THE SIGN OF LOMMEL'S FUNCTION

BY J. STEINIG

Abstract. Lommel's function $s_{\mu,\nu}(x)$ is a particular solution of the differential equation $x^2y'' + xy' + (x^2 - \nu^2)y = x^{\mu+1}$. It is shown here that $s_{\mu,\nu}(x) > 0$ for x > 0, if $\mu = \frac{1}{2}$ and $|\nu| < \frac{1}{2}$, or if $\mu > \frac{1}{2}$ and $|\nu| \le \mu$. This includes earlier results of R. G. Cooke's. The sign of $s_{\mu,\nu}(x)$ for other values of μ and ν is also discussed.

1. **Introduction.** In 1876, Lommel [6] considered the inhomogeneous differential equation

(1)
$$z^2y'' + zy' + (z^2 - v^2)y = z^{\mu+1},$$

where μ and ν are complex parameters. He obtained two particular solutions: the Lommel functions of the first kind, $s_{\mu,\nu}(z)$, and of the second kind, $S_{\mu,\nu}(z)$. The homogeneous equation associated with (1) is

(2)
$$z^2y'' + zy' + (z^2 - \nu^2)y = 0,$$

Bessel's equation.

The function $s_{\mu,\nu}(z)$ is defined for all pairs μ,ν such that neither $\mu-\nu$ nor $\mu+\nu$ is an odd negative integer, and for all z with $-\pi < \arg z \le \pi$, by the series

(3)
$$s_{\mu,\nu}(z) = \frac{1}{4} z^{\mu+1} \sum_{n=0}^{\infty} \frac{(-1)^n (\frac{1}{2}z)^{2n} \Gamma((\mu-\nu+1)/2) \Gamma((\mu+\nu+1)/2)}{\Gamma((\mu-\nu+n+3)/2) \Gamma((\mu+\nu+n+3)/2)}.$$

The symmetry property

$$(4) s_{\mu,\nu}(z) = s_{\mu,-\nu}(z)$$

is obvious from (3).

We shall consider $s_{\mu,\nu}(z)$ for μ and ν real, and positive z. Its importance arises from the formula [1, §3.20], [9, §10.74]

(5)
$$\int x^{\mu} C_{\nu}(x) dx = x [C_{\nu}(x) s'_{\mu,\nu}(x) - s_{\mu,\nu}(x) C'_{\nu}(x)],$$

in which $C_{\nu}(x)$ denotes any real solution of equation (2), that is,

$$C_{\nu}(x) = \alpha J_{\nu}(x) + \beta Y_{\nu}(x),$$

where ν , α and β are real, x > 0, and $J_{\nu}(x)$ and $Y_{\nu}(x)$ denote the usual Bessel functions.

Presented to the Society, November 28, 1970; received by the editors December 22, 1970. AMS 1970 subject classifications. Primary 33A70, 33A40; Secondary 26A33, 34C10, 44A20.

Key words and phrases. Lommel functions, Bessel functions, changes of sign, oscillation theorems, inhomogeneous Bessel equation.

A case of particular interest is that in which $\mu = \nu$. Then, unless ν is half of an odd negative integer, we have

(6)
$$s_{\nu,\nu}(x) = 2^{\nu-1} \Gamma(\frac{1}{2}) \Gamma(\nu + \frac{1}{2}) H_{\nu}(x),$$

where $H_{\nu}(x)$ is Struve's function of order ν [1, (3.127)]. Now it is known [9, §10.45] that $H_{\nu}(x) > 0$ for all x > 0 if $\nu > \frac{1}{2}$, that $H_{1/2}(x) = (2/\pi x)^{1/2}(1 - \cos x)$, and that $H_{\nu}(x)$ has an infinity of changes of sign if $\nu < \frac{1}{2}$. The corresponding problem for $s_{\mu,\nu}(x)$ is more difficult. R. G. Cooke [4] found conditions on μ and ν sufficient to ensure that $s_{\mu,\nu}(x) > 0$ for all x > 0. We may state his results as

THEOREM A. If $v \ge 0$ and $\mu \ge v+1$, then $s_{\mu,\nu}(x) > 0$ for x > 0. If $\nu \ge \frac{1}{2}$ and $\mu \ge \nu$, then $s_{\mu,\nu}(x) > 0$ for x > 0, unless $\mu = \nu = \frac{1}{2}$, when $s_{\mu,\nu}(x) \ge 0$ for x > 0.

The symmetry relation (4) gives the corresponding results for $\nu < 0$.

Cooke's proof requires an expression for $s_{\mu,\nu}(x)$ as a fractional integral involving $J_{\nu}(x)$, and a previous result of his ([2] and [3]) which implies that if $\mu=0$ and $\nu>-1$, or $\mu=1-\nu$ and $\nu>\frac{1}{2}$, then

$$\int_0^\xi t^\mu J_\nu(t) dt > 0, \qquad \xi > 0.$$

We shall here consider the same problem. It will often be convenient to refer to a (μ, ν) -plane, and to associate with each pair μ, ν the point with those coordinates.

We shall see that $s_{\mu,\nu}(x) > 0$ for x > 0 if $\mu \ge \frac{1}{2}$ and $|\nu| \le \mu$, except when $\mu = |\nu| = \frac{1}{2}$, in which case $s_{\mu,\nu}(x) \ge 0$. These inequalities define a larger region in the (μ, ν) -plane than Cooke's. If $\mu < \frac{1}{2}$, or if $\mu = \frac{1}{2}$ and $|\nu| > \frac{1}{2}$, then $s_{\mu,\nu}(x)$ changes sign infinitely often on $(0, \infty)$. If $\mu > \frac{1}{2}$ and $\mu < |\nu| - 1$, $s_{\mu,\nu}(x)$ has an odd number of changes of sign on $(0, \infty)$. Finally, if $\mu > \frac{1}{2}$ and $|\nu| - 1 < \mu < |\nu|$, $s_{\mu,\nu}(x)$ has an even number of changes of sign on $(0, \infty)$; but I have not been able to decide whether this number is always positive. I shall show, however, that there are points (μ, ν) in this region such that the corresponding $s_{\mu,\nu}(x)$ has changes of sign (an arbitrarily large number of them, in fact).

Our main tool is an oscillation theorem of Makai's [7] for second order differential equations. With it, we can determine the sign of the function

$$h(\xi) = \int_0^{\xi} t^{\mu} C_{\nu}(t) dt, \qquad \xi > 0,$$

for certain pairs μ , ν . Then, by using (5), we can deduce results on the sign of $s_{\mu,\nu}(x)$.

2. Oscillation theorems. Our starting point is

THEOREM B. Let y = y(x) be a solution of the differential equation $y'' + \varphi(x)y = 0$, where φ is continuous and increasing on (x_0, x_2) . Let x_1 be the only zero of y(x) on (x_0, x_2) . Further, assume that

(7)
$$\lim_{x \to x_0 + 0} y(x) = \lim_{x \to x_2 - 0} y(x) = 0.$$

Then,

(8)
$$\int_{x_0}^{x_1} |y(x)| dx \ge \int_{x_1}^{x_2} |y(x)| dx,$$

with strict inequality if φ is strictly increasing.

If φ is decreasing on (x_0, x_2) , then (8) is reversed.

Theorem B is due essentially to E. Makai [7], [8, §1.82], but the endpoint conditions (7) have been introduced to avoid difficulties which may arise when φ is discontinuous at x_0 , or at x_2 . The monotonicity condition on φ could be relaxed somewhat [7, §2(d)], but we will not need this here.

From Theorem B we deduce

THEOREM 1. Let y = y(x) be a solution of the differential equation

(9)
$$(r(x)y')' + p(x)y = 0,$$

where r and p are continuous, pr is increasing and r is positive, on (x_0, x_2) . Assume further that $\int_{x_0}^{x} (r(u))^{-1} du$ converges. Let

(10)
$$\lim_{x \to x_0 + 0} y(x) = \lim_{x \to x_2 - 0} y(x) = 0,$$

and let x_1 be the only zero of y on (x_0, x_2) . Then,

(11)
$$\int_{x_0}^{x_1} \frac{|y(x)|}{r(x)} dx \ge \int_{x_1}^{x_2} \frac{|y(x)|}{r(x)} dx,$$

with strict inequality if pr is strictly increasing. And if pr is decreasing (11) is reversed.

Proof. We transform the independent variable in (9) by setting

$$t = f(x) = \int_{x_0}^x \frac{du}{r(u)}.$$

Equation (9) can then be written as

(12)
$$d^2y/dt^2 + r(g(t))p(g(t))y = 0,$$

where g denotes the inverse of the (increasing) function f [5, p. 235]. Inequality (11) now follows by applying Theorem B to (12), and then changing the independent variable back to x.

In the sequel, we shall consider the equation

(13)
$$(x^{1-2\mu}v')' + x^{-2\mu-1}(x^2 + \mu^2 - \nu^2)v = 0,$$

which is of the form (9), with

$$(14) (p(x)r(x))' = 2x^{-4\mu-1}[(1-2\mu)x^2 + 2\mu(\nu^2 - \mu^2)].$$

The integrand in (5), $x^{\mu}C_{\nu}(x)$, is a solution of equation (13) [9, §4.31, (19)–(20)]. We shall often choose $\mu = \frac{1}{2}$; (13) then becomes

(15)
$$y'' + (1 + (1 - 4\nu^2)/4x^2)y = 0.$$

3. Lommel functions. The two Lommel functions $s_{\mu,\nu}(x)$ and $S_{\mu,\nu}(x)$ are related by the identity

$$s_{\mu,\nu}(x) = S_{\mu,\nu}(x) + 2^{\mu-1} \Gamma\left(\frac{\mu-\nu+1}{2}\right) \Gamma\left(\frac{\mu+\nu+1}{2}\right) \cdot \left[\cos\frac{(\mu-\nu)\pi}{2} Y_{\nu}(x) - \sin\frac{(\mu-\nu)\pi}{2} J_{\nu}(x)\right],$$
(16)

whenever $s_{\mu,\nu}(x)$ is defined [9, §10.71].

Now it can be shown [9, §10.75] that $S_{\mu,\nu}(x) \sim x^{\mu-1}$, as $x \to +\infty$. On combining this with the relations

$$J_{\nu}(x) = (2/\pi x)^{1/2} [\cos(x - \frac{1}{2}\nu\pi - \frac{1}{4}\pi) + O(1/x)]$$

and

$$Y_{\nu}(x) = (2/\pi x)^{1/2} \left[\sin \left(x - \frac{1}{2} \nu \pi - \frac{1}{4} \pi \right) + O(1/x) \right]$$

[9, §7.22], we see that as $x \to +\infty$, the dominant term on the right-hand side of (16) is

$$2^{\mu-1} \left(\frac{2}{\pi x}\right)^{1/2} \Gamma\left(\frac{\mu-\nu+1}{2}\right) \Gamma\left(\frac{\mu+\nu+1}{2}\right) \sin\left(x-\frac{1}{2}\mu\pi-\frac{1}{4}\pi\right) \quad \text{or} \quad x^{\mu-1},$$

according as $\mu < \frac{1}{2}$ or $\mu > \frac{1}{2}$. It follows that $s_{\mu,\nu}(x)$ has an infinity of changes of sign if $\mu < \frac{1}{2}$, but is positive for all sufficiently large x, if $\mu > \frac{1}{2}$. We now proceed to make this simple observation more precise. We begin by establishing

THEOREM 2. If $\mu < \frac{1}{2}$, or if $\mu = \frac{1}{2}$ and $|\nu| > \frac{1}{2}$, then $s_{\mu,\nu}(x)$ has an infinity of changes of sign on $(0, \infty)$.

Proof. For $\mu < \frac{1}{2}$ and ν unrestricted, the result follows as above. For $\mu = \frac{1}{2}$ and $|\nu| > \frac{1}{2}$, we apply Theorem B to the particular solution $y(x) = x^{1/2}J_{\nu}(x)$ of equation (15). It is clear from (14) that pr is increasing on $(0, \infty)$ for such pairs μ , ν . Now let $j_{\nu,k}$ denote the kth positive zero of $J_{\nu}(x)$. In (7), we may take $x_0 = j_{\nu,k}$, for any k. And we may also take $x_0 = 0$, since $J_{\nu}(x) = O(x^{\nu})$ as $x \to 0+$. Since $J_{\nu}(x) > 0$ for $0 < x < j_{\nu,1}$ if $\nu > -1$, it follows from (8) that

$$\int_0^{\xi} x^{1/2} J_{\nu}(x) \, dx > 0, \qquad \xi > 0, \, \nu > \frac{1}{2}.$$

Together with (5), this shows that $J_{\nu}(\xi)s'_{1/2,\nu}(\xi) - s_{1/2,\nu}(\xi)J'_{\nu}(\xi) > 0$, for the right-hand side of (5) vanishes at x=0 if $\beta=0$ and $\mu+\nu+1>0$, by (3). In particular,

$$s_{1/2,\nu}(j_{\nu,k})J'_{\nu}(j_{\nu,k})<0, \qquad k=1,2,\ldots, \nu>\frac{1}{2}.$$

But sgn $J'_{\nu}(j_{\nu,k}) = (-1)^k$ for $\nu \ge 0$; thus $s_{1/2,\nu}(x)$ must have an odd number of changes of sign between consecutive positive zeros of $J_{\nu}(x)$, if $\nu > \frac{1}{2}$. Because of (4), this is also true if $\nu < -\frac{1}{2}$, and the proof is complete.

Next, we turn to the case $\mu \ge \frac{1}{2}$, and prove

THEOREM 3. If $\mu \ge \frac{1}{2}$ and $|\nu| \le \mu$, then $s_{\mu,\nu}(x) > 0$ for all x > 0, except if $\mu = |\nu| = \frac{1}{2}$, when $s_{\mu,\nu}(x) \ge 0$.

Proof. For $\mu = |\nu| = \frac{1}{2}$ we have, from (6),

(17)
$$s_{1/2,1/2}(x) = s_{1/2,-1/2}(x) = x^{-1/2}(1-\cos x).$$

For $\mu = \frac{1}{2}$ and $|\nu| < \frac{1}{2}$ we shall use Theorem B and (5). From (3), and familiar facts about the behavior of $J_{\nu}(x)$ and $Y_{\nu}(x)$ as $x \to 0+$, it is easily seen that we may take 0 as lower limit of integration in (5), and that the right-hand side of (5) vanishes at x = 0, if $\mu > |\nu| - 1$. Hence, for $\mu > |\nu| - 1$ and $\xi > 0$, we have

$$\int_0^{\xi} x^{\mu} C_{\nu}(x) dx = \xi [C_{\nu}(\xi) s'_{\mu,\nu}(\xi) - s_{\mu,\nu}(\xi) C'_{\nu}(\xi)].$$

The particular choice $\xi = c_{\nu,k}$, the kth positive zero of $C_{\nu}(x)$, yields

(18)
$$\int_{0}^{c_{\nu,k}} x^{\mu} C_{\nu}(x) dx = -c_{\nu,k} s_{\mu,\nu}(c_{\nu,k}) C'_{\nu}(c_{\nu,k}).$$

Now $y(x) = x^{\mu}C_{\nu}(x)$ is a solution of (13). Since $\lim_{x\to 0+} x^{\mu}C_{\nu}(x) = 0$ if $\mu > |\nu|$, (10) is satisfied by $x_0 = 0$. Moreover, it is clear from (14) that pr is strictly decreasing on $(0, \infty)$, if $\mu = \frac{1}{2}$ and $|\nu| < \frac{1}{2}$.

Thus, the hypotheses of Theorem B are satisfied by $y(x) = x^{1/2}C_{\nu}(x)$ on each of the intervals $(0, c_{\nu, 2})$ and $(c_{\nu, k}, c_{\nu, k+2})$, $k \ge 1$, if $|\nu| < \frac{1}{2}$. It follows that

(19)
$$\left\{\int_0^{c_{\nu,k}} x^{1/2} C_{\nu}(x) \, dx\right\} \left\{\int_0^{c_{\nu,k+1}} x^{1/2} C_{\nu}(x) \, dx\right\} < 0, \qquad k \ge 1, \, |\nu| < \frac{1}{2}.$$

Since $C'_{\nu}(c_{\nu,k})C'_{\nu}(c_{\nu,k+1})<0$ [9, §15.21], it follows from (18) and (19) that

(20)
$$s_{1/2,\nu}(c_{\nu,k}) > 0, \quad k \ge 1, |\nu| < \frac{1}{2}.$$

But $x^{1/2}C_{\nu}(x)$ is an arbitrary nonnull solution of (15). Therefore, (20) implies that $s_{1/2,\nu}(x) > 0$ for all x > 0 if $|\nu| < \frac{1}{2}$, since any x > 0 is a zero of some nonnull solution of (15). Together with (17), this proves Theorem 3 for $\mu = \frac{1}{2}$. And if we use the integrals

$$s_{\mu+\sigma,\nu+\sigma}(x) = 2x^{\sigma} \frac{\Gamma((\mu+\nu+2\sigma+1)/2)}{\Gamma(\sigma)\Gamma((\mu+\nu+1)/2)} \int_{0}^{\pi/2} s_{\mu,\nu}(x\sin\theta) \sin^{\nu+1}\theta \cos^{2\sigma-1}\theta \ d\theta,$$

$$s_{\mu+\sigma,\nu-\sigma}(x) = 2x^{\sigma} \frac{\Gamma((\mu+\nu+2\sigma+1)/2)}{\Gamma(\sigma)\Gamma((\mu-\nu+1)/2)} \int_{0}^{\pi/2} s_{\mu,\nu}(x\sin\theta) \sin^{1-\nu}\theta \cos^{2\sigma-1}\theta \ d\theta,$$

both valid for $\sigma > 0$ and $\mu \pm \nu > -1$ [1, §3.20], the theorem's truth for $\mu > \frac{1}{2}$ is an immediate consequence of its truth for $\mu = \frac{1}{2}$.

An intermediate situation between those of the last two theorems is described by

THEOREM 4. Let $\mu > \frac{1}{2}$. If $\mu < |\nu| - 1$, then $s_{\mu,\nu}(x)$ has an odd number of changes of sign on $(0, \infty)$. If $|\nu| - 1 < \mu < |\nu|$, then $s_{\mu,\nu}(x)$ has an even number of changes of sign (perhaps none) on $(0, \infty)$.

Proof. From (3) we have $s_{\mu,\nu}(x) \sim x^{\mu+1}/((\mu+1)^2-\nu^2)$, as $x \to 0+$. On the other hand, it follows from our discussion of (16) that when $\mu > \frac{1}{2}$, $s_{\mu,\nu}(x) \sim x^{\mu-1}$, as $x \to +\infty$. The conclusion is now obvious.

I have not been able to decide whether the even number alluded to in Theorem 4 is in fact always positive. However, I can show that if the point (μ, ν) , with $\mu > \frac{1}{2}$ and $|\nu| - 1 < \mu < |\nu|$, is close enough to the line $\mu = \frac{1}{2}$, or to one of the lines $\mu = |\nu| - 1$, then the corresponding $s_{\mu,\nu}(x)$ changes sign. In fact, by choosing the point (μ, ν) close enough to the line $\mu = \frac{1}{2}$ in the region $\mu > \frac{1}{2}$, $|\nu| - 1 < \mu < |\nu|$, we can find Lommel functions with an arbitrarily large number of changes of sign.

This last statement can be verified as follows. We may assume $\nu > 0$. By applying Theorem 1 to (13), we see that if

$$(21) (1-2\mu)x^2 + 2\mu(\nu^2 - \mu^2) > 0 \text{for } 0 < x < \bar{x},$$

and if j is the largest zero of $J_{\nu}(x)$ in $(0, \bar{x}]$, then

$$\int_0^x t^{3\mu - 1} J_{\nu}(t) \, dt > 0 \quad \text{for } 0 < x \le j,$$

since (10) is satisfied by $y(x) = x^{\mu}J_{\nu}(x)$ and $x_0 = 0$, if $\mu + \nu > 0$. For $\mu \ge \frac{1}{2}$, this implies that

by the second mean value theorem.

Thus, if $(0, \bar{x}]$ contains at least two positive zeros of $J_{\nu}(t)$, then (22) holds with $j=j_{\nu,2}$, and hence also with $j=j_{\nu,3}$. As before, if $\mu>\nu-1$, this will imply that $s_{\mu,\nu}(x)$ changes sign on $(j_{\nu,1},j_{\nu,2})$ and on $(j_{\nu,2},j_{\nu,3})$. Now for $\mu>\frac{1}{2}$, (21) holds if and only if $\mu<|\nu|$ and $|\bar{x}|\leq (2\mu(\nu^2-\mu^2)/(2\mu-1))^{1/2}$. Therefore, $s_{\mu,\nu}(x)$ will change sign if $\mu>\frac{1}{2}$, $\nu-1<\mu<\nu$, and

(23)
$$j_{\nu,2} \le (2\mu(\nu^2 - \mu^2)/(2\mu - 1))^{1/2}.$$

Now if we choose some $\nu > \frac{1}{2}$, and keep it fixed, then the left-hand side of (23) is fixed. But the right-hand side tends to $+\infty$, as $\mu \to \frac{1}{2} + 0$. Hence for each ν , $\frac{1}{2} < \nu < \frac{3}{2}$, we can find a μ ($\mu > \frac{1}{2}$, $\nu - 1 < \mu < \nu$) such that $s_{\mu,\nu}(x)$ has at least two changes of sign. In order to produce a Lommel function with at least 2n changes of sign, it suffices to satisfy the inequality obtained by writing $j_{\nu,2n}$ for $j_{\nu,2}$ in (23).

We now turn our attention to points near the line $\mu = \nu - 1$, in the region $\mu > \frac{1}{2}$, $\nu - 1 < \mu < \nu$. Here, we use (16). We fix $\nu \ge \frac{3}{2}$, and choose $x^* > 0$ such that $J_{\nu}(x^*) < 0$. Then, we let $\mu \to (\nu - 1) + 0$. Now $S_{\mu,\nu}(x^*)$ tends to a limit, as $\mu \to \nu - 1$ [9, §10.73]. And

$$\lim_{\mu \to \nu - 1} \left[\cos \frac{(\mu - \nu)\pi}{2} Y_{\nu}(x^*) - \sin \frac{(\mu - \nu)\pi}{2} J_{\nu}(x^*) \right] = J_{\nu}(x^*).$$

Hence, for $x=x^*$, the right-hand side of (16) tends to $-\infty$ as $\mu \to (\nu-1)+0$, because of the factor $\Gamma((\mu-\nu+1)/2)$. Therefore, $s_{\mu,\nu}(x^*)<0$ for an appropriate choice of μ .

REFERENCES

- 1. A. W. Babister, Transcendental functions satisfying nonhomogeneous linear differential equations, Macmillan, New York, 1967. MR 34 #6158.
- 2. R. G. Cooke, Gibbs's phenomenon in Fourier-Bessel series and integrals, Proc. London Math. Soc. (2) 27 (1928), 171-192.
 - 3. —, A monotonic property of Bessel functions, J. London Math. Soc. 12 (1937), 180-185.
 - 4. ——, On the sign of Lommel's function, J. London Math. Soc. 7 (1932), 281–283.
 - 5. W. Leighton, Ordinary differential equations, 3rd ed., Wadsworth, Belmont, Calif., 1970.
- 6. E. Lommel, Ueber eine mit den Besselschen Functionen verwandte Function, Math. Ann. 9 (1876), 425-444.
- 7. E. Makai, On a monotonic property of certain Sturm-Liouville functions, Acta Math. Acad. Sci. Hungar. 3 (1952), 165-172. MR 14, 872.
- 8. G. Szegö, *Orthogonal polynomials*, Amer. Math. Soc. Colloq. Publ., vol. 23, Amer. Math. Soc., Providence, R. I., 1959. MR 21 #5029.
- 9. G. N. Watson, A treatise on the theory of Bessel functions, 2nd ed., Cambridge Univ. Press, Cambridge; Macmillan, New York, 1944. MR 6, 64.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ILLINOIS, URBANA, ILLINOIS 61801

Current address: Institut Mathématique, Université de Genève, Genève, Switzerland