectral sequences

due to André [1], Bachmann [2], Rinehart [13], and Ulmer [20]. These are obtained by varying the first or nonabelian category (here the variety). The spectral sequence obtained by varying the second or abelian category was discussed in [HII, §3]. The point of our treatment (which will generalize) is to calculate the edge effects. The object is to connect the homology in \mathbb{B} with the homology in \mathbb{B}; one edge homomorphism will be the "change of variety" morphism of §1; we now introduce the other. Recall that if $T: (\mathfrak{B}, \Pi) \to Ab$ is any functor, the derived functors $\mathfrak{B}_n(\Pi, T)$ have been defined as in [HI, §2], $\mathfrak{V}_n(\Pi, A)$ being an abbreviation for $\mathfrak{B}_n(\Pi, \operatorname{Diff}(-, A))$. T need only be defined on the full subcategory of \mathfrak{B} -free groups (over Π), in which case $\mathfrak{B}_0(\Pi, T)$ is the Kan extension of T evaluated at Π ; however we shall assume that T is defined on (\mathfrak{B}, Π) . In this case there is a homomorphism $\lambda \colon \mathfrak{B}_0(\Pi, T) \to \Pi T$ defined by various authors. For example the right exact functors from (\mathfrak{B}, Π) to Ab in the sense of Rinehart [13] form a reflective subcategory of $Ab^{(\mathfrak{B},\Pi)}$ (pace set theorists) in the sense of Mitchell [26], and λ is the reflection (evaluated at T and Π), cf. [13, p. 299]. Alternatively, if $P_* \stackrel{\varepsilon}{\to} \Pi$ is a simplicial resolution of Π by \mathfrak{B} -splitting groups, then λ is the unique homomorphism to make

$$P_{1}T \xrightarrow{d_{1}} P_{0}T \xrightarrow{\varepsilon} \mathfrak{B}_{0}(\Pi, T) \xrightarrow{0} 0$$

$$\downarrow = \qquad \qquad \downarrow \lambda$$

$$P_{1}T \xrightarrow{d_{1}} P_{0}T \xrightarrow{\varepsilon} \Pi T$$

commute. Here $d_1 = \delta_1^0 T - \delta_1^1 T$ as in [HI, §2]; the top row is exact by definition.

THEOREM 2.1. There is a spectral sequence

$$\mathfrak{B}_p(\Pi, \Lambda \cdot \mathfrak{W}_q(-, A)) \Rightarrow \mathfrak{W}_n(\Pi, A)$$

where $\Lambda: (\mathfrak{B}, \Pi) \to (\mathfrak{B}, \Pi)$ is the inclusion functor, whose edge effects are given by:

$$\mathfrak{B}_n(\Pi,A) \to E_{n0}^2 \,=\, \mathfrak{B}_n(\Pi,\, \Lambda \cdot \mathfrak{B}_0(-\,,A)) \,=\, \mathfrak{B}_n(\Pi,\, A)$$

is the "change of variety" morphism ϕ_n , and

$$E_{0n}^2 = \mathfrak{B}_0(\Pi, \Lambda \cdot \mathfrak{B}_n(-, A)) \to \mathfrak{B}_n(\Pi, A)$$

is the homomorphism λ above applied to the functor $\Lambda \cdot \mathfrak{W}_n(-, A)$.

Proof. We first adjust the notation. If $T: (\mathfrak{B}, \Pi) \to Ab$ is a functor, the complex of abelian groups from which the derived functors $\mathfrak{B}_n(\Pi, T)$ are calculated from the Barr-Beck resolution will be written as $B_*^{\mathfrak{B}}(\Pi, T)$, unless T = Diff(-, A) which will be abbreviated to A. The augmentation $B_0^{\mathfrak{B}}\Pi \to \Pi$ will be $\varepsilon^{\mathfrak{B}}$.

Form the first quadrant double complex $T_{pq} = B_p^{\mathfrak{B}}(\Pi, \Lambda \cdot B_q^{\mathfrak{W}}(-, A))$, where $\Lambda : (\mathfrak{B}, \Pi) \to (\mathfrak{W}, \Pi)$ is the inclusion functor. Fixing p and taking homology gives $B_p^{\mathfrak{B}}(\Pi, \Lambda \cdot \mathfrak{W}_q(-, A))$, and taking homology again gives $\mathfrak{B}_p(\Pi, \Lambda \cdot \mathfrak{W}_q(-, A))$. Fixing q and taking homology in T gives $\mathfrak{B}_p(\Pi, \Lambda \cdot B_q^{\mathfrak{W}}(-, A))$. Now $\Lambda \cdot B_q^{\mathfrak{W}}(-, A)$

factors through the comma category of sets over the underlying set of Π and hence is flask in the sense of Rinehart [13] (cf. Rinehart [14] and the proof of [HII, Proposition 1.1]). Thus $\mathfrak{B}_p(\Pi, \Lambda \cdot B_q^{\mathfrak{M}}(-, A)) = 0$ for p > 0 and

$$\mathfrak{B}_{0}(\Pi, \Lambda \cdot B_{a}^{\mathfrak{M}}(-, A)) = B_{a}^{\mathfrak{M}}(\Pi, A).$$

Taking homology again gives $\mathfrak{W}_q(\Pi, A)$, and so the first part of the theorem is proved. We calculate the edge effects using the same techniques as in the proof of [HII, Theorem 3.1]. Recall [22, Theorem XI, 4.4] which states that if I_{pq}^r is the first spectral sequence of the first quadrant double complex S_{pq} then the edge effects are given by $I_{0n}^1 = H_n S_{0*} \to H_n S$ induced by the inclusion of S_{0*} in A, and $H_n S \to H_n (S/M) = I_{n0}^2$ induced by the projection of S on S/M, where M is the subcomplex of S given by

$$M_n = \sum_{p+q=n;q>0} S_{pq} \cup \partial \sum_{p+q=n+1;q>0} S_{pq}.$$

We apply this first to the second spectral sequence of T (which collapses), that is with S = T transposed. In this case S/M is chain isomorphic to $B_*^{\mathfrak{W}}(\Pi, A)$ via $B_*^{\mathfrak{W}}(\epsilon^{\mathfrak{V}}, A)$. Hence we have an isomorphism ω of H_*T onto $\mathfrak{W}_*(\Pi, A)$. Now looking at the first spectral sequence and applying the first part of the above theorem gives us the homomorphism ζ in the diagram

$$\begin{array}{ccc}
B_0^{\mathfrak{B}}(\Pi, \Lambda \cdot \mathfrak{W}_n(-, A)) & \xrightarrow{\zeta} & H_n(T) \\
\mathfrak{W}_n(\varepsilon^{\mathfrak{B}}, A) & & \omega \\
\mathfrak{W}_n(\Pi, A) & & & & & \\
\end{array}$$

which is clearly commutative. This identifies the edge homomorphism $E_{0n}^1 \to H_n(T)$ as $\mathfrak{W}_n(\varepsilon^{\mathfrak{B}},A)$ "up to ω ". It follows from the definition of λ above that λ is the edge homomorphism $E_{0n}^2 \to H_n(T)$, again "up to ω ". We now turn to the base. Define the first quadrant double complex \overline{T} by $\overline{T}_{pq} = B_p^{\mathfrak{B}}(\Pi, B_q^{\mathfrak{B}}(-, A))$. Dividing by the verbal subgroup defined by \mathfrak{B} induces a functor of (\mathfrak{B}, Π) into (\mathfrak{B}, Π) and hence a chain map $F: T \to \overline{T}$. Now let M_1, M_2, \overline{M}_1 and \overline{M}_2 correspond to M in the theorem quoted above, where S is taken as T, T transposed, \overline{T} and \overline{T} transposed respectively. Then T/M_1 , $\overline{T}/\overline{M}_1$, and $\overline{T}/\overline{M}_2$ are naturally isomorphic to $B_*^{\mathfrak{B}}(\Pi, A)$, and T/M_2 is isomorphic to $B_*^{\mathfrak{B}}(\Pi, A)$. Using these identifications, F induces a commutative diagram

Taking homology now gives

$$\mathfrak{B}_{*}(\Pi, A) = \mathfrak{B}_{*}(\Pi, A)$$

$$\downarrow \uparrow \qquad \qquad \uparrow \cong$$

$$H_{*}T \xrightarrow{H_{*}F} H_{*}\overline{T}$$

$$\omega \downarrow \cong \qquad \qquad \downarrow \cong$$

$$\mathfrak{B}_{*}(\Pi, A) \xrightarrow{\phi_{*}} \mathfrak{B}_{*}(\Pi, A)$$

where ω is the isomorphism of the first part and ζ is the base homomorphism. It only remains to prove that the composite of either homomorphism on the East side with the inverse of the other is the identity. Now $H_*\overline{T}$ and $\mathfrak{B}_*(\Pi, -)$ may clearly be regarded as δ -functors from the category of functors from \mathfrak{B} -free groups over Π to Ab, and as such they are effaced on the left by the projective functors. Moreover, since we are dealing with δ -functors, it is enough to look at dimension zero. But in this case the result may be read off at once by looking at \overline{T} with its canonical augmentation.

COROLLARY 2.2. There is an exact sequence

$$(2.1) \qquad \mathfrak{B}_{2}(\Pi, A) \xrightarrow{\phi_{2}} \mathfrak{B}_{2}(\Pi, A) \longrightarrow \mathfrak{B}_{0}(\Pi, \Lambda \cdot \mathfrak{B}_{1}(-, A))$$

$$\xrightarrow{\lambda} \mathfrak{B}_{1}(\Pi, A) \xrightarrow{\phi_{1}} \mathfrak{B}_{1}(\Pi, A) \longrightarrow 0.$$

In particular, ϕ_1 is a surjection. Of course the results of this paragraph all dualize. By a well-known folk theorem (but see Beck [5]), $\mathfrak{B}^1(\Pi, A)$ classifies the extensions of A by Π that lie in \mathfrak{B} , and it can be shown that with this identification the injection $\phi^1 \colon \mathfrak{B}^1(\Pi, A) \to \mathfrak{B}^1(\Pi, A)$ is the inclusion of the set of extensions of A by Π that lie in \mathfrak{B} in the set of those that lie in \mathfrak{B} .

3. The second homology groups. The striking behaviour of $\mathfrak{B}_2(\Pi, A)$ is illustrated, using (2.1), when Π is a finitely generated abelian group and A = Z.

The abelian group Π is of type $(s; n_1, \ldots, n_t)$ if the torsion subgroup T of Π is of direct product of cyclic subgroups of order $n_1, \ldots, n_t; n_1 > 1, n_i | n_{i+1}$ for $i = 1, \ldots, t-1$; and Π/T is of rank s. s+t is the rank of Π . In quoting (2.1) the symbol Λ will be omitted. Define a function γ of two positive integers by

(3.1)
$$\gamma(r,c) = \frac{1}{c+1} \sum_{d|(c+1)} \mu(d) r^{(c+1)/d}.$$

Here μ is the Möbius function; if n is the product of u distinct primes $(u \ge 0)$, then $\mu(n) = (-1)^u$; else $\mu(n) = 0$.

LEMMA 3.1. If Π is a finitely generated abelian group of rank r > 0 and type $(s; n_1, \ldots, n_t)$, and $\mathfrak{B} = \mathfrak{R}_c$, then $\mathfrak{B}_0(\Pi, H_2(-, Z))$ is of rank ρ and type

 $(\sigma; \nu_1, \ldots, \nu_t)$ where $\rho = \gamma(r, c)$, $\sigma = \gamma(s, c)$, and $\nu_t = n_t$ if s > 0, $\nu_t = n_{t-1}$ if s = 0. (In particular, if r = s, $\rho = \sigma$ and if r = 1, $\rho = 0$.)

Proof. Let

$$\Pi = C(a_1) \times \cdots \times C(a_s) \times C_{n_1}(a_{s+1}) \times \cdots \times C_{n_s}(a_r)$$

with the obvious notation, let F be \mathfrak{N}_c -freely generated by x_1, \ldots, x_r , and define $f: F \to \Pi$ by $x_i f = a_i$, $i = 1, \ldots, r$. The fibre product $F \times_{\Pi} F$ is the subgroup of $F \times F$ consisting of elements (p, q) such that pf = qf, and $(p, q) \mapsto (pq^{-1}, q)$ is an isomorphism of $F \times_{\Pi} F$ onto the split extension RF of R by F, where R is the kernel of f. R is generated qua subgroup by $x^{n_i - s}$, $i = s + 1, \ldots, r$, and w_1, \ldots, w_k , say, where w_i is a commutator for all i. Defining a homomorphism of a group G into $F \times_{\Pi} F$ is equivalent to defining a homomorphism (g_1, g_2) of G into $F \times F$ $(g_i: G \to F)$ such that $g_1 f = g_2 f$. Let \overline{F} be \mathfrak{N}_c -freely generated by $y_1, \ldots, y_r, z_{s+1}, \ldots, z_r, v_1, \ldots, v_k$, and define $(g_1, g_2): \overline{F} \to F \times_{\Pi} F$ by $y_i g_1 = x_i, z_i g_1 = x^{n_i - s}, v_i g_1 = w_i, y_i g_2 = x_i, z_i g_2 = 1, v_i g_2 = 1$. Then (g_1, g_2) is a surjection, and by [13, p. 299], $\mathfrak{B}_0(\Pi, H_2(-, Z))$ is the cokernel of $H_2(g_1, Z) - H_2(g_2, Z): H_2(\overline{F}, Z) \to H_2(F, Z)$. It is easy to see that the Schur multiplier of the \mathfrak{N}_c -free group on a set \mathfrak{x} is the (c+1)th lower central factor of the absolutely free group on \mathfrak{x} ; that is, the free abelian group on the basic commutators of weight c+1 in \mathfrak{x} ; these multipliers will be written additively. One sees easily that $H_2(g_1, Z) - H_2(g_2, Z)$ has the following properties:

- (i) the image of a basic commutator (of weight c+1) in \overline{F} is a multiple of a basic commutator in F or 0;
- (ii) if $[x_{i_1}, \ldots, x_{i_{c+1}}]$ is a basic commutator in F (not necessarily left normed), and if $\max(i_1, \ldots, i_{c+1}) \le s$, then no nonzero multiple of $[x_{i_1}, \ldots, x_{i_{c+1}}]$ is the image of a basic commutator, whereas
- (iii) if $i_{\alpha} > s$ for some α and i_{α} is the least such integer, then $n_{i_{\alpha}-s}[x_{i_1}, \ldots, x_{i_{c+1}}]$ is the image of a basic commutator, and if $m[x_{i_1}, \ldots, x_{i_{c+1}}]$ is such an image, then $n_{i_{\alpha}-s}|m$. Note that if s>0, $i_{\alpha}=r$ for any basic commutator involving x_1 and x_r only; whereas if s=0, $i_{\alpha} \le r-1$ and $i_{\alpha}=r-1$ for any basic commutator involving x_{r-1} and x_r only.

Of course neither (ii) nor (iii) occurs if r=1 in which case $H_2(F, Z)$ is trivial, and (iii) only occurs if r>s, so degenerate cases give no trouble. Finally the number of basic commutators of weight c+1 on r letters is $\gamma(r, c)$ (see [9]). Putting all this together gives the lemma.

It is now easy to prove the following

THEOREM 3.2. If Π is a finitely generated abelian group of rank r>0 and type $(s; n_1, \ldots, n_t)$, and $\mathfrak{B} = \mathfrak{R}_c$, then $\mathfrak{B}_2(\Pi, Z)$ is of rank ρ and type $(\sigma; \nu_1, \ldots, \nu_\tau)$ where $0 \le \rho - \gamma(r, c) \le t + r(r-1)(r-2)/6$ (cf. (3.1)),

$$0 \le \sigma - \gamma(s, c) \le s(s-1)(s-2)/6$$
,

 v_t divides n_t^2 , and if s = 0, v_t divides $n_{t-1}n_t$.

In particular, as $c \to \infty$, $\rho \sim r^{c+1}/(c+1)$ and $\sigma \sim s^{c+1}/(c+1)$.

Proof. Apply Corollary 2.2 with \mathfrak{B} the universal variety and A=Z. By [HII, Proposition 2.3], $\mathfrak{B}_1(\Pi, Z)$ and $\mathfrak{B}_1(\Pi, Z)$ are isomorphic; and being Hopf groups, ϕ_1 is an isomorphism. (In fact ϕ_1 and $\theta_1^{\mathfrak{B}}(\Pi, Z)$ are inverses, see Lemma 1.6.) Since $\mathfrak{B}_2(\Pi, Z) = H_3(\Pi, Z)$ a routine calculation gives

$$\mathfrak{W}_{2}(\Pi, Z) = Z^{s(s-1)(s-2)/6} \oplus \bigoplus_{i=1}^{t} Z_{n_{i}}^{1+(r-i)(r-i-1)/2}$$

where Z_m denotes Z/mZ, and A^k denotes the direct sum of k copies of A. So $\mathfrak{W}_2(\Pi, Z)$ is of rank r(r-1)(r-2)/6+t and type $(s(s-1)(s-2)/6; n_1, n_1, \ldots, n_t, n_t)$. Now applying Lemma 3.1 gives the result.

In particular, the homology in dimension 2 of a product is not related in a simple way to the homology of the factors, whereas in dimension 1 there is a Künneth formula of sorts (cf. [HI, Theorem 5.2]).

To obtain results in cohomology, apply universal coefficients [HI, Lemma 4.1]. If Π is finite, $\mathfrak{B}^2(\Pi, \mathbb{Q}/\mathbb{Z}) \cong \mathfrak{B}_2(\Pi, \mathbb{Z})$. The wild behaviour of this group if $\mathfrak{B} = \mathfrak{R}_c$ can hardly be reflected in an obstruction theory.

BIBLIOGRAPHY

- 25. C. R. Leedham-Green, *Homology in varieties of groups*. II, Trans. Amer. Math. Soc. **162** (1971), 15-25.
- 26. B. Mitchell, *Theory of categories*, Pure and Appl. Math., vol. 17, Academic Press, New York, 1965. MR 34 #2647.

QUEEN MARY COLLEGE, LONDON, ENGLAND