EQUIVARIANT BORDISM AND SMITH THEORY. II

BY R. E. STONG(1)

Abstract. This paper analyzes the homomorphism from equivariant bordism to Smith homology for spaces with an action of a finite group G.

1. **Introduction.** Let G be a finite group, and let (X, A, ψ) be a pair with G action. One then has defined the G-equivariant bordism group $\mathfrak{R}^G_*(X, A, \psi)$ and the Smith homology group $H^G_*(X, A, \psi; Z_2)$. These define equivariant homology theories on the category of G pairs and G-equivariant maps, and the object of this paper is to explore the relationship between these theories.

Briefly, being given an equivariant bordism element $f:(M,\partial M,\varphi)\to (X,A,\psi)$, the image of the fundamental Smith theory class of $(M,\partial M,\varphi)$ gives a natural transformation

$$\tilde{\mu} \colon \mathfrak{N}^{\mathsf{G}}_{*}(X, A, \psi) \otimes_{\mathfrak{N}^{\mathsf{G}}} Z_{2} \to H^{\mathsf{G}}_{*}(X, A, \psi; Z_{2}).$$

It was shown in [9] that $\tilde{\mu}$ is an isomorphism if $G = \mathbb{Z}_2$.

The main results of this paper are

THEOREM 1. $\tilde{\mu}$ is always epic

and

THEOREM 2. $\tilde{\mu}$ is an isomorphism for all G pairs (X, A, ψ) if and only if G is 2-nilpotent and has Sylow 2 subgroup a Z_2 vector space.

(G is called 2-nilpotent if the elements of odd order in G form a subgroup.)

2. The representation theorem. Let G be a finite group, X a simplicial complex, $\psi: G \times X \to X$ a simplicial G action and $A \subset X$ a subcomplex invariant under G. It will be assumed that X is "finely" triangulated so that the fixed set of any subgroup H is a subcomplex and the projection $\pi: X \to X/H$ is simplicial (E. E. Floyd [4] shows that this may be accomplished by taking the second barycentric subdivision).

Let $C(X) \otimes Z_2$ denote the chains of X with Z_2 coefficients and let $g_\# \colon C(X) \otimes Z_2 \to C(X) \otimes Z_2$ be the chain map induced by $\psi(g, \cdot) \colon X \to X \colon X \to \psi(g, x)$. One then lets $C^0(X) \subseteq C(X) \otimes Z_2$ denote the subgroup consisting of chains σ so that

Received by the editors March 1, 1971.

AMS 1969 subject classifications. Primary 5710; Secondary 5747.

Key words and phrases. Equivariant bordism, Smith theory.

⁽¹⁾ I am indebted to the Alfred P. Sloan Foundation for financial support during this work.

Copyright © 1972, American Mathematical Society

 $g_{\#}\sigma = \sigma$ for all $g \in G$. Since $g_{\#}$ commutes with the boundary, one has an induced boundary $\partial \colon C^0(X) \to C^0(X)$, and if $C^0(X,A) = C^0(X)/C^0(A)$ one has induced a homomorphism ∂ making this a chain complex. The *Smith homology groups* of (X,A,ψ) , $H^G_*(X,A,\psi;Z_2)$, are then defined to be the homology groups of the complex $(C^0(X,A),\partial)$.

By using Čech [7], [5] or singular [3] methods to obtain a complex, this may be extended to all topological G pairs.

Being given a compact differentiable manifold M^n with differentiable G action φ , one may triangulate M "finely" so that G acts simplicially. Clearly the fundamental cycle $\mu = \sum \Delta^i$, the sum of all n-simplices, is then an invariant chain, defining a fundamental class $[M, \partial M, \varphi] \in H_n^G(M, \partial M, \varphi; Z_2)$. This lifts the ordinary fundamental class back to Smith theory.

One then has a natural transformation

$$\mu: \mathfrak{N}_{\star}^{G}(X, A, \psi) \to H_{\star}^{G}(X, A, \psi; \mathbb{Z}_{2})$$

assigning to the equivariant bordism element $f: (M, \partial M, \varphi) \to (X, A, \psi)$ the class $f_*[M, \partial M, \varphi]$.

Letting $\varepsilon: \mathfrak{R}^G_* \to Z_2$ be the augmentation to $\mathfrak{R}_0 \cong Z_2$ given by ignoring G action and the positive dimensional part, one has $\mu(\alpha \cdot \beta) = \varepsilon(\alpha)\mu(\beta)$ for $\alpha \in \mathfrak{R}^G_*$, $\beta \in \mathfrak{R}^G_*$ (X, A, ψ) as in [9] (Note: $H_i^G(M^n, \partial M^n, \varphi; Z_2) = 0$ if i > n) and thus μ induces a natural transformation

$$\tilde{\mu} \colon \mathfrak{N}^{\mathcal{G}}_{*}(X, A, \psi) \otimes_{\mathfrak{N}^{\mathcal{G}}_{*}} Z_{2} \to H^{\mathcal{G}}_{*}(X, A, \psi; Z_{2}).$$

One has the analogue of [9, Proposition 2.1]:

LEMMA 2.1. If G is a 2 group then $\tilde{\mu}$ is epic.

Proof. The result is known for $G = \{1\}$ or $G = \mathbb{Z}_2$ and so one may induct on the order of G. Let $T = \{1, t\}$ be a central subgroup of G of order 2.

Being given a G complex (X, A, ψ) , any element of $C^0(X)$ decomposes uniquely into a sum of invariant chains $\sigma_1 + \sigma_2$, where σ_1 is a sum of simplices Δ with $t_\# \Delta = \Delta$ and σ_2 is a sum of terms $\Delta + t_\# \Delta$ with $t_\# \Delta \neq \Delta$, Δ a simplex. This gives a natural decomposition

$$H^{\mathcal{G}}_{\star}(X, A, \psi) \cong H^{\mathcal{G}}_{\star}(X, F_T \cup A, \psi) \oplus H^{\mathcal{G}}_{\star}(F_T, F_T \cap A, \psi)$$

and

$$H_{*}^{G}(X, F_{T} \cup A, \psi) \cong H_{*}^{G/T}(X/T, A/T \cup F_{T}, \psi'),$$

 $H_{*}^{G}(F_{T}, F_{T} \cap A, \psi) \cong H_{*}^{G/T}(F_{T}, F_{T} \cap A, \psi')$

where F_T is the fixed set of T and ψ' denotes the induced action (see [9, Theorem 2.1]). Now $\mathfrak{R}^{G/T}_*(F_T, F_T \cap A)$ maps onto $H^{G/T}_*(F_T, F_T \cap A)$ by induction, and if $f: (M, \partial M, \varphi') \to (F_T, F_T \cap A, \psi')$ is a G/T bordism element representing α, f may be considered a G bordism element with T acting trivially, to represent α as an element of $H^{\alpha}_{*}(X, A, \psi; Z_{2})$.

Also $\mathfrak{N}_{*}^{G/T}(X/T, A/T \cup F_T)$ maps onto $H_{*}^{G/T}(X/T, A/T \cup F_T)$ by induction, and by excision arguments as in [9, Proposition 2.1], a bordism element $f: (M, \partial M, \varphi') \to (X/T, A/T \cup F_T)$ may be lifted to

$$\tilde{M} \xrightarrow{\tilde{f}} X$$

$$\pi \downarrow \qquad \qquad \downarrow \pi$$

$$M \xrightarrow{f} X/T$$

with \tilde{f} being G equivariant and representing the class in $H^G_*(X, A, \psi)$ corresponding to $\tilde{\mu}([f]) \in H^{G/T}_*(X/T, A/T \cup F_T)$. \square

If $G = (Z_2)^k$ one also has an analog of [9, Proposition 2.2].

LEMMA 2.2. If $G = (Z_2)^k$, then $\tilde{\mu}$ is an isomorphism.

Proof. This is known for k=0, 1 and hence one may apply induction. Let t_1, \ldots, t_k with $t_i^2 = 1$, $t_i t_j = t_j t_i$ be generators of G, with $T_i = \{1, t_i\} \subseteq G$.

Then for any (X, A, ψ) one has an exact sequence of \mathfrak{N}^{G}_{*} modules, split as \mathfrak{N}_{*} modules

$$0 \to \mathfrak{N}^{\mathsf{G}}_{\star}(F_{T_1}, A \cap F_{T_1}) \to \mathfrak{N}^{\mathsf{G}}_{\star}(X, A) \to \mathfrak{N}^{\mathsf{G}}_{\star}(X, F_{T_1} \cup A) \to 0$$

and hence a commutative diagram

$$Q \longrightarrow \mathfrak{N}^{G}_{*}(F_{T_{1}}, F_{T_{1}} \cap A) \otimes Z_{2} \longrightarrow \mathfrak{N}^{G}_{*}(X, A) \otimes Z_{2} \longrightarrow \mathfrak{N}^{G}_{*}(X, F_{T_{1}} \cup A) \otimes Z_{2} \rightarrow 0$$

$$\downarrow \tilde{\mu}_{0} \qquad \qquad \downarrow \tilde{\mu}_{1} \qquad \qquad \downarrow \tilde{\mu}_{2}$$

$$0 \longrightarrow H^{G}_{*}(F_{T_{1}}, F_{T_{1}} \cap A) \longrightarrow H^{G}_{*}(X, A) \longrightarrow H^{G}_{*}(X, F_{T_{1}} \cup A) \longrightarrow 0$$

$$\wr \mathbb{I} \qquad \qquad \wr \mathbb{I}$$

$$H^{G/T}_{*}(F_{T_{1}}, F_{T_{1}} \cap A) \qquad \qquad H^{G/T}_{*}(X/T_{1}, F_{T_{1}} \cup A/T_{1})$$

with Q a "Tor"-term.

To see that $\tilde{\mu}_2$ is monic, one notes that $(X, F_{T_1} \cup A)$ is relatively free as a T_1 pair, so $\mathfrak{N}^G_*(X, F_{T_1} \cup A) \cong \mathfrak{N}^{G/T_1}_*(X/T_1, F_{T_1} \cup A/T_1)$ by assigning to a T_1 free bordism element $f: M \to X$ the induced map $\bar{f}: M/T_1 \to X/T_1$. Further, this is a homomorphism of \mathfrak{N}^{G/T_1}_* modules, where $\mathfrak{N}^{G/T_1}_* \to \mathfrak{N}^G_*$ by considering a G/T_1 manifold as a G manifold with trivial T_1 action. One then has a commutative

diagram

and hence $\tilde{\mu}_2$ is monic.

By an elementary diagram chase, $\tilde{\mu}_1$ will be monic provided $\tilde{\mu}_0$ is monic. Thus, it suffices to prove the lemma for pairs (X, A, ψ) fixed by T_1 . A similar analysis may then be applied to each T_i , and hence it suffices to prove the lemma for pairs (X, A, ψ) fixed by each T_i , hence by G.

If (X, A, ψ) is a trivial G space, one has $\mathfrak{N}_*^G(X, A, \psi) \cong \mathfrak{N}_*^G \otimes_{\mathfrak{N}_*} \mathfrak{N}_*(X, A)$, so $\mathfrak{N}_*^G(X, A, \psi) \otimes Z_2$ coincides with $H_*(X, A; Z_2)$ (the $G = \{1\}$ result) and the lemma is valid. \square

Now turning to the general case one has:

THEOREM 2.1. For every G, $\tilde{\mu}$ is always epic.

Proof. Let G be a finite group and (X, A, ψ) a G pair. Let $S \subseteq G$ be a Sylow 2 subgroup and $\psi_S : S \times X \to X$ the S action given by restriction to $S \times X$ of ψ .

Considering a G invariant chain of X as being only S invariant defines a homomorphism

$$\theta: H^{\mathcal{G}}_{\bullet}(X, A, \psi; Z_2) \to H^{\mathcal{S}}_{\bullet}(X, A, \psi_{\mathcal{S}}; Z_2).$$

Being given an S invariant chain $\sigma \in C(X) \otimes Z_2$ let $t\sigma = \sum g_\#\sigma$ where the sum is taken over a collection of g which represent the cosets G/S. (Note. if $g' \in gS$, $g'_\#\sigma = g_\#\sigma$ since σ is S invariant.) Clearly $t\sigma$ is G invariant and this induces a homomorphism

$$t: H_*^S(X, A, \psi_S; Z_2) \to H_*^G(X, A, \psi; Z_2).$$

If σ is G invariant, $g_{\#}\sigma = \sigma$, so $t\sigma$ is $[G:S]\sigma$ where [G:S] is the index of S in G, and is odd, so $t\sigma = \sigma$. Thus $t\theta = 1$, or θ is monic and t is epic.

Now consider the extension homomorphism

$$e_G^S: \mathfrak{N}_{*}^S(X, A, \psi_S) \to \mathfrak{N}_{*}^G(X, A, \psi)$$

defined in [8, §4]. If $f: (M, \partial M, \varphi) \to (X, A, \psi_s)$ is an S equivariant bordism element $\alpha, e_G^S(\alpha)$ is represented by $\bar{f}: (\overline{M}, \partial \overline{M}, \bar{\varphi}) \to (X, A, \psi)$ where $\overline{M} = G \times M/(gs^{-1}, \varphi(s, m))$ $\sim (g, m), \ \bar{\varphi}(g', (g, m)) = (g'g, m) \ \text{and} \ \bar{f}(g, m) = \psi(g, f(m)).$ If one considers

 $i: M \to \overline{M}: m \to (1, m), \overline{f} \circ i = f$ and the fundamental cycle of \overline{M} is $\sum g_{\#}(i_{\#}\mu)$ where μ is the fundamental cycle of M. Thus $\overline{f}_{*}[\overline{M}, \partial \overline{M}, \overline{\phi}] = tf_{*}[M, \partial M, \phi]$. Thus the diagram

$$\mathfrak{N}_{*}^{S}(X, A, \psi_{S}) \xrightarrow{e_{G}^{S}} \mathfrak{N}_{*}^{G}(X, A, \psi)$$

$$\downarrow^{\mu_{S}} \qquad \qquad \downarrow^{\mu}$$

$$\downarrow^{H_{*}^{S}(X, A, \psi_{S}; Z_{2})} \xrightarrow{t} H_{*}^{G}(X, A, \psi; Z_{2})$$

commutes, with t and μ_s epic, so μ is epic. Hence also $\tilde{\mu}$ is epic. \square

LEMMA 2.3. Let G be a finite group with Sylow 2 subgroup S and suppose the restriction $\rho_S^G: \mathfrak{N}_*^G \to \mathfrak{N}_*^S$ is epic. If (X, A, ψ) is a G pair with

$$\tilde{\mu}_s : \mathfrak{N}^s_{\bullet}(X, A, \psi_s) \otimes_{\mathfrak{N}^s} Z_2 \to H^s_{\bullet}(X, A, \psi_s; Z_2)$$

monic, then

$$\tilde{\mu}_G \colon \mathfrak{N}^G_{\bullet}(X, A, \psi) \otimes_{\mathfrak{N}^G} Z_2 \to H^G_{\bullet}(X, A, \psi; Z_2)$$

is also monic.

Proof. Let $\rho_S^G: \mathfrak{N}_*^G(X, A, \psi) \to \mathfrak{N}_*^S(X, A, \psi_S)$ denote the restriction homomorphism which "ignores G equivariance". It is then immediate that the diagram

with $\tilde{\rho}$ induced by ρ_S^G commutes, with θ and $\tilde{\mu}_S$ being monic.

Now consider the extension

$$e_G^S: \mathfrak{N}_{\star}^S(X, A, \psi_S) \to \mathfrak{N}_{\star}^G(X, A, \psi).$$

By [2, 6.3] e_G^S is an \mathfrak{N}_*^G module homomorphism; i.e. if $\alpha \in \mathfrak{N}_*^S(X, A, \psi_S)$ and $\beta \in \mathfrak{N}_*^G$, then $e_G^S(\rho_S^G(\beta) \cdot \alpha) = \beta \cdot e_G^S(\alpha)$. In particular, if $\beta' \in \mathfrak{N}_*^S$, there is a $\beta \in \mathfrak{N}_*^G$ with $\rho_S^G(\beta) = \beta'$, so $e_S^G(\beta' \cdot \alpha) = \beta \cdot e_S^G(\alpha)$. Since $\varepsilon(\beta') = \varepsilon(\beta)$, e_S^G induces a homomorphism

$$\tilde{e} \colon \mathfrak{N}_{\star}^{s}(X, A, \psi_{s}) \otimes_{\mathfrak{N}_{s}^{s}} Z_{2} \to \mathfrak{N}_{\star}^{g}(X, A, \psi) \otimes_{\mathfrak{N}_{s}^{g}} Z_{2}.$$

(Note. This used the fact that $\rho_S^G: \mathfrak{N}_*^G \to \mathfrak{N}_*^S$ is epic. I cannot prove that \tilde{e} is meaningful without this, and in fact Theorem 2 of the Introduction would seem to imply that \tilde{e} cannot always exist.)

Then $\tilde{e}\tilde{\rho}: \mathfrak{N}^G_*(X, A, \psi) \otimes_{\mathfrak{N}^G} Z_2 \to \mathfrak{N}^G_*(X, A, \psi) \otimes_{\mathfrak{N}^G} Z_2$ is induced by $e^S_G \circ \rho^G_S$. By [8, Proposition 13.2], $e^S_G \circ \rho^G_S$ is multiplication by the class of $[G/S, \mu] \in \mathfrak{N}^G_O$, so that $\tilde{e}\tilde{\rho}$ is multiplication by $\varepsilon[G/S, \mu] = 1$.

Thus $\tilde{\rho}$ is monic, and so $\tilde{\mu}_S \tilde{\rho}$ is monic, which gives $\tilde{\mu}_G$ monic. \square One then has the first half of Theorem 2, given by

THEOREM 2.2. Let G be 2-nilpotent with Sylow 2 subgroup a \mathbb{Z}_2 vector space. Then $\tilde{\mu}$ is an isomorphism for all G pairs.

- **Proof.** Let S be a Sylow 2 subgroup of G. Then $S = (Z_2)^k$ for some k, so by Lemma 2.2, $\tilde{\mu}_S$ is always monic. Letting $K \subseteq G$ be the subgroup of elements of odd order, K is normal and $G/K \cong S$, giving a homomorphism $\varphi \colon G \to S$ with $\varphi \mid S = 1$. Thus $\rho_S^G \colon \mathfrak{R}_*^G \to \mathfrak{R}_*^S$ is epic, for if (M, ψ) is an S action, $(M, \psi \circ (\varphi \times 1))$ is a G action restricting to (M, ψ) . Thus Lemma 2.3 applies to each G pair and $\tilde{\mu}_G$ is always monic. By Theorem 2.1, $\tilde{\mu}$ is then an isomorphism. \square
- 3. The isomorphism theorem. In order to simplify notation, temporarily say that the finite group G has the isomorphism property if for all G pairs (X, A, ψ) , the natural transformation

$$\tilde{\mu}: \mathfrak{N}^{\mathfrak{G}}_{\star}(X, A, \psi) \otimes_{\mathfrak{N}^{\mathfrak{G}}} Z_{2} \to H^{\mathfrak{G}}_{\star}(X, A, \psi; Z_{2})$$

is an isomorphism.

Following Bredon [1], one knows that two G equivariant homology theories agree for all spaces if and only if they agree for all of the coset spaces $(G/H, \mu)$, with H a subgroup of G.

Letting $H \subseteq G$ be a subgroup, consider the pair $(X, A, \psi) = (G/H, \phi, \mu)$.

Clearly $C(G/H) \otimes Z_2$ is the Z_2 vector space with base the points of G/H, and these are permuted by G, so $C^0(G/H) \cong Z_2$ with base the sum of all the points. Thus $H^G_*(G/H, \mu; Z_2) \cong Z_2$.

Now consider $\mathfrak{N}_*^G(G/H, \mu)$. If $f: (M, \varphi) \to (G/H, \mu)$ is a G bordism element, then $M_0 = f^{-1}(H)$, the inverse image of the coset H, is invariant under H, and hence $(M_0, \varphi|H \times M_0)$ is an H bordism element in \mathfrak{N}_*^H . It is immediate that $f: (M, \varphi) \to (G/H, \mu)$ is the extension to G of the H equivariant bordism element

$$f|M_0: (M_0, \varphi|H \times M_0) \rightarrow (G/H, \mu)$$

given by the point map. Thus, this correspondence defines an isomorphism $\mathfrak{R}^{G}_{*}(G/H, \mu) \cong \mathfrak{R}^{H}_{*}$. If $f: (M, \varphi) \to (G/H, \mu)$ and $(N, \psi) \in \mathfrak{R}^{G}_{*}$, the product is

$$f \circ \pi_M : (M \times N, \varphi \times \psi) \rightarrow (G/H, \mu)$$

so that $(f \circ \pi_M)^{-1}(H) = M_0 \times N$ with action $(\varphi | H \times M_0) \times (\psi | H \times N)$. Thus identifying $\mathfrak{N}_*^G(G/H, \mu)$ with \mathfrak{N}_*^H , \mathfrak{N}_*^H is an \mathfrak{N}_*^G module by $\alpha \cdot \beta = \rho_H^G(\alpha) \cdot \beta$ for $\alpha \in \mathfrak{N}_*^G$, $\beta \in \mathfrak{N}_*^H$ with $\rho_H^G \colon \mathfrak{N}_*^G \to \mathfrak{N}_*^H$ the restriction.

Thus, one has

LEMMA 3.1. If G has the isomorphism property, then for all $H \subseteq G$,

$$\mathfrak{N}^{\scriptscriptstyle{H}}_{ullet} \otimes_{\mathfrak{N}^{\scriptscriptstyle{G}}} Z_2 \cong Z_2$$

where \mathfrak{N}_*^H is an \mathfrak{N}_*^G module via the restriction $\rho_H^G \colon \mathfrak{N}_*^G \to \mathfrak{N}_*^H$.

LEMMA 3.2. If $H \subseteq G$ is a 2 group then

$$\mathfrak{N}_{ullet}^H \otimes_{\mathfrak{N}^G} Z_2 \cong Z_2$$

if and only if $\rho_H^G: \mathfrak{N}_*^G \to \mathfrak{N}_*^H$ is epic.

Proof. Clearly if ρ_H^G is epic, the tensor product rule holds. Now suppose ρ_H^G is not epic. Since H is a 2 group $\mathfrak{N}_0^H \cong \mathbb{Z}_2$ generated by a point with trivial action, which comes from a trivial G action, $(\rho_H^G)_0$ is epic (see [8, p. 67]). Suppose

$$(\rho_H^G)_i \colon \mathfrak{N}_i^G \to \mathfrak{N}_i^H$$

is epic for i < k and is not epic for i = k. Let $K = \text{cokernel } (\rho_H^G)_k$ and let

$$\varphi: \mathfrak{R}^H_{\bullet} \to \mathbb{Z}_2 \oplus K$$

be the homomorphism $\varepsilon: \mathfrak{R}_0^H \xrightarrow{\simeq} Z_2$ and quotient homomorphism $\varphi: \mathfrak{R}_k^H \to K$ and zero in all other degrees. This is clearly a vector space epimorphism.

If $\alpha \in \mathfrak{N}_{*}^{G}$, $\beta \in \mathfrak{N}_{*}^{H}$, consider $\varphi(\alpha \cdot \beta) = \varphi(\rho_{H}^{G}(\alpha)\beta) = x$. If $\dim \alpha > 0$, x = 0 unless $\dim \alpha + \dim \beta = k$, when $\dim \beta < k$. But then $\beta = \rho_{H}^{G}(\beta')$ for some $\beta' \in \mathfrak{N}_{*}^{G}$, so $x = \varphi(\rho_{H}^{G}(\alpha\beta'))$ and represents zero in the cokernel. Thus $x = \varepsilon(\alpha)\varphi(\beta)$ if $\dim \alpha > 0$. If $\dim \alpha = 0$, $x = \varphi(\varepsilon(\alpha) \cdot \beta) = \varepsilon(\alpha)\varphi(\beta)$ for $(\rho_{H}^{G})_{0}$ and ε coincide as maps to Z_{2} and φ is Z_{2} linear.

Thus, φ induces an epimorphism $\tilde{\varphi} \colon \mathfrak{N}_{*}^{H} \otimes_{\mathfrak{N}_{*}^{G}} Z_{2} \to Z_{2} \oplus K$, so $\mathfrak{N}_{*}^{H} \otimes_{\mathfrak{N}_{*}^{G}} Z_{2} \ncong Z_{2}$.

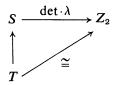
Now let G have the isomorphism property, let $S \subseteq G$ be a Sylow 2 subgroup, and let $T \subseteq S$ be a central subgroup of order 2, with $T = \{1, t\}$. By the lemmas, ρ_T^G is epic, but ρ_T^G is the composite

$$\mathfrak{N}_{*}^{\scriptscriptstyle G} \xrightarrow{\rho_{\scriptscriptstyle S}^{\scriptscriptstyle G}} \mathfrak{N}_{*}^{\scriptscriptstyle S} \xrightarrow{\rho_{\scriptscriptstyle T}^{\scriptscriptstyle S}} \mathfrak{N}_{*}^{\scriptscriptstyle T}$$

and hence ρ_T^S is epic.

Now let M^3 be the manifold obtained from the 3 disc D^3 by identifying antipodal points of S^2 (i.e. RP (3)) with the T action φ given by the involution $t \cdot x = -x$ on D^3 . Since ρ_T^S is epic, there is an S action (N, ψ) cobordant to (M, φ) as T action. The fixed set of T in M is a point $(0 \in D^3)$ and RP (2) (image of S^2), and this is cobordant to the fixed set of T in N, $F_T(N)$. In particular, the zero dimensional part $F_T(N)^0$ is an odd number of points. Since T is normal in S, S acts on $F_T(N)$ and hence also on $F_T(N)^0$. Since S is a 2 group, each orbit of S on $F_T(N)^0$ consists of S points, and since S is odd, there must be a point orbit. Thus, there is a point S acts on the tangent space to S at S orthogonally, giving a homomorphism S: $S \to O_S$ (dim S and S invariant Riemannian metric, S acts on the tangent space to S at S orthogonally, giving a homomorphism S: S and S (dim S and S invariant Riemannian metric, S acts on the determinant

det: $O_3 \rightarrow Z_2$, one has a commutative diagram



so that T splits out of S. Since this is true for all central subgroups of order 2 in S, S must be a Z_2 vector space. (If not, $S = A \times C$, C the central elements of order 2, but if A is nontrivial, its center is nontrivial, giving a central order 2 element of S not in C.) Thus one has

LEMMA 3.3. If G has the isomorphism property, then the Sylow 2 subgroup of G is a \mathbb{Z}_2 vector space.

In order to show that G is 2-nilpotent requires a digression.

Let G be a finite group and $\alpha: G \to G$ an automorphism. One lets $\alpha_*: \mathfrak{R}^G_* \to \mathfrak{R}^G_*$ by $\alpha_*(M, \varphi) = (M, \varphi \circ (\alpha^{-1} \times 1))$, where

$$G \times M \xrightarrow{\alpha^{-1} \times 1} G \times M \xrightarrow{\varphi} M$$

defines a new G action on M. If β is another automorphism of G, $(\alpha\beta)^{-1} \times 1 = (\beta^{-1} \times 1)(\alpha^{-1} \times 1)$ so $(\alpha\beta)_* = \alpha_*\beta_*$, and thus one has a homomorphism

*: Aut
$$(G) \rightarrow \operatorname{Aut}(\mathfrak{N}_{*}^{G}): \alpha \rightarrow \alpha_{*}$$
.

Now let $g \in G$ and $\alpha: G \to G: h \to ghg^{-1}$ the inner automorphism so that $\alpha^{-1}(h) = g^{-1}hg$. Then if (M, φ) is a G action, $\alpha_*(M, \varphi) = (M, \psi)$ where $\psi(h, m) = \varphi(g^{-1}hg, m)$. Letting $\rho: (M, \varphi) \to (M, \psi): m \to \varphi(g^{-1}, m)$ one has an equivariant diffeomorphism, so $\alpha_*(M, \varphi) = (M, \varphi)$. Thus one has induced a homomorphism

*: Aut
$$(G)/Inn(G) \rightarrow Aut(\mathfrak{N}_{+}^{G})$$

where Inn(G) is the normal subgroup of inner automorphisms.

Similarly, if $\alpha \in \text{Aut}(G)$, α acts on the set of irreducible (real) representations of G, IR (G), by sending $\theta: G \times V \to V$ to $\theta \circ (\alpha^{-1} \times 1): G \times V \to V$. This defines a homomorphism

$$-:$$
 Aut $(G) \rightarrow \text{Perm (IR } (G)): \alpha \rightarrow \bar{\alpha}, \text{ where } \bar{\alpha}(V, \theta) = (V, \theta \circ (\alpha^{-1} \times 1)).$

Notice that Inn (G) acts trivially on IR (G), that $\bar{\alpha}$ preserves the dimension of the representation, and $\bar{\alpha}$ sends the trivial representation ($\theta(g, v) = v$ for all (g, v)) to itself.

Now let $\theta: G \times V \to V$ be an irreducible real representation of G. Let M be the manifold obtained from the disc in $V \oplus V$, D(2V), by identifying antipodal points

of the sphere, with G action φ given by $\varphi(g, [v_1, v_2]) = [\theta(g, v_1), \theta(g, v_2)]$. Then the fixed set of G in (M, φ) is

$$F_G(M, \varphi) = \{0\} \qquad \text{if dim } V > 1,$$

= \{0\} \cup \text{RP (2V)} \quad \text{if dim } V = 1,

and G acts in the normal bundle at 0 as two copies of the representation V. Thus letting

$$F_G: \mathfrak{N}_{2\dim V}^G \to \mathfrak{N}_0(F_G'(BO_{2\dim V}))$$

be the fixed point homomorphism, $F_G(M, \varphi)$ is given by the inclusion of a point in the component of $F'_G(BO_{2\dim V})$ over which G acts as 2V. (See [8] for the definition of $F'_G(BO_n)$ and the fixed point homomorphism.)

It is immediate that if (M, φ) is defined by the representation (V, θ) , then $\alpha_*(M, \varphi)$ is defined by $\bar{\alpha}(V, \theta)$. Then if $\alpha \in \text{Aut }(G)$ with $\alpha_* = 1$, $F_G(M, \varphi) = F_G(\alpha_*(M, \varphi))$ so that (V, θ) and $\bar{\alpha}(V, \theta)$ are equivalent representations, or $\bar{\alpha} = 1$. Thus one has

Lemma 3.4. If $\alpha \in \text{Aut}(G)$ and $\alpha_* \colon \mathfrak{R}^G_* \to \mathfrak{R}^G_*$ is trivial, then $\bar{\alpha} \colon \text{IR}(G) \to \text{IR}(G)$ is also trivial, or α acts trivially on the irreducible representations of G.

Now consider a finite group G with the isomorphism property, and let S be a Sylow 2 subgroup of G, so that ρ_S^G is epic (Lemmas 3.1 and 3.2). If N is the normalizer of S in G, $S \subseteq N \subseteq G$, then $\rho_S^G = \rho_S^N \rho_N^G$, so $\rho_S^N \colon \mathfrak{R}_*^N \to \mathfrak{R}_*^S$ is epic.

If $n \in N$, $c_n: N \to N: g \to ngn^{-1}$ is an inner automorphism, so $(c_n)_* \in \operatorname{Aut}(\mathfrak{R}_*^N)$ is trivial. Since S is normal in N, $c_n(S) \subset S$ and c_n is an automorphism of S, so $(c_n)_* \in \operatorname{Aut}(\mathfrak{R}_*^S)$. Since ρ_S^N is epic, $(c_n)_*$ is trivial in $\operatorname{Aut}(\mathfrak{R}_*^S)$, and thus the homomorphism

$$N \to \operatorname{Aut}(\mathfrak{N}_{\star}^{S}): n \to (c_{n})_{\star}$$

is trivial, and by Lemma 3.4

$$N \to \text{Perm (IR }(S)): n \to \bar{c}_n$$

is trivial.

By Lemma 3.3, $S = (Z_2)^k$, and every irreducible representation of S is of the form (R, θ) where $\theta(s, v) = \bar{\theta}(s) \cdot v$, with $\bar{\theta}: S \to Z_2 = \{+1, -1\}$. Thus IR $(S) = \text{Hom } (S, Z_2)$. If $\alpha \in \text{Aut } (S)$, $\bar{\alpha}(R, \theta) = (R, \psi)$ with $\bar{\psi}(s) \cdot x = \bar{\theta}(\alpha^{-1}s) \cdot x$, so $\bar{\alpha} = 1$ implies $\bar{\theta} \circ \alpha^{-1} = \bar{\theta}$ for all $\bar{\theta} \in \text{Hom } (S, Z_2)$ and hence $\alpha = 1$. Thus, the homomorphism

$$N \to \operatorname{Aut}(S): n \to c_n$$

is trivial, or S is central in its normalizer.

One may now apply the theorem of Burnside [6, Theorem 14.3.1]: If a Sylow subgroup P of G is in the center of its normalizer, then G has a normal subgroup H which has the elements of P as its coset representatives.

Thus one has

326 R. E. STONG

THEOREM 3.1. If G is a finite group with

$$\tilde{\mu} \colon \mathfrak{N}^{\mathsf{G}}_{*}(X, A, \psi) \otimes_{\mathfrak{N}^{\mathsf{G}}_{*}} Z_{2} \to H^{\mathsf{G}}_{*}(X, A, \psi; Z_{2})$$

an isomorphism for all G pairs (X, A, ψ) , then G is 2-nilpotent and has Sylow 2 subgroup a \mathbb{Z}_2 vector space.

Combining this with Theorem 2.2 gives Theorem 2 of the Introduction.

REFERENCES

- 1. G. E. Bredon, *Equivariant cohomology theories*, Lecture Notes in Math., no. 34, Springer-Verlag, Berlin and New York, 1967. MR 35 #4914.
- 2. P. E. Conner and E. E. Floyd, *Maps of odd period*, Ann. of Math. (2) **84** (1966), 132-156. MR **34** #3587.
- 3. S. Eilenberg, Homology of spaces with operators. I, Trans. Amer. Math. Soc. 61 (1947), 378-417; errata 62 (1947), 548. MR 9, 52.
- 4. E. E. Floyd, Orbit spaces of finite transformation groups. I, Duke Math. J. 20 (1953), 563-567. MR 15, 456.
- 5. ——, "Periodic maps via Smith theory," in A. Borel, Seminar on transformation groups, Ann. of Math. Studies no. 46, Princeton Univ. Press, Princeton, N. J., 1960. MR 22 #7129.
 - 6. M. Hall, Jr., The theory of groups, Macmillan, New York, 1959. MR 21 #1996.
- 7. P. A. Smith, "Fixed points of periodic transformations," in S. Lefschetz, *Algebraic topology*, Amer. Math. Soc. Colloq. Publ., vol. 27, Amer. Math. Soc., Providence, R. I., 1942. MR 4, 84.
- 8. R. E. Stong, Unoriented bordism and actions of finite groups, Mem. Amer. Math. Soc. No. 103 (1970).
- 9. ——, Equivariant bordism and Smith theory, Trans. Amer. Math. Soc. 159 (1971), 417–426.

University of Virginia, Charlottesville, Virginia 22901